
Macro Guide

SmarTerm 2009 - Version 13.0.0 Issued September 2008
Copyright © 1983-2008 Esker S.A. All rights reserved.

Copyright © 1991-2001 Microsoft Corporation;
Copyright © 1992-1999 Summit Software Company;
Copyright © 1998-2008 The OpenSSL Project. All rights reserved;
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved;
Copyright © 1995-1998 Tim Hudson (tjh@cryptsoft.com). All rights reserved.
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved;
Copyright © 1995 Tatu Ylonen <ylo@cs.hut.fi> Espoo, Finland. All rights reserved;
Copyright ©1998 CORE SDI S.A., Buenos Aires, Argentina. All rights reserved;
Copyright © 1983, 1990, 1992, 1993, 1995 The Regents of the University of California. All rights reserved;
Copyright © 1995, 1996 by David Mazieres <dm@lcs.mit.edu;
Copyright © 1995-2004 Jean-loup Gailly and Mark Adler;
For additional information, conditions of use, and disclaimers, see copyright*.pdf file.

Esker, the Esker logo, and SmarTerm, are registered trademarks of Esker S.A or Esker, Inc. Citrix, WinFrame, Independant
Computing Architecture (ICA), the Citrix logo, MultiWin, and MetaFrame are registered trademarks of Citrix Systems, Inc.
DEC, VT, LAT, and VAX are registered trademarks of Compaq Computer Corporation. IBM and PC AT are registered trade-
marks of International Business Machines Corporation. Microsoft, Windows, and Active Server are registered trademarks of
Microsoft Corporation. Novell is a registered trademark of Novell, Inc. Netscape and Netscape Navigator are registered trade-
marks of Netscape Communications Corporation. UNIX is a registered trademark of The Open Group. All other trademarks
mentioned are the property of their respective owners.

Printed in the United States of America or France. Information in this document is subject to change without notice. No part of
this document may be reproduced or transmitted in any form or by any means without the prior written consent of Esker S.A..

Esker S.A., 10 rue des Émeraudes, 69006 Lyon, France
Tel: +33 (0)4 72 83 46 46 • Fax: +33 (0)4 72 83 46 40/41 • info@esker.fr • www.esker.fr

Esker, Inc., 1212 Deming Way, Suite 350, Madison, WI 53717 USA
Tel: +1 608-828-6000 • Fax: +1 608-828-6001 • info@esker.com • www.esker.com

Esker Australia Pty Ltd. (Lane Cove - NSW) • Tel: +61 (0)2 8596 5100 • info@esker.com.au • www.esker.com.au
Esker GmbH (München) • Tel: +49 (0)89 700 8870 • info@esker.de • www.esker.de
Esker Italia SRL (Milano) • Tel: +39 02 89 20 03 03 • info@esker.it • www.esker.it
Esker Ibérica, S.L. (Madrid) • Tel: +34 91 552 9265 • info@esker.es • www.esker.es
Esker UK Ltd. (Derby) • Tel: +44 (0)1332 54 8181 • info@esker.co.uk • www.esker.co.uk

Contents

Introduction. 1
Macro Features Listed by Purpose . 2

File Transfer . 2
Character and String Manipulation . 2
Drive, Folder, and File Access . 3
Keywords, Data Types, Operators, and Expressions . 4
Host Connections . 5
Numeric, Math, and Accounting Functions . 5
Macro Control and Compilation. 6
Application and Session Features. 7
Operating System Control . 9
User Interaction . 9
Time and Date Access . 10
Objects . 10
SQL Access . 11
DDE Access . 11

Recording and Running Macros . 13
Recording macros . 14
Running macros . 15

What can go wrong?. 15
Running PSL Scripts . 15

Creating Macros . 17
Features and organization . 17

Macro syntax . 18
Using SmarTerm’s objects . 19

Understanding the SmarTerm objects . 20
Modules and collectives . 24

Predefined login and logout macros . 25
iii

Why macros, modules, and collectives. 30

Programming Macros . 33
Using the macro editor . 33

The macro editor window . 33
Getting help. 34
Using the toolbar. 34
Using accelerators. 35
Editing macros . 36
Debugging macros . 38

Creating Dialogs . 43
Using the Dialog Editor . 44
Creating a Custom Dialog. 47
Editing a Custom Dialog. 52
Editing an Existing Dialog . 62
Testing a Dialog . 65
Incorporating a Dialog into a Macro. 67

Using Dialogs. 67
Creating a Dialog Record . 68
Putting Information into the Dialog . 68
Displaying the Custom Dialog . 69
Retrieving Values from the Custom Dialog . 70
Using a Dynamic Dialog in a Macro . 71
Making a Dialog Dynamic . 72

Using objects in an external OLE application . 73
Communicating with a host . 74

Handling host connections . 74
Sending and receiving data . 77

Compiling Macros . 82
Using compiled macros . 83

Symbols . 85
' (single quote) . 85
'! (description comment) . 85
- (subtraction) . 86
#Const . 87
#If...Then...#Else . 87
& (concatenation). 89
 () (precedence) . 90
* (multiplication) . 91
. (dot) . 91
iv

/* and */ (C-style comment block) . 92
/ (division) . 92
\ (integer division) . 93
^ (exponentiation) . 93
_ (line continuation). 94
+ (addition/concatenation) . 95
<, <=, <>, =, >, >= (comparison) . 96
= (assignment) . 96

A . 99
Abs. 99
And . 100
AnswerBox . 101
Any (data type) . 102
AppActivate. 102
AppClose . 104
AppFind, AppFind$. 104
AppGetActive$. 105
AppGetPosition . 105
AppGetState. 106
AppHide. 107
Application (object) . 108

Application.ActiveSession . 108
Application.Application . 108
Application.Caption . 108
Application.CommandLine . 109
Application.DoMenuFunction . 109
Application.FlashIcon . 110
Application.InstalledLanguages . 110
Application.Parent . 111
Application.Product . 111
Application.Quit . 111
Application.Sessions (collection) . 111
Application.Sessions.Application. 113
Application.Sessions.Count . 113
Application.Sessions.Item . 113
Application.Sessions.Open. 113
Application.Sessions.Parent . 114
Application.StartupLanguage. 114
Application.SuppressRefocus. 115
v

Application.UserHelpFile . 115
Application.UserHelpMenu . 115
Application.UserHotSpotsLocation . 116
Application.UserKeyMapsLocation . 116
Application.UserMacrosLocation. 116
Application.UserPhoneBookLocation . 116
Application.UserSessionsLocation . 117
Application.UserButtonPicturesLocation . 117
Application.UserSmarTermButtonsLocation . 117
Application.UserTransfersLocation . 118
Application.Version . 118
Application.ViewUserHelp. 118
Application.Visible . 118
Application.WindowState. 119

AppList. 119
AppMaximize. 120
AppMinimize . 120
AppMove . 121
AppRestore. 122
AppSetState . 123
AppShow . 123
AppSize . 124
AppType. 125
ArrayDims . 126
Arrays (topic) . 127
ArraySort . 129
Asc, AscB, AscW. 130
AskBox, AskBox$. 131
AskPassword, AskPassword$. 132
Atn . 132

B . 135
Beep . 135
Begin Dialog . 135
Boolean (data type) . 137
ByRef . 138
ByVal . 138

C . 141
Call . 141
vi

CancelButton . 142
CBool. 142
CCur. 143
CDate, CVDate . 144
CDbl. 144
ChDir . 145
ChDrive . 145
CheckBox . 145
Choose . 146
Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$. 147
CInt . 148
Circuit (object). 149

Circuit.AssertBreak . 149
Circuit.AutoConnect. 149
Circuit.Connect. 150
Circuit.Connected. 150
Circuit.Disconnect . 150
Circuit.LATHostName . 151
Circuit.LATPassword. 151
Circuit.LATSavePassword . 151
Circuit.ModemAlt1Number . 152
Circuit.ModemAlt2Number . 152
Circuit.ModemAlt3Number . 152
Circuit.ModemAreaCode . 152
Circuit.ModemCountryCode . 153
Circuit.ModemGetCountryCodeString . 153
Circuit.ModemPhoneNumber . 153
Circuit.ModemTotalCountryCodes . 154
Circuit.ModemUseCodes . 154
Circuit.SendRawToHost. 154
Circuit.SerialBaudRate. 155
Circuit.SerialBreakDuration. 155
Circuit.SerialDataBits. 155
Circuit.SerialFlowControl . 156
Circuit.SerialParity . 156
Circuit.SerialPort . 157
Circuit.SerialReceiveBufferSize . 157
Circuit.SerialStopBits. 158
Circuit.SerialTransmitBufferSize. 158
Circuit.Setup. 158
Circuit.SNALogicalUnit. 160
Circuit.SNAProtocol . 160
vii

Circuit.SNAServerName . 161
Circuit.SuppressConnectErrorDialog . 161
Circuit.TelnetBreakMode . 162
Circuit.TelnetCharacterMode . 162
Circuit.TelnetHostName . 163
Circuit.TelnetPortNumber . 163

Clipboard (object) . 163
Clipboard$ (function) . 163
Clipboard$ (statement) . 164
Clipboard.Clear. 164
Clipboard.GetFormat . 164
Clipboard.GetText . 165
Clipboard.SetText . 165

CLng. 166
Close. 167
ComboBox . 167
Comments (topic). 168
Comparison Operators (topic) . 169
Const . 170
Constants (topic) . 172

Application State Constants . 172
Application.WindowState, Session.WindowState . 172
Character Constants . 172
Circuit.SerialFlowControl. 173
Circuit.SerialParity . 173
Circuit.TelnetBreakMode . 173
Circuit.TelnetCharacterMode . 173
Clipboard Constants . 174
Compiler Constants. 174
Date Constants . 174
File Constants . 175
File Type Constants . 175
Font Constants . 175
IMEStat Constants . 175
Math Constants . 176
Session.EventWait . 176
MsgBox Constants . 176
Session.Capture File Handling . 177
Session.KeyWait, Session.Collect . 177
Session.StringWait . 177
Session.ConfigInfo . 177
Session.EmulationInfo . 177
Session.KeyWait. 178
viii

Session.Language, Application.InstalledLanguages,
Application.StartupLanguage. 178
Shell Constants . 178
Macro Language Constants . 178
String Conversion Constants . 179
Variant Constants . 179

Cos . 180
CreateObject . 180
CSng . 181
CStr . 181
CurDir, CurDir$. 182
Currency (data type) . 182
CVar. 182
CVErr. 183

D . 185
Date (data type) . 185

Date literals. 185
Dates and Year 2000 Calculations . 186

Date, Date$ (functions) . 189
Date, Date$ (statements) . 189
DateAdd. 190
DateDiff . 191
DatePart . 193
DateSerial . 195
DateValue . 195
Day. 195
DDB. 196
DDEExecute . 197
DDEInitiate . 197
DDEPoke . 198
DDERequest, DDERequest$. 198
DDESend . 199
DDETerminate. 200
DDETerminateAll . 200
DDETimeout . 201
Declare. 201

Prototying macro subroutines and functions . 203
ix

Declaring routines in external .DLL files . 205
DefType . 210
Dialog (function) . 212
Dialog (statement) . 214
Dialogs (topic) . 214
Dim. 214
Dir, Dir$. 217
DiskDrives . 219
DiskFree . 219
DlgCaption (function) . 220
DlgCaption (statement) . 220
DlgControlId . 220
DlgEnable (function) . 221
DlgEnable (statement) . 222
DlgFocus (function) . 222
DlgFocus (statement) . 223
DlgListBoxArray (function) . 223
DlgListBoxArray (statement) . 224
DlgProc . 224
DlgSetPicture . 227
DlgText . 228
DlgText$. 229
DlgValue (function) . 230
DlgValue (statement) . 230
DlgVisible (function) . 231
DlgVisible (statement) . 231
Do...Loop . 233
DoEvents (function) . 235
DoEvents (statement) . 235
Double (data type) . 236
DropListBox. 236

E . 239
End . 239
Environ, Environ$. 239
EOF . 240
x

Eqv. 240
Erase . 241
Err (object). 242

Erl . 242
Err.Clear . 243
Err.Description . 243
Err.HelpContext . 244
Err.HelpFile . 245
Err.LastDLLError. 245
Err.Number. 246
Err . 247
Err.Raise . 247
Err.Source. 248

Error Handling (topic) . 249
Cascading Errors . 249
Visual Basic Compatibility. 250
Error, Error$ (functions). 250
Error (statement). 251

Exit Do. 252
Exit For . 252
Exit Function . 253
Exit Sub . 253
Exp. 253
Expression Evaluation (topic) . 254

Type Coercion . 254
Rounding . 254
Default Properties. 255

F . 257
FileAttr. 257
FileCopy . 258
FileDateTime . 258
FileDirs . 259
FileExists . 260
FileLen. 260
FileList. 260
FileParse$. 262
Fix . 263
For...Each. 264
For...Next . 265
xi

Format, Format$. 267
FreeFile . 273
Function...End Function. 274

Returning Values from Functions. 275
Passing Parameters to Functions. 276
Optional Parameters . 276

Fv . 277

G . 279
Get . 279
GetAttr . 281
GetObject . 282
GoSub. 283
Goto . 284
GroupBox. 285

H . 287
HelpButton . 287
Hex, Hex$. 288
Hour . 289

I . 291
If...Then...Else . 291
Iif . 292
IMEStatus. 293
Imp (operator) . 294
Input# . 295
Input, Input$, InputB, InputB$. 298
InputBox, InputBox$. 298
InStr, InstrB . 299
Int . 301
Integer (data type) . 301
IPmt . 302
IRR . 303
Is. 304
IsDate . 305
IsEmpty . 306
IsError . 306
xii

IsMissing . 306
IsNull . 307
IsNumeric . 307
IsObject . 308
Item$. 308
ItemCount . 309

K . 311
Keywords (topic) . 311
Kill . 312

L . 313
Lbound. 313
LCase, LCase$. 314
Left, Left$, LeftB, LeftB$. 314
Len, LenB . 315
Let . 316
Like . 317
Line Input#. 318
Line Numbers (topic). 318
Line$. 319
LineCount . 319
ListBox . 320
Literals (topic) . 321
Loc . 322
Lock, Unlock . 322
Lof . 324
Log. 324
Long (data type). 325
LSet . 325
LTrim, LTrim$. 326

M. 327
Mid, Mid$, MidB, MidB$ (functions). 327
Mid, Mid$, MidB, MidB$ (statements). 328
Minute . 329
MIRR . 329
xiii

MkDir. 330
Mod . 330
Month . 331
Msg (object) . 331

Msg.Close . 331
Msg.Open . 332
Msg.Text . 333
Msg.Thermometer. 333

MsgBox (function) . 334
MsgBox (statement) . 336

N . 337
Name . 337
Named Parameters (topic) . 338
New . 338
Not . 339
Now . 339
NPer . 340
Npv. 341

O . 343
Object (data type). 343
Objects (topic) . 344

What is an object. 344
Declaring Object Variables. 344
Assigning a Value to an Object Variable . 345
Accessing Object Properties . 345
Accessing Object Methods . 345
Comparing Object Variables . 345
Collections . 346
Predefined Objects . 346

Oct, Oct$. 347
OKButton . 347
On Error . 348

Errors within an Error Handler . 348
Open . 350
OpenFilename$. 352
Operator Precedence (topic). 353
Operator Precision (topic) . 353
Option Base . 354
xiv

Option Compare. 354
Option CStrings . 355
Option Default . 356
Option Explicit . 357
OptionButton . 357
OptionGroup . 358
Or . 359

Binary Disjunction . 359

P . 361
Picture . 361
PictureButton . 362
Pmt. 364
PopUpMenu. 365
PPmt. 365
Print . 366
Print# . 368
Private . 369

Fixed-Length Strings . 370
Initial Values . 370

Public . 371
Fixed-Length Strings . 371
Sharing Variables . 372

PushButton. 372
Put . 373
Pv . 375

R . 377
Random . 377
Randomize . 377
Rate . 378
ReadIni$. 378
ReadIniSection. 379
Redim. 380
Rem . 381
Reset . 381
Resume . 382
Return . 382
xv

Right, Right$, RightB, RightB$. 383
RmDir. 383
Rnd . 384
RSet . 385
RTrim, RTrim$. 385

S. 387
SaveFilename$. 387
Second . 388
Seek (function) . 388
Seek (statement) . 389
Select...Case . 390
SelectBox . 391
SendKeys . 392

Specifying Keys . 392
Session (object) . 394

Session.Application . 394
Session.AutoWrap . 395
Session.Blink . 395
Session.Bold . 395
Session.BufferFormatted . 396
Session.BufferModified . 396
Session.Caption. 396
Session.Capture. 397
Session.CaptureFileHandling . 397
Session.Circuit . 398
Session.ClearScreen . 398
Session.Close . 398
Session.Collect (object) . 399
Session.Collect.CollectedCharacters . 400
Session.Collect.CollectedString . 400
Session.Collect.Consume . 400
Session.Collect.MaxCharacterCount . 401
Session.Collect.Reset . 401
Session.Collect.Start . 401
Session.Collect.Status . 402
Session.Collect.TermString . 402
Session.Collect.TermStringExact . 402
Session.Collect.Timeout . 403
Session.Collect.TimeoutMS . 403
Session.Column . 403
Session.Concealed . 403
xvi

Session.ConfigInfo . 404
Session.Connected . 404
Session.DialogView . 405
Session.DoMenuFunction . 405
Session.Echo. 406
Session.EmulationInfo . 406
Session.EndCapture . 407
Session.EventWait (object) . 407
Session.EventWait.EventCount . 408
Session.EventWait.EventType . 408
Session.EventWait.MaxeventCount . 409
Session.EventWait.Reset . 409
Session.EventWait.Start . 409
Session.EventWait.Status . 410
Session.EventWait.Timeout . 410
Session.EventWait.TimeoutMS . 410
Session.FieldEndCol . 410
Session.FieldEndRow. 411
Session.FieldModified . 412
Session.FieldStartCol . 412
Session.FieldStartRow . 412
Session.FieldText . 413
Session.FontAutoSize. 414
Session.FontHeight. 414
Session.FontWidth . 414
Session.GetMostRecentTriggerName . 414
Session.GetMostRecentTriggerPattern . 415
Session.HotSpotsActive . 415
Session.HotSpotsFileName . 416
Session.InitialMouseCol. 416
Session.InitialMouseRow. 417
Session.InsertMode . 417
Session.InterpretControls . 418
Session.Inverse . 418
Session.IsFieldMark . 418
Session.IsNumeric . 419
Session.IsProtected. 419
Session.KeyboardLocked . 420
Session.KeyWait (object) . 420
Session.KeyWait.KeyCode . 422
Session.KeyWait.KeyCount . 422
Session.KeyWait.KeyType. 422
Session.KeyWait.MaxKeyCount . 422
Session.KeyWait.Reset. 423
Session.KeyWait.Start . 423
xvii

Session.KeyWait.Status . 423
Session.KeyWait.Timeout . 424
Session.KeyWait.TimeoutMS . 424
Session.KeyWait.Value . 424
Session.Language . 424
Session.LoadKeyboardMap . 425
Session.LoadSmarTermButtons . 425
Session.LockStep (object) . 426
Session.LockStep.Reset . 428
Session.LockStep.Start . 428
Session.MouseCol. 428
Session.MouseRow. 429
Session.NativeScreenText . 429
Session.Normal . 429
Session.Online . 430
Session.Page . 430
Session.ReplayCaptureFile . 430
Session.Row . 431
Session.ScreenText . 431
Session.ScreenToFile . 431
Session.SelectScreenAtCoords . 432
Session.SelectionEndColumn . 432
Session.SelectionEndRow . 433
Session.SelectionStartColumn . 433
Session.SelectionStartRow . 434
Session.SelectionRectangular . 434
Session.SelectionType . 435
Session.Send . 435
Session.SendKey. 436
Session.SendLiteral. 437
Session.SetFontSize . 437
Session.SetHotSpotsFile . 438
Session.StringWait (object) . 439
Session.StringWait.MatchString. 440
Session.StringWait.MatchStringEx . 440
Session.StringWait.MatchStringExact . 441
Session.StringWait.MaxCharacterCount . 442
Session.StringWait.Reset . 442
Session.StringWait.Start . 442
Session.StringWait.Status . 443
Session.StringWait.Timeout . 443
Session.StringWait.TimeoutMS . 444
Session.TotalColumns . 444
Session.TotalPages . 444
Session.TotalRows . 444
xviii

Session.Transfer . 445
Session.TransferProtocol . 445
Session.TranslateBinary . 445
Session.TranslateText. 446
Session.TransmitFile . 446
Session.TransmitFileUntranslated . 447
Session.TriggersActive. 447
Session.TypeFile . 448
Session.Underline. 448
Session.UnloadSmarTermButtons . 448
Session.Visible . 449
Session.WindowState . 449

Set . 449
SetAttr . 450
Sgn . 451
Shell . 452
Sin . 453
Single (data type). 453

Storage . 453
Sleep . 454
Sln . 454
Space, Space$. 455
Spc . 455
SQLBind . 456
SQLClose. 457
SQLError . 457
SQLExecQuery . 458
SQLGetSchema . 459
SQLOpen . 462
SQLRequest. 463
SQLRetrieve . 464
SQLRetrieveToFile . 466
Sqr . 467
Stop . 467
Str, Str$. 467
StrComp. 468
StrConv . 469
String (data type) . 470
xix

String, String$. 471
Sub...End Sub. 472

Passing Parameters to Subroutines . 473
Optional Parameters . 474

Switch. 475
SYD . 475

T . 477
Tab . 477
Tan . 478
Text . 478
TextBox . 479
Time, Time$ (functions) . 481
Time, Time$ (statements) . 481
Timer . 482
TimeSerial . 482
TimeValue . 482
Transfer (object). 483

Transfer.Command . 483
Transfer.FTPAutoConnect . 484
Transfer.FTPConfirmDeleteFiles . 484
Transfer.FTPConfirmRemoveFolders . 484
Transfer.FTPConfirmReplaceFiles. 485
Transfer.FTPConfirmTransferFiles . 486
Transfer.FTPConfirmTransferFolders . 486
Transfer.FTPDeleteIncompleteFiles. 486
Transfer.FTPHostName . 487
Transfer.FTPSecureCompression . 487
Transfer.FTPSecureFirstTimeWarningsOff . 487
Transfer.FTPSecurePortNumber . 488
Transfer.FTPSecureSocksEnabled . 488
Transfer.FTPSecureSocksPortNumber. 488
Transfer.FTPSecureSocksServerName. 489
Transfer.FTPUserName . 489
Transfer.FTPUserPassword . 489
Transfer.FTPUseSecureFTP . 489
Transfer.INDFILEAdditionalCommands . 490
Transfer.INDFILEEnableCRLFHandling . 491
Transfer.INDFILEHostEnvironment . 491
Transfer.INDFILELocalFileFormat . 492
Transfer.INDFILELogicalRecordLength . 492
Transfer.INDFILEPacketSize. 492
xx

Transfer.INDFILEPromptBeforeOverwrite . 493
Transfer.INDFILERecordFormat. 493
Transfer.INDFILEResponseTimeout . 494
Transfer.INDFILEStartupTimeout. 494
Transfer.INDFILETSOAllocationUnits. 494
Transfer.INDFILETSOAUPrimary . 495
Transfer.INDFILETSOAUSecondary . 495
Transfer.INDFILETSOAverageBlockSize . 496
Transfer.INDFILETSOBlockSize . 496
Transfer.KermitCheckSumType . 496
Transfer.KermitDuplicateFileWarning . 497
Transfer.KermitPacketSize. 497
Transfer.ProtocolName . 497
Transfer.ReceiveFile . 498
Transfer.ReceiveFileAs . 498
Transfer.SendFile . 499
Transfer.SendFileAs. 500
Transfer.Setup . 500
Transfer.XMODEMCheckSumType . 502
Transfer.XMODEMPacketSize . 502
Transfer.XMODEMStreaming. 502
Transfer.YMODEMCheckSumType . 503
Transfer.YMODEMPacketSize . 503
Transfer.YMODEMStreaming. 503

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$. 504
Type . 504
TypeName . 506
TypeOf. 507

U . 509
UBound . 509
UCase, UCase$. 510
Unlock . 510
User-Defined Types (topic) . 510

Declaring Structures . 510
Copying Structures . 511
Passing Structures. 511
Size of Structures . 511

V . 513
Val . 513
Variant (data type) . 514

Determining the Subtype of a Variant . 514
xxi

Assigning to Variants . 515
Operations on Variants . 515
Adding Variants . 515
Variants That Contain No Data . 516
Variant Storage . 516
Disadvantages of Variants . 516
Passing Nonvariant Data to Routines Taking Variants . 517
Passing Variants to Routines Taking Nonvariants . 517

VarType . 517

W - X - Y . 519
Weekday. 519
While...Wend . 520
Width# . 520
Word$. 521
WordCount. 522
Write#. 522
WriteIni . 523
Xor . 523

Binary Exclusion. 524
Year . 524

PSL Equivalents for Methods and Properties . 527

Error Messages . 533
Visual Basic Compatible error messages. 533
Compiler-Specific error messages . 536
Compiler errors . 537

Index . 543
xxii

1

Introduction

The SmarTerm macro language is a powerful Visual-Basic compatible macro language tailored
especially for use with SmarTerm. This Macro Guide provides a brief overview of and tutorial for the
language, plus comprehensive descriptions of all the features of the language. The initial chapters
cover basic features of the languages, such as data types, operators, expressions, compilation control
features, and keywords. Subsequent chapters are an a-to-z reference of all macro language statements
and functions, as well as all object properties and methods. This long section is followed by two short
appendices, one listing equivalents to the older Persoft Script Language (PSL), and the other listing
the numeric error messages you might receive from the macro compiler.

Note All information covered in this manual is also available in the online help system.

Throughout this manual we use the following conventions:

• Examples are shown in a type-in font.

• Optional parameters are enclosed in square brackets: [].

• Named parameters are italicized.

• Options in a series are separated with the pipe character: |.

• If you can specify multiple similar parameters, only the first and last are specified, and the inter-
mediate parameters are indicated with an ellipsis:

Macro Features Listed by Purpose
Macro Features Listed by Purpose

File Transfer
Application.UserTransfersLocation 118
Session.Transfer 445
Session.TransferProtocol 445
Session.TranslateBinary 445
Session.TranslateText 446
Session.TransmitFile 446
Session.TransmitFileUntranslated 447
Transfer (object) 483
Transfer.Command 483
Transfer.FTPAutoConnect 484
Transfer.FTPConfirmDeleteFiles 484
Transfer.FTPConfirmRemoveFolders 484
Transfer.FTPConfirmReplaceFiles 485
Transfer.FTPConfirmTransferFiles 486
Transfer.FTPConfirmTransferFolders 486
Transfer.FTPDeleteIncompleteFiles 486
Transfer.FTPHostName 487
Transfer.FTPSecureCompression 487
Transfer.FTPSecureFirstTimeWarningsOff
487
Transfer.FTPSecurePortNumber 488
Transfer.FTPSecureSocksEnabled 488
Transfer.FTPSecureSocksPortNumber 488
Transfer.FTPSecureSocksServerName 489
Transfer.FTPUserName 489
Transfer.FTPUserPassword 489
Transfer.FTPUseSecureFTP 489
Transfer.INDFILEAdditionalCommands
490
Transfer.INDFILEEnableCRLFHandling
491
Transfer.INDFILEHostEnvironment 491

Transfer.INDFILELocalFileFormat 492
Transfer.INDFILELogicalRecordLength
492
Transfer.INDFILEPacketSize 492
Transfer.INDFILEPromptBeforeOverwrite
493
Transfer.INDFILERecordFormat 493
Transfer.INDFILEResponseTimeout 494
Transfer.INDFILEStartupTimeout 494
Transfer.INDFILETSOAllocationUnits 494
Transfer.INDFILETSOAUPrimary 495
Transfer.INDFILETSOAUSecondary 495
Transfer.INDFILETSOAverageBlockSize
496
Transfer.INDFILETSOBlockSize 496
Transfer 496
Transfer.KermitCheckSumType 496
Transfer.KermitDuplicateFileWarning 497
Transfer.KermitPacketSize 497
Transfer.ProtocolName 497
Transfer.ProtocolName 497
Transfer.ReceiveFile 498
Transfer.ReceiveFileAs 498
Transfer.SendFile 499
Transfer.SendFileAs 500
Transfer.Setup 500
Transfer.XMODEMCheckSumType 502
Transfer.XMODEMPacketSize 502
Transfer.XMODEMStreaming 502
Transfer.YMODEMCheckSumType 503
Transfer.YMODEMPacketSize 503
Transfer.YMODEMStreaming 503

Character and String Manipulation
& (concatenation) 89
_ (line continuation) 94
+ (addition/concatenation) 95
Asc, AscB, AscW 130

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ 147
CStr (function) 181
Error, Error$ (functions) 250
FileDirs 259
2

Macro Features Listed by Purpose
FileParse$ 262
Format, Format$ 267
Hex, Hex$ 288
InStr, InstrB 299
Item$ 308
ItemCount 309
LCase, LCase$ 314
Left, Left$, LeftB, LeftB$ 314
Len, LenB 315
Like 317
Line$ 319
LineCount 319
LSet 325
LTrim, LTrim$ 326
Mid, Mid$, MidB, MidB$ (functions) 327
Mid, Mid$, MidB, MidB$ (statements) 328
Oct, Oct$ 347
Option Compare 354
Option CStrings 355
Right, Right$, RightB, RightB$ 383
RSet 385
RTrim, RTrim$ 385
Session.Collect (object) 399
Session.Collect.CollectedCharacters 400

Session.Collect.CollectedString 400
Session.Collect.MaxCharacterCount 401
Session.Collect.Reset 401
Session.Collect.Start 401
Session.Collect.TermString 402
Session.Collect.TermStringExact 402
Session.Collect.Timeout 403
Session.Collect.TimeoutMS 403
Session.Send 435
Session.StringWait (object) 439
Space, Space$ 455
Spc 455
Str, Str$ 467
StrComp 468
StrConv 469
String (data type) 470
String, String$ 471
Trim, Trim$, LTrim, LTrim$, RTrim, RT-
rim$ 504
UCase, UCase$ 510
Unlock 510
Val 513
Word$ 521
WordCount 522

Drive, Folder, and File Access
ChDir 145
ChDrive 145
Close 167
CurDir, CurDir$ 182
Dir, Dir$ 217
DiskDrives 219
DiskFree 219
EOF 240
FileAttr 257
FileCopy 258
FileDateTime 258
FileDirs 259
FileExists 260
FileLen 260
FileList 260

FileParse$ 262
FreeFile 273
Get 279
GetAttr 281
Input# 295
Input, Input$, InputB, InputB$ 298
Kill 312
Line Input# 318
Loc 322
Lock, Unlock 322
Lof 324
MkDir 330
Name 337
Open 350
OpenFilename$ 352
3

Macro Features Listed by Purpose
Print 366
Print# 368
Put 373
ReadIni$ 378
ReadIniSection 379
Reset 381
RmDir 383
SaveFilename$ 387
Seek (function) 388
Seek (statement) 389
Session.Capture 397

Session.CaptureFileHandling 397
Session.EndCapture 407
Session.ScreenToFile 431
Session.TypeFile 448
SetAttr 450
Spc 455
Tab 477
Width# 520
Write# 522
WriteIni 523

Keywords, Data Types, Operators, and Expressions
’ (single quote) 85
’! (description comment) 85
- (subtraction) 86
& (concatenation) 89
() (precedence) 90
* (multiplication) 91
. (dot) 91
/**/’ (C-style comment block) 92
/ (division) 92
\ (integer division) 93
^ (exponentiation) 93
_ (line continuation) 94
 + (addition/concatenation) 95
<, <=, <>, =, >, >= (operators) 96
And 100
Any (data type) 102
ArrayDims 126
ArraySort 129
Boolean (data type) 137
ByVal 138
CBool 142
CCur 143
CDbl 144
Choose 146
CInt 148
CLng 166
Comparison Operators (topic) 169
Const 170

Constants (topic) 172
CSng 181
CStr 181
Currency (data type) 182
CVar 182
CVErr 183
Date (data type) 185
DefType 210
Dim (statement) 214
Double (data type) 236
Eqv 240
Erase 241
Expression Evaluation (topic) 254
Imp 294
Integer (data type) 301
Is 304
IsDate 305
IsEmpty 306
IsError 306
IsNumeric 307
Keywords (topic) 311
Lbound 313
Let 316
Like 317
Literals (topic) 321
Long (data type) 325
Mod 330
Named Parameters (topic) 338
4

Macro Features Listed by Purpose
Not 339
Operator Precedence (topic) 353
Operator Precision (topic) 353
Option Base 354
Or 359
Redim 380
Rem 381
String (data type) 470

Type 504
TypeName 506
TypeOf 507
UBound 509
User-Defined Types (topic) 510
Variant (data type) 514
VarType 517
Xor 523

Host Connections
Application.UserPhoneBookLocation 116
Circuit (object) 149
Circuit.AutoConnect 149
Circuit.Connect 150
Circuit.Connected 150
Circuit.Disconnect 150
Circuit.LATHostName 151
Circuit.LATPassword 151
Circuit.LATSavePassword 151
Circuit.ModemAlt1Number 152
Circuit.ModemAlt2Number 152
Circuit.ModemAlt3Number 152
Circuit.ModemAreaCode 152
Circuit.ModemCountryCode 153
Circuit.ModemGetCountryCodeString 153
Circuit.ModemPhoneNumber 153
Circuit.ModemTotalCountryCodes 154
Circuit.ModemUseCodes 154
Circuit.SendRawToHost 154
Circuit.SerialBaudRate 155
Circuit.SerialBreakDuration 155
Circuit.SerialDataBits 155
Circuit.SerialFlowControl 156
Circuit.SerialParity 156
Circuit.SerialPort 157

Circuit.SerialReceiveBufferSize 157
Circuit.SerialStopBits 158
Circuit.SerialTransmitBufferSize 158
Circuit.Setup 158
Circuit.SNALogicalUnit 160
Circuit.SNAProtocol 160
Circuit.SNAServerName 161
Circuit.SuppressConnectErrorDialog 161
Circuit.TelnetBreakMode 162
Circuit.TelnetCharacterMode 162
Circuit.TelnetHostName 163
Circuit.TelnetPortNumber 163
SendKeys 392
Session.Circuit 398
Session.Connected 404
Session.EventWait (object) 407
Session.EventWait.EventCount 408
Session 408
Session.EventWait.MaxeventCount 409
Session.EventWait.Start 409
Session.EventWait.Status 410
Session.EventWait.Timeout 410
Session.EventWait.TimeoutMS 410
Session.KeyWait (object) 420
Session.LockStep (object) 426

Numeric, Math, and Accounting Functions
- (subtraction) 86
* (multiplication) 91
/ (division) 92

\ (integer division) 93
^ (exponentiation) 93
+ (addition/concatenation) 95
5

Macro Features Listed by Purpose
Abs 99
Atn 132
Cos 180
DDB 196
Exp 253
Fix 263
Fv 277
Int 301
IPmt 302
IRR 303
IsNumeric 307
Log 324
MIRR 329
Mod 330
Mod 330

NPer 340
Npv 341
Pmt 364
PPmt 365
Pv 375
Random 377
Randomize 377
Rate 378
Rnd 384
Sgn 451
Sin 453
Sln 454
Sqr 467
SYD 475
Tan 478

Macro Control and Compilation
’ (single quote) 85
’! (description comment) 85
#Const 87
#If...Then...#Else 87
() (precedence) 90
/* and */ (C-style comment block) 92
= (assignment) 96
ByRef 138
ByVal 138
Declare 201
Do...Loop 233
End 239
Erl 242
Err.Clear 243
Err.Description 243
Err.HelpContext 244
Err.HelpFile 245
Err.LastDLLError 245
Err.Number 246
Err 247
Err.Raise 247
Err.Source 248
Error Handling (topic) 249
Error, Error$ (functions) 250

Error (statement) 251
Exit Do 252
Exit For 252
Exit Function 253
Exit Sub 253
For...Each 264
For...Next 265
Function...End Function 274
GoSub 283
Goto 284
If...Then...Else 291
Iif 292
IsMissing 306
IsNull 307
Line Numbers (topic) 318
Named Parameters (topic) 338
On Error 348
Option Default 356
Option Explicit 357
Private 369
Public 371
Rem 381
Resume 382
Return 382
6

Macro Features Listed by Purpose
Select...Case 390
Sleep 454
Stop 467

Sub...End Sub 472
Switch 475
While...Wend 520

Application and Session Features
Application (object) 108
Application.ActiveSession 108
Application.Application 108
Application.Caption 108
Application.CommandLine 109
Application.DoMenuFunction 109
Application.FlashIcon 110
Application.InstalledLanguages 110
Application.Parent 111
Application.Product 111
Application.Quit 111
Application.Sessions (collection) 111
Application.Sessions.Application 113
Application.Sessions.Count 113
Application.Sessions.Item 113
Application.Sessions.Open 113
Application.Sessions.Parent 114
Application.StartupLanguage 114
Application.UserHelpFile 115
Application.SupressRefocus 115
Application.UserHotSpotsLocation 116
Application.UserKeyMapsLocation 116
Application.UserMacrosLocation 116
Application.UserPhoneBookLocation 116
Application.UserSessionsLocation 117
Application.UserButtonPicturesLocation
117
Application.UserSmarTermButtonsLoca-
tion 117
Application.UserTransfersLocation 118
Application.Version 118
Application.ViewUserHelp 118
Application.Visible 118
Application.WindowState 119
Session (object) 394
Session.Application 394

Session.AutoWrap 395
Session.Blink 395
Session.Bold 395
Session.BufferFormatted 396
Session.BufferModified 396
Session.Capture 397
Session.CaptureFileHandling 397
Session.Circuit 398
Session.ClearScreen 398
Session.Close 398
Session.Collect (object) 399
Session.Collect.CollectedString 400
Session.Collect.Consume 400
Session.Collect.MaxCharacterCount 401
Session.Collect.Reset 401
Session.Collect.Start 401
Session.Collect.Status 402
Session.Collect.TermString 402
Session.Collect.TermStringExact 402
Session.Collect.Timeout 403
Session.Collect.TimeoutMS 403
Session.Column 403
Session.Concealed 403
Session.ConfigInfo 404
Session.Connected 404
Session.DialogView 405
Session.DoMenuFunction 405
Session.Echo 406
Session.EmulationInfo 406
Session.EndCapture 407
Session.EventWait (object) 407
Session.EventWait.EventCount 408
Session.EventWait.EventType 408
Session.EventWait.MaxeventCount 409
Session.EventWait.Reset 409
Session.EventWait.Start 409
7

Macro Features Listed by Purpose
Session.EventWait.Status 410
Session.EventWait.Timeout 410
Session.EventWait.TimeoutMS 410
Session.FieldEndCol 410
Session.FieldEndRow 411
Session.FieldModified 412
Session.FieldStartCol 412
Session.FieldStartRow 412
Session.FieldText 413
Session.FontAutoSize 414
Session.FontHeight 414
Session.FontWidth 414
Session.GetMostRecentTriggerName 414
Session.GetMostRecentTriggerPattern 415
Session.HotSpotsActive 415
Session.HotSpotsFileName 416
Session.InitialMouseCol 416
Session.InitialMouseRow 417
Session.InsertMode 417
Session.InterpretControls 418
Session.Inverse 418
Session.IsFieldMark 418
Session.IsNumeric 419
Session.IsProtected 419
Session.KeyboardLocked 420
Session.KeyWait (object) 420
Session.KeyWait.KeyCode 422
Session.KeyWait.KeyCount 422
Session.KeyWait.KeyType 422
Session.KeyWait.MaxKeyCount 422
Session.KeyWait.Reset 423
Session.KeyWait.Start 423
Session.KeyWait.Status 423
Session.KeyWait.Timeout 424
Session.KeyWait.TimeoutMS 424
Session.KeyWait.Value 424
Session.Language 424
Session.LoadKeyboardMap 425
Session.LoadSmarTermButtons 425
Session.LockStep (object) 426
Session.LockStep.Reset 428

Session.LockStep.Start 428
Session.MouseCol 428
Session.MouseRow 429
Session.NativeScreenText 429
Session.Normal 429
Session.Online 430
Session.Page 430
Session.ReplayCaptureFile 430
Session.Row 431
Session.ScreenText 431
Session.ScreenToFile 431
Session.SelectScreenAtCoords 432
Session.SelectionEndColumn 432
Session.SelectionEndRow 433
Session.SelectionStartColumn 433
Session.SelectionStartRow 434
Session.SelectionRectangular 434
Session.SelectionType 435
Session.Send 435
Session.SendKey 436
Session.SendLiteral 437
Session.SetFontSize 437
Session.SetHotSpotsFile 438
Session.StringWait (object) 439
Session.StringWait.MatchString 440
Session.StringWait.MatchStringEx 440
Session.StringWait.MatchStringExact 441
Session.StringWait.MaxCharacterCount 442
Session.StringWait.Reset 442
Session.StringWait.Start 442
Session.StringWait.Status 443
Session.StringWait.Timeout 443
Session.StringWait.TimeoutMS 444
Session.TotalColumns 444
Session.TotalPages 444
Session.TotalRows 444
Session.TransferProtocol 445
Session.TranslateBinary 445
Session.TranslateText 446
Session.TransmitFile 446
Session.TransmitFileUntranslated 447
8

Macro Features Listed by Purpose
Session.TriggersActive 447
Session.TypeFile 448
Session.Underline 448

Session.UnloadSmarTermButtons 448
Session.Visible 449
Session.WindowState 449

Operating System Control
AppActivate 102
AppClose 104
AppFind, AppFind$ 104
AppGetActive$ 105
AppGetPosition 105
AppGetState 106
AppHide 107
AppList 119
AppMaximize 120
AppMinimize 120
AppMove 121
AppRestore 122
AppSetState 123
AppShow 123
AppSize 124

AppType 125
Beep 135
Clipboard (object) 163
Clipboard$ (function) 163
Clipboard$ (statement) 164
Clipboard.Clear 164
Clipboard.GetFormat 164
Clipboard.GetText 165
Clipboard.SetText 165
DoEvents (function) 235
DoEvents (statement) 235
Environ, Environ$ 239
GetSetting 283
IMEStatus 293
Shell 452

User Interaction
AnswerBox 101
Application.UserHelpFile 115
Application.SupressRefocus 115
Application.UserHelpMenu 115
Application.ViewUserHelp 118
AskBox, AskBox$ 131
AskPassword, AskPassword$ 132
Beep 135
Begin Dialog 135
CancelButton 142
CheckBox 145
ComboBox 167
Dialog (function) 212
Dialog (statement) 214
Dialogs (topic) 214
DlgCaption (function) 220
DlgCaption (statement) 220
DlgControlId 220

DlgEnable (function) 221
DlgEnable (statement) 222
DlgFocus (function) 222
DlgFocus (statement) 223
DlgListBoxArray (function) 223
DlgListBoxArray (statement) 224
DlgProc 224
DlgSetPicture 227
DlgText 228
DlgText$ 229
DlgValue (function) 230
DlgValue (statement) 230
DlgVisible (function) 231
DlgVisible (statement) 231
DropListBox 236
Err.HelpContext 244
Err.HelpFile 245
GroupBox 285
9

Macro Features Listed by Purpose
HelpButton 287
InputBox, InputBox$ 298
ListBox 320
Msg (object) 331
Msg.Close 331
Msg.Open 332
Msg.Text 333
Msg.Thermometer 333
MsgBox (function) 334
MsgBox (statement) 336
OKButton 347
OpenFilename$ 352
OptionButton 357
OptionGroup 358
Picture 361

PictureButton 362
PopUpMenu 365
PushButton 372
SaveFilename$ 387
SelectBox 391
Session.DialogView 405
Session.Echo 406
Session.HotSpotsActive 415
Session.HotSpotsFileName 416
Session.LoadSmarTermButtons 425
Session.SetHotSpotsFile 438
Session.UnloadSmarTermButtons 448
Text 478
TextBox 479

Time and Date Access
CDate, CVDate 144
Date (data type) 185
Date, Date$ (functions) 189
Date, Date$ (statements) 189
DateAdd 190
DateDiff 191
DatePart 193
DateSerial 195
DateValue 195
Day 195
FileDateTime 258
Hour 289
IsDate 305

Minute 329
Month 331
Msg (object) 331
Now 339
Second 388
Time, Time$ (functions) 481
Time, Time$ (statements) 481
Timer 482
TimeSerial 482
TimeValue 482
Weekday 519
Year 524

Objects
. (keyword) 91
Application (object) 108
Application.Application 108
Application.Parent 111
Application.Sessions.Application 113
Application.Sessions.Open 113
Application.Sessions.Parent 114
Circuit (object) 149

CreateObject 180
Err (object) 242
GetObject 282
Is 304
IsObject 308
New 338
Object (data type) 343
Objects (topic) 344
10

Macro Features Listed by Purpose
Session (object) 394
Session.Application 394
Session.Circuit 398
Session.Collect (object) 399
Session.EventWait (object) 407
Session.KeyWait (object) 420

Session.LockStep (object) 426
Session.StringWait (object) 439
Session.Transfer 445
Session.TransferProtocol 445
Set 449
Transfer (object) 483

SQL Access
SQLBind 456
SQLClose 457
SQLError 457
SQLExecQuery 458
SQLGetSchema 459

SQLOpen 462
SQLRequest 463
SQLRetrieve 464
SQLRetrieveToFile 466

DDE Access
CreateObject (function) 180
DDEExecute (statement) 197
DDEInitiate (function) 197
DDEPoke (statement) 198
DDERequest, DDERequest$ (functions) 198
DDESend 199

DDETerminate 200
DDETerminateAll 200
DDETimeout 201
GetObject (function) 282
11

Macro Features Listed by Purpose
12

Recording and Running Macros

When you start up SmarTerm, select Tools>Macros and click Record, you start a macro recorder that:

• Records what you do in a file

• Automatically writes it in the SmarTerm macro language

• Documents what it records

You then can replay the macro or edit it using the macro editor.

When you record a macro, you might keep in mind that the Toolbox doesn't record every action you
perform. Instead, it analyzes your actions and records those that can be performed with macro
commands. The recorder also looks for incoming prompts and stores outgoing keystrokes.

For example, SmarTerm provides a full range of file transfer capabilities. Therefore, when you record
a file transfer, the entire process is recorded. However, the macro language does not support editing a
macro in the macro editor, so you cannot record that sort of task in a macro.

This chapter describes how to record and use macros. More macro information follows in the next two
chapters, “Creating Macros” on page 17 and “Programming Macros” on page 33.
13

Recording macros
Recording macros
To record a macro:

1. Select Tools>Macros. The Macros dialog appears:

Select the file where the macro is to be stored.

2. Type a name for your macro. Don't include spaces in the name. To replace an existing macro, select
the name from the list.

3. Click Record. The Start Recording dialog appears, allowing you to review the macro name you just
typed. If you use an existing macro name, SmarTerm asks whether you want to overwrite that macro.
Agree, or change the name, and then click OK. Your session reappears with the word "Record" in the
status bar and a set of buttons that allow you to control the recording process.

4. Perform the steps you want to record.

At any time you can click the Pause button to pause the recording or the Abort button to abort the
recording.

Pause Abort Stop

5. When you are finished recording the macro, click the Stop button to save the macro. If you entered
passwords while recording the macro, a Password Handling dialog appears. You can choose to store
the password in the macro or to require the macro to prompt for the password each time you run it.
14

Running macros
Running macros
To test a macro, select Tools>Macros, select the file and macro you want to run, and click Run. You
can also assign a macro to a keystroke, a SmartMouse action, or a SmarTerm button. Follow these
instructions in the online Help for the tool which you want to use.

What can go wrong?
The Toolbox can't record everything you do in a macro. For example, you might record a macro that
includes a specific response from the host. If you run the macro again and get a different response from
the host, the macro may get out of sync. If this happens, stop the macro and then try running it again
to see if the same thing happens. If the host consistently produces the same new response, you can
record the macro again to put the new host response into the macro. If the problem is that you cannot
predict the host's response, you may have to edit macro to allow for multiple responses from the host.
See the chapter on Creating Macros for information on editing macros.

Running PSL Scripts
Before SmarTerm 6.0, the SmarTerm products relied on the Persoft Script Language (PSL). Since
then, the Visual Basic compatible SmarTerm Macro Language has replaced PSL. If you are upgrading
old sessions to the current version, SmarTerm automatically converts most of the old PSL scripts,
those associated with:

• Automatic login and logout

• SmartMouse actions

• Keyboard mappings

Note Only old button palettes and toolbars require you to run a converter. In the online help, under
Tools>Toolbar or Tools>SmarTerm Buttons, you’ll find a Toolbar and Button Palette Converter book
with conversion instructions.
15

Creating Macros

The SmarTerm macro language is an implementation of VisualBasic for Applications (VBA)
especially tailored for use with SmarTerm. The previous chapter described how to use the macro
recorder to record and play back simple macros (see “Recording and Running Macros” on page 13).
There are times, however, when the tasks that you want to accomplish are too complicated for simple
recording, so SmarTerm comes with an integrated editor and debugger that allow you to write more
complex macros. This and the following chapter explain how to do this.

This chapter briefly describes the features of the SmarTerm macro language and explains how macros
are organized in SmarTerm. The next chapter describes how to program macros for a variety of basic
tasks (see “Programming Macros” on page 33), and the last chapter explains how to best use macros
when you need the sophistication and flexibility required in a large organization.

Before getting started, please note that these chapters, although constituting a sort of macro tutorial,
are probably not appropriate if you have never programmed before, or if you are not familiar with
SmarTerm. This tutorial does not assume complete mastery of either of these topics, but it does require
at least some familiarity with topics such as looping constructs, arrays, functions, data typing, and so
forth, as well as a sense of what one does with terminal emulation software.

Features and organization
The SmarTerm Macro Language provides you with customizable control over most aspects of host
communication. Commands in the language let you:

• Make host connections using all of the communication methods supported by SmarTerm

• Modify the settings of all of the emulation types supported by SmarTerm

• Transfer files using all of the file transfer methods supported by SmarTerm

• Build Windows-style user interfaces for your macros using the integrated visual dialog editor

• Have access to the most important operating system functions such as disk and file access, OLE
(Object Linking and Embedding) automation, and so forth
17

Features and organization
You may be familiar with another macro language that organizes macros in a particular way. For
example, many macro languages simply store each macro in a file, and allow you to open and run one
or another macro file. SmarTerm, like other Windows applications that support a VBA-based macro
language (such as Microsoft Word), uses a somewhat more complicated system. In part this is in
recognition of the greater flexibility required by emulation software (since we can't know what host
applications you may use with SmarTerm). However, it is also in response to the needs of large,
server-oriented sites that need more sophisticated tools to support the needs of their users. Later in this
chapter we describe how macros are organized, and provide some tips to help you take advantage of
this organization.

Macro syntax
A single macro is simply a block of text with macro commands in it stored in some location accessible
to SmarTerm (called a macro module). Macros may be subroutines (which carry out commands but
do not return a result that can be assigned to a variable) or functions (subroutines which do return a
result that can be assigned to a variable). In this chapter, unless specifically stated otherwise, you may
assume that any reference to "subroutine" can be expanded to include functions as well.

The text for a macro must have:

• A first line that is Sub for a subroutine or Function for a function, followed by the name of the
subroutine or function. This name must follow the conventions described in the online help for
subroutines and functions.

• For subroutines only: If you want the macro to be selectable from the Tools>Macros dialog when
the module is loaded, the second line must begin '! (a single quotation mark followed by an ex-
clamation point). If you want a description of the macro to appear in the Macros dialog, put the
text you want after the '!. You can have up to three lines of 66 characters each for the description,
each beginning with '!. SmarTerm puts as much text as possible on each of the three lines, even
if you insert carriage returns.

Note Functions do not appear in the Tools>Macros dialog, even if they have the '! description line.

• One or more lines of text containing control statements to carry out the macro’s purpose. Each line
is considered to end when the compiler encounters a comment or the carriage-return linefeed com-
bination that ends a line in an ASCII text file. If you need to, you can continue a line of code onto
the next line of the macro by preceding the carriage-return with an underscore (_), the line contin-
uation character. Any line or section of a line that has been commented (see “Adding comments to
macros” on page 37) is ignored by the compiler.

• A last line marking the end of the macro that corresponds to the first, either End Sub or End Func-
tion.

For example, a macro containing file transfer commands to fetch a weekly status report might look
something like this in the module:

Sub GetWeeklyStatusReport
'! Run every Friday after 12:00
18

Using SmarTerm’s objects
' initiate the file transfer on the host
Session.Send "SX Wstatus.TXT"

' initiate the reception of the file on the PC
Transfer.ReceiveFile "Wstatus.TXT"

End Sub

Note White space (extra spaces, carriage returns, and tabs) that makes the macro more readable is ignored
by the compiler.

When you open the Tools>Macros dialog and select the macro, the dialog looks like this:

Notice that the instructions that appear in the second line of the macro text ('! Run every Friday
after 12:00) now appear below the name of the module in which the macro is stored.

Using SmarTerm’s objects
An object is a special kind of programming construct that organizes related settings and tasks into a
single, object-oriented model. This model provides a common syntax for all related tasks, whether
they involve changing settings, sending commands, or communicating with other applications. A
macro accomplishes all related tasks by accessing the methods (commands) and properties (settings)
of the appropriate object.

The syntax for accessing the methods and properties of an object is quite simple: Object.Method or
Object.Property. To assign the current setting of an object's property to a variable, you use Variable
= Object.Property. To use an object's method, you use Object.Method.
19

Using SmarTerm’s objects
For example, suppose that you want to create a macro that gets the version number of SmarTerm and
then displays it in the SmarTerm window. In a procedural language you might need to use two macro
commands that use completely different syntax, such as:

LatestVersion$ = Version$()! Get version number
Send (LatestVersion$)! Display version number

With this kind of macro language you need to learn a new syntax each time a different programmer
adds a new feature. The macro code is hardly self-explanatory (version of what? Send it where?), and
of course the presence or absence of parentheses, arbitrary as it seems, will make or break the macro.

With the object-orientation of the macro language, the version number and the session window are
considered part of the SmarTerm application object, so you can use one statement for both tasks:

Session.Echo Application.Version
! Display the version number in the session window

You will use this object-oriented approach to control SmarTerm from a macro. In addition, if you
create your own data structures, you will access the members of those structures using the same object-
oriented syntax.

Understanding the SmarTerm objects
There are SmarTerm objects corresponding to the tasks basic to host connection: Application
(controlling SmarTerm), Session (communicating with the host), Circuit (connecting to the host),
Transfer (transferring files), and Clipboard (moving information between SmarTerm and the
Windows Clipboard). There are also objects that simplify the creation of a user interface (Msg and Dlg)
and the handling of errors (Err). These are all briefly described in the following sections. All object
properties and methods begin with the object name and are listed in alphabetical order in this manual
and in the online help.

Application
The Application object is SmarTerm itself. With the Application object you control or have access
to those properties of SmarTerm that are not session-dependent. You can also access methods that are
not session-dependent.

Note The Application object should not be confused with the macro commands that begin App, such as
AppActivate. The App commands provide access to external Windows and DOS applications, not to
SmarTerm.

The Application object includes one sub-object, the Sessions collection. This sub-object gives you
access to the set of sessions running or available to run at a given time. You access the properties and
methods of all this Application sub-objects with a syntax very similar to that for the primary objects:
Application.Sessions.Property or Application.Sessions.Method. For example, you can count
the number of open session files with Application.Sessions.Count.
20

Using SmarTerm’s objects
Session
With the Session object you control or have access to those properties of SmarTerm that are session-
dependent. You can also access methods that are session-dependent.

The Session object includes five sub-objects that help you handle the flow of events that occurs
between SmarTerm and the host.

You access the properties and methods of all of these Session sub-objects with a syntax very similar
to that for the primary objects: Session.Object.Property or Session.Object.Method. For example,
you set the keycode that SmarTerm should wait for with the Session.Keywait.Keycode property.

The primary documentation for the Session subobjects is in the online help system. The following
sections briefly explain each subobject.

Collect The Session.Collect object allows you to pause the macro while it collects strings of text from the
host. You can use the text you collect in any fashion you choose (but if you need to collect text and
store it in a file, the Session.Capture or Session.Screentofile commands are more efficient). If
you do not need to use the text sent by the host, but simply need to control the flow of the macro based
on text sent from the host, consider using the Session.Stringwait subobject.

Note Since the Session.Collect object collects only text, it is not available if you are using a form-based
session type, such as IBM 3270 or 5250. For form-based session types, use the Session.Eventwait
object to wait for data from the host.

There are commands that allow you to start collecting text, indicate the signal to end collecting, and
determine whether or not the collected text is passed on to the screen. There is one Session.Collect
object per session. You can either trust SmarTerm to re-initialize all properties each time the object is
used after the previous collection has finished, or you can use the Session.Collect.Reset command
before each use of the Session.Collect object to clear all previous values of the object (such as the
collected string or a timeout value).

Eventwait The Session.Eventwait object allows you to pause the macro while it checks to see if SmarTerm has
sent one or more form pages to the host or received one or more form pages from the host. The
Session.Eventwait object does not store the data on the pages sent to or received from the host.

Note Since the Session.Eventwait object only waits for form pages, it is not available if you are using a
text-based session type, such as Digital VT, ANSI, SCO ANSI, or Wyse. For text-based session types,
use the Session.Collect or Session.Stringwait object to wait for data from the host.

There are commands that allow you to start waiting for form events and indicate the signal to end
waiting. There is one Session.Eventwait object per session. You can either trust SmarTerm to re-
initialize all properties each time the object is used after a Session.Eventwait operation, or you can
use the Session.Eventwait.Reset command before each use of the Session.Eventwait object to
21

Using SmarTerm’s objects
clear all previous values of the object (such as the number of pages to receive before resuming the
macro).

Keywait The Session.Keywait object allows you to pause the macro while it checks for a keystroke or
mousebutton press. You can have the macro check for any keystroke, for a specific keystroke, for a
certain number of keystrokes of any kind, or for a specific mousebutton. You can also set a timeout
value. There is one Session.Keywait object per session. You can either trust SmarTerm to re-
initialize all properties each time the object is used after the previous Session.Keywait operation, or
you can use the Session.Keywait.Reset command before each use of the Session.Keywait object
to clear all previous values of the object.

Stringwait The Session.Stringwait object allows you to pause the macro while it checks for receipt of a string
of text from the host. This object does not store the text received from the host, so if you need to use
the text received from the host, use the Session.Collect object or the Session.Capture or
Session.Screentofile command.

Note Since the Session.Stringwait object waits only for text, it is not available if you are using a form-
based session type, such as IBM 3270 or 5250. For form-based session types, use the
Session.Eventwait object to wait for data from the host.

There are commands that allow you to start waiting for a string, indicate whether to match the string
exactly or not, set a maximum timeout and a maximum number of characters to wait through, and
determine whether or not the string has been matched. There is one Session.Stringwait object per
session. You can either trust SmarTerm to re-initialize all properties each time the object is used after
the previous collection has finished, or you can use the Session.Stringwait.Reset command before
each use of the Session.Stringwait object to clear all previous values of the object (such as the
collected string or a timeout value).

Lockstep The Session.Lockstep object allows you to ensure that SmarTerm and the host remain in sync with
each other while the macro is monitoring data sent to or received from the host. This prevents your
macro from failing in situations where the host sends or receives data faster than SmarTerm can handle
internally. For example, if you use the Session.Stringwait object to wait for a prompt from the host,
it is possible that the host may send the string you are waiting for while SmarTerm is setting up the
Session.Stringwait object. The wait will then fail, because the macro never sees the string even
though the host has sent it. On the other hand, if you begin by setting up the Session.Lockstep object
and then start waiting for the string, SmarTerm handles flow control with the host such that no
characters are dropped.

Session.Lockstep is a simple enough object that there are only three methods for it: Start, Stop, and
Reset.

Circuit
The Circuit object is the current communication method in use by the active session. With the
Circuit object you control or have access to those properties of SmarTerm that relate to the details of
22

Using SmarTerm’s objects
host connection, such as any settings that appear on the Connection>Properties dialog (which vary
depending on the communication method). You can also access methods that relate to the details of
host connection (which also vary depending on the communication method).

All Circuit methods and properties unique to a given communication method are prefixed with the
name of the communication method, such as Circuit.TelnetHostName. As of this version of
SmarTerm, the supported communication methods are LAT, modem, serial, SNA, and Telnet.

Transfer
The Transfer object is the current transfer method in use by the active session. With the Transfer
object you control or have access to those properties of SmarTerm that relate to file transfer, such as
generic File menu commands and any settings that appear on the Properties>File Transfer Properties
dialog (which vary depending on the transfer method). You can also access methods that relate to the
details of host connection (which also vary depending on the transfer method).

Note For macro commands dealing with data capture from the host, see the methods and properties of the
Session object.

All methods and properties unique to a given transfer method are prefixed with the name of the
transfer method, such as Transfer.FTPHostName. As of this version of SmarTerm, the supported file
transfer methods are FTP, IND$FILE, Kermit, XModem, YModem, and ZModem. However, because
ZModem handles so many file transfer issues automatically, there are no unique Transfer properties
or methods for it.

Clipboard
The Clipboard object is a special object that provides access to the Windows Clipboard, allowing you
to transfer text between SmarTerm and another Windows application. With the Clipboard object you
can cut and copy text from the session window to the clipboard, paste text into the session window
from the clipboard, and clear the clipboard. You can also set the format of clipboard text and pipe text
to and from the clipboard directly from a macro.

Msg
The Msg object provides a modeless dialog—that is, a dialog that the user must respond to before
continuing. (The standard Windows File>Open dialog is a good example of a modeless dialog: you
must click either Open or Cancel to dismiss the dialog.) SmarTerm’s Msg object can contain text and
a thermometer control in addition to an OK button and a Cancel button. Macro commands allow you
to create, change the contents of, and close the dialog.

Dlg
The Dlg object provides easy access to dynamic dialogs defined in your macros. Each Dlg method
works as either a statement or a function, allowing you to check return values or ignore them as you
prefer. The use of the Dlg object and dialog procedures in general are described in more detail in
“Using a Dynamic Dialog in a Macro” on page 71.
23

Modules and collectives
Err
The Err object allows you to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. You can also construct macro code to raise errors as necessary. The
methods and properties of the Err object provide access to the calling OLE object or external DLL,
and the source if possible.

Modules and collectives
The locations where macros are stored (the macro modules) are primarily determined by settings
stored in the session file. The modules available in a session, called the macro collective, do not share
source code, but they can share variables with each other. Moreover, some members of the collective
can act as repositories of shared macros available to all the other members of the collective. This
allows you to create multiple session files that employ different sets of macros, but which may also
share some macros. For example, you may always log onto one host in the same way, but run different
applications at different times that require special macros. You can set up a session file for each host
application that employs the same login macro, but loads a unique set of macros appropriate to each
application. The session-based macro collective also allows you to share macros among many users
simply by sharing the locations of certain modules (see “Possible improvements” on page 75).

A macro collective consists of:

• Macros stored in the User macro file

• Macros stored in the session file, including the Session_Connect macro, which runs when the ses-
sion connects to the host; the Session_QueryClose macro that runs when the session is closed; and
any SmartMouse event handlers

• Macros compiled and saved as files with the .PCD extension in the program folder (see “Compiling
Macros” on page 82 for instructions).

• Macros stored in the currently running macro file loaded with the Other Macro file option on the
Tools>Macros dialog

• Macros embedded in the currently loaded keyboard map

• Macros embedded in the currently loaded SmarTerm Buttons palette

• Macros embedded in the currently loaded HotSpots file

Global variables can be declared in any member of the collective and then accessed by any member
of the collective. Subroutines and functions stored in the first three locations listed above (the User
macro file, the session file, and any compiled macro files) are always available to each other and to
any loaded tools (such as keyboard maps, Buttons, HotSpots, and the Other macro file). Subroutines
and functions stored in loaded tools, however, are not accessible to other members of the collective.

Note You must use the Declare statement to prototype functions in the User macro file, session file, and
compiled macro files that you want accessible to other members of the collective. This step is not
required for subroutines unless you have also turned on Option Explicit to require prototyping of
24

Modules and collectives
external routines. For clarity’s sake, we recommend that you turn on Option Explicit and prototype all
functions and subroutines. See “Declare” on page 201 and “Option Explicit” on page 357 for more
information.

The user macro file is intended as a location where individuals can build up a collection of their own
macros. By default, SmarTerm assumes that you will tend to organize macros based on session type,
so the default user macro files assumed for a new session are:

You can select new user files for a given session with the Tools>Macros dialog or through
Properties>Session Options>Macros tab. You can change the location where SmarTerm looks for
macros through Properties>Options>File Locations tab. If you do so, be aware that you cannot make
this change on a per-session basis; all sessions must store their user macros in common folders.

In a server installation of SmarTerm, the user macros folder can reside on each user's PC or the user
folder on the network.

The last entry in the list above, Other Macro File, is a special case. This feature allows you to select
any macro file, select a specific macro in it, and click Run to run the macro.

Predefined login and logout macros
As part of a session's macro collective, SmarTerm provides for two predefined macros:
Session_Connect and Session_QueryClose macro. The Session_Connect macro runs automatically
when the session file is opened, and the Session_QueryClose macro runs automatically when the
session file is closed. These macros are stored in the session's STW file under the heading [Script].

Session_Connect macro
There are a number of ways in which you can create the Session_Connect macro. One way is to use
the Tools>Macros dialog to write it from scratch; another way is to record an actual login when you
create the session (you can always edit the resulting macro to add more commands). If you record a
login, clicking Stop on the macro recorder toolbar after you enter your password, you get a skeletal
login macro that looks something like this:

Sub Session_Connect
 '! This macro is run automatically when the session opens.

 Dim nContinue as Integer
 Dim nTimeOut as Integer

 ' The default timeout for each command is 3 minutes.
 ' Increase this value if your host requires more time

Session Type User Macro file
Digital VT, ANSI, SCO ANSI USERVT.STM
Data General DASHER, Wyse USERDG.STM
IBM 3270, IBM 5250 USERIBM.STM
25

Modules and collectives
 ' for each command.
 nTimeOut = 180

 Dim LockStep As Object
 Set LockStep = Session.LockStep
 LockStep.Start

 While (Circuit.Connected = False)
 Wend

 ' Wait for response from host.
 Session.StringWait.Timeout = nTimeout
 Session.StringWait.MatchStringExact "Username: "
 if Session.StringWait.Start = smlWAITTIMEOUT then
 nContinue = QuerySyncError()
 if nContinue <> ebYes then End
 end if

 Session.Send "nguyenp" + chr(13)

 ' Wait for response from host.
 Session.StringWait.Timeout = nTimeout
 Session.StringWait.MatchStringExact "Password: "
 if Session.StringWait.Start = smlWAITTIMEOUT then
 nContinue = QuerySyncError()
 if nContinue <> ebYes then End
 end if

 Session_Connect_PasswordHandler 1
 Session.Send chr(13)

 Set LockStep = Nothing

End Sub

Everything in this sample Session_Connect macro was generated automatically by SmarTerm, with
the exception of the account name (nguyenp), which was entered by the person logging onto the host.
Let's look briefly at each section of the macro.

The macro begins with a description line explaining when the macro runs, which will appear at the
bottom of the Tools>Macros dialog when the Session_Connect macro is selected. This is followed by
the definition of several variables and the assignment of values to those variables:

 Dim nContinue as Integer
 Dim nTimeOut as Integer

 ' The default timeout for each command is 3 minutes.
 ' Increase this value if your host requires more time
 ' for each command.
 nTimeOut = 180

 Dim LockStep As Object
 Set LockStep = Session.LockStep
 LockStep.Start

Dim (short for Dimension) is the standard BASIC command to define a variable. Notice that the macro
uses the as <Type> notation to select a data type for each variable (as in Dim nContinue as Integer).
26

Modules and collectives
This is the clearest way to define a variable's type, but you can also use the type-definition character
at the name to shorten the command (as in Dim nContinue%).

The variable nContinue, which is used to determine if there has been an error in the login, is assigned
a value later in the macro.

The variable nTimeOut, which is used to halt the macro if there is no response from the host, is assigned
the value 180 using the simple assignment statement nTimeOut = 180, although the macro could have
used the wordier Let nTimeOut = 180 method. As the comment preceding the assignment statement
indicates, a value of 180 equals three minutes, so this macro will wait three minutes for the host to
respond before automatically stopping. (Because this variable is used by the SmarTerm
Session.Stringwait object later in the macro, its value must be specified in seconds). This is the
default setting only. You can always edit the Session_Connect macro to shorten or lengthen the
timeout just by changing the value assigned to nTimeOut in this statement.

The next three commands define a variable of type object, assign that variable to the SmarTerm
Session.Lockstep object, and then send the Start command to that object. (For more about objects,
see “Using SmarTerm’s objects” on page 19.) The Session_Connect macro sets up a
Session.Lockstep object to ensure that SmarTerm and the host stay in sync with each other, so that
SmarTerm always waits for complete responses from the host before running the next macro
commands. You do not have to use this object to maintain synchrony, but it is by far the easiest way.

Next, the macro sets up a short While loop to wait for the initial host connection:

 While (Circuit.Connected = False)
 Wend

This command uses the SmarTerm Circuit object to test whether or not the initial host connection
has been made. (Again, SmarTerm objects are described in detail later in this chapter). This is done
by comparing the value of Circuit.Connected with the built-in constant False. As long as
Circuit.Connected = False, the initial connection has not been made and SmarTerm will just keep
making the comparison.

As soon as the connection has been made, SmarTerm sets Circuit.Connected to True and the While
loop ends. Notice that SmarTerm did not set a timeout for this loop. The initial host connection is
handled by the low-level drivers for the communication method, so the timeout cannot be changed by
the application.

Once the connection has been made, SmarTerm begins the section of the macro that handles the
actual login to the host. First the macro waits to get the Username prompt from the host (which it
simply read off the screen when the macro was recorded):

 ' Wait for response from host.
 Session.StringWait.Timeout = nTimeout
 Session.StringWait.MatchStringExact "Username: "
 if Session.StringWait.Start = smlWAITTIMEOUT then
27

Modules and collectives
 nContinue = QuerySyncError()
 if nContinue <> ebYes then End
 end if

This block first sets the length of time SmarTerm will wait for the Username prompt from the host by
setting the Timeout property of the SmarTerm Session.StringWait object to the value stored in
nTimeout earlier in the macro (180 seconds). Then it tells SmarTerm what host string to wait for by
sending the MatchStringExact "Username: " message to the SmarTerm Session.StringWait
object.

Finally, the macro sets up an If loop to determine whether or not the host has sent the Username
prompt. If SmarTerm receives the Username prompt before the timeout expires, then the macro skips
the If loop and proceeds to the next section of the macro. If the timeout has expired, a messagebox
appears that indicates an out-of-sync error and asks if the user wants to continue (this error handler,
the QuerySyncError function, is defined as a separate subroutine after the end of the Session_Connect
subroutine). If the user clicks No, then the macro ends; if Yes, then the macro continues even though
it probably won't work anymore. This function is self-explanatory, so we will not go into it here.

If SmarTerm has received the Username prompt, it then sends the username typed in when the macro
was recorded, and then waits for the host to prompt for the password:

 Session.Send "nguyenp" + chr(13)

 ' Wait for response from host.
 Session.StringWait.Timeout = nTimeout
 Session.StringWait.MatchStringExact "Password: "
 if Session.StringWait.Start = smlWAITTIMEOUT then
 nContinue = QuerySyncError()
 if nContinue <> ebYes then End
 end if

The macro sends the username by sending the Send message to the SmarTerm Session object. The
complete username is constructed as "nguyenp" + chr(13), which is the text typed by the user
concatenated with a carriage return (character 13 in the standard ASCII table). The loop that waits for
the password is exactly the same as the one that waits for the username, except that now the string the
macro waits for is "Password: ".

When SmarTerm receives the password, it calls the Session_Connect_PasswordHandler function,
which is defined at the bottom of the Session_Connect macro module. The call looks like this:

Session_Connect_PasswordHandler 1
Session.Send chr(13)

The actual Session_Connect_PasswordHandler subroutine differs from macro to macro depending
on whether you chose to save the Session_Connect macro in a secured or unsecured way. If you
chose secured, then the subroutine looks something like this:

Sub Session_Connect_PasswordHandler(i as Integer)
' This procedure is called to send a password to the host.
'
' You have chosen not to store passwords in your macro file, so
' this_ procedure prompts for a password.
28

Modules and collectives
 ' Wait for user to enter the password.
 Session.Send AskPassword$("Enter password:")
End Sub

This version of the subroutine displays a messagebox asking the user for a password. The user then
types in the password, which is displayed as a series of asterisks (*) in the dialog, then clicks OK (this
is the AskPassword$ function). The macro then uses Session.Send to send the password to the host.
There is no error handling at this point, however, so if the user types an incorrect password it’s up to
the host to deal with it.

If you chose to save the macro unsecured, the Session_Connect_PasswordHandler subroutine looks
something like this:

Sub Session_Connect_PasswordHandler(i as Integer)
' This procedure is called to send a password to the host.
' You have chosen to store passwords in your macro file, so this
' procedure simply sends the correct password.

 select case i
 case 1
 Session.Send "chaothay"
 end select

End Sub

In this case, as the comment observes, the macro simply sends the text you typed in when recording
the macro.

The final line of the Session_Connect macro deals with the Session.Lockstep object created at the
very beginning of the macro:

Set LockStep = Nothing

This line destroys the Session.Lockstep object. This is important because, as the section in this
chapter on SmarTerm objects explains, you can have only one Session.Lockstep object per session.
Destroying the object as soon as you are finished using it ensures that the next time you need to
maintain synchrony between SmarTerm and the host there will be no residual data that might confuse
the situation.

Session_QueryClose macro
The Session_QueryClose session macro is a logout macro ⎯ a counterpart to Session_Connect. Its
purpose is to make it easy to customize SmarTerm behavior when an attempt is made to close a
session. For example, a system administrator could write a macro that reads the screen and verifies
that the user has just entered a logout command. If the user hasn’t, this macro could emit a warning
message, to remind the user to exit any host applications first, and then logout properly.

This macro can be written to test for certain conditions and affect the session close operation
accordingly, even canceling the close attempt altogether.
29

Modules and collectives
Below is an example of this macro as an empty shell, to illustrate its parameters:

Sub Session_QueryClose
....
[statements go here]
....

End Sub

Why macros, modules, and collectives
Although the macro-module-collective system may seem confusing at first, it can provide major
benefits in interoperation. That is to say, all of the macros in all of the modules participating in the
collective can share subroutines and data with each other. This allows you to reuse macros rather than
rewrite them, and lets you create more complex macros that interact with each other to produce more
sophisticated results.

Note The module called Other Macro File in the Tools>Macros dialog is a special case. This module, while
fully participating in the collective whenever one of its macros is running, withdraws from the
collective when its macros are not running. Macros that must participate in the collective at all times
should be placed in the user macro file.

To get a better idea of how this interoperation works, let’s consider an example. Suppose that you
want these steps to occur:

1. When you log onto the host, the Session_Connect macro sends your user name and password to the
host.

2. The host sends a line of text displaying a “virtual circuit number” corresponding to your connection.

3. Your login macro records the virtual circuit number (which must be supplied as a parameter to the
print spooler later on in the session) and stores it where a SmarTerm button macro can access it. This
requires a public or global variable – a variable whose value can be read and written by more than
one macro in the collective.

4. A SmarTerm-button macro later gets the saved virtual circuit number and uses it in a print spooler
command sent to the host.

What follows is a simple example of this interoperation that assumes that you are not taking advantage
of macros. We can expand this example to show the power of shared macros in the collective (see
“Possible improvements” on page 75).

This example requires interoperation between two macros in the collective, the Session_Connect
macro and a macro embedded in a SmarTerm button. First let's look at the Session_Connect macro.
There are a number of ways in which you can create this macro. One way is to use the Tools>Macros
dialog to write it from scratch; another way is to record an actual login when you create the session
and then modify that recorded Session_Connect macro. If you record a login, you get the login macro
that we discussed earlier in this chapter.
30

Modules and collectives
At the top of the Session_Connect macro module, we define a public variable named
VirtualCircuit as follows:

Public VirtualCircuit as String

Sub Session_Connect
 '! This macro is run automatically when the session opens.
.
.
.
End Sub

The keyword Public identifies the variable as one available to all modules in the collective. This
keyword is actually optional; you could use Dim instead, and the macro compiler will assume that you
wanted the variable to be public. If you need a variable to be shared between macros in one module,
but invisible to macros in other modules in the collective, use the keyword Private instead.

Having defined VirtualCircuit as a public variable, we then set up the macro commands that read
the virtual circuit number off the screen. These commands go inside the Session_Connect macro since
right after logon is the only time that the host displays this information. However, the commands
should go before the command that destroys the Session.Lockstep object so that we can be sure that
SmarTerm and the host are in sync.

Sub Session_Connect
.
.
.
 Session_Connect_PasswordHandler 1
 Session.Send chr(13)

 ' Wait for response from host.
 Session.StringWait.Timeout = nTimeout
 Session.StringWait.MatchStringExact "Circuit Number: "
 if Session.StringWait.Start = smlWAITTIMEOUT then
 nContinue = QuerySyncError()
 if nContinue <> ebYes then End
 end if

 ' Read circuit number from screen. We assume a single digit.
 Session.Collect.MaxCharacterCount = 1
 Session.Collect.Start

 ' Now set VirtualCircuit to the number collected from host.
 VirtualCircuit = Session.Collect.CollectedCharacters

 Set LockStep = Nothing

End Sub

This block of commands is really quite simple. First, we wait for the prompt "Circuit Number: "
exactly as we waited for the username and password prompts. Then we read a single digit from the
host using the SmarTerm object Session.Collect.
31

Modules and collectives
 ' Read circuit number from screen. We assume a single digit.
 Session.Collect.MaxCharacterCount = 1
 Session.Collect.Start

The Session.Collect object automatically stores a single character in the property
Session.Collect.Collected. Therefore, all we need to do to use the digit obtained is store it in the
public variable VirtualCircuit:

 ' Now set VirtualCircuit to the number collected from host.
 VirtualCircuit = Session.Collect.CollectedString

Now whenever you open this session and connect to the host, the Session_Connect macro always
creates a public variable called VirtualCircuit and stores the virtual circuit number obtained from
the host in it. That variable and the number stored in it are now available to all macros in the collective.
The only catch is that each module that needs to use a public variable declared in a different module
must also declare it as a public variable. For example, if you create a SmarTerm button that starts a
print spooler, sending the virtual circuit number obtained by the Session_Connect macro, the
following statement must appear at the top of the SmarTerm button macro's module. Then the print
spooler macro can send the number in the variable to the host print spooler:

Public VirtualCircuit as Integer

Sub CallPrintSpooler
 ! This macro runs the print spooler.
.
.
.
 Session.Send ViritualCircuit
.
.
.
End Sub
32

Programming Macros

This chapter describes how to:

• Use the Macro Editor

• Create the user interface for a macro

• Use SmarTerm objects

• Communicate with a host via macros

• Create compiled macro files

Using the macro editor
This section explains how to use the macro editor, a tool that enables you to edit and debug macros. It
begins with some general information about working with the Macro Editor and then discusses editing
your macros, running your macros to make sure they work properly, debugging them if necessary, and
exiting from the Macro Editor.

The macro editor window
To edit a macro, select Tools>Macros to see the macros dialog. Then either select an existing macro
file and macro and click Edit/Debug, or just enter a macro name and click Create to start editing a new
macro. The macro editor window then appears. It contains the following elements:

• Toolbar with buttons for controlling the macro editor

• Edit pane that contains the macro you are editing

• Status bar that displays the current location of the insertion point

• Watch pane that allows you to monitor the values of variables
33

Using the macro editor
Getting help
You can get online help for the macro editor and use of the macro language using the standard
Windows methods. In addition, you can get specific help on a keyword or a watch variable by placing
the insertion point within the text you have a question about and pressing F1.

Using the toolbar
The following list summarizes the buttons on the macro editor toolbar, which provide quick access to
the menu commands.

Edit>Cut
Cuts the selected text to the Clipboard.

Edit>Copy
Copies the selected text to the Clipboard.

Edit>Paste
Pastes the contents of the Clipboard into the macro.

Edit>Undo
Undoes the last edit. Click multiple times to undo multiple edits.

Macro>Start
Runs the macro.

Break
Pauses the macro and points to the next line to be executed.

Macro>Stop
Stops running the macro.

Debug>Toggle Breakpoint
Adds or removes a breakpoint.

Debug>Add Watch
Opens the Add watch dialog.

Calls
Lists the procedures called by the macro. Available only when a running macro is paused.
34

Using the macro editor
Debug>Single Step
Executes the next line of a macro and then pauses. If the macro calls another macro procedure,
execution continues into each line of the called procedure.

Debug>Procedure Step
Executes the next line of a macro and then pauses. If the macro calls another macro procedure,
the compiler runs the called procedure in its entirety.

Using accelerators
The macro editor supports the Microsoft Office standard for common editing functions (such as
Ctrl+C and Ctrl+Insert to copy selected text to the clipboard). In addition, the macro editor provides
the following accelerator keys for commonly used commands.

Key(s) Commands
Ctrl+A Edit>Select All: Selects all text in the module.
Ctrl+Break Break (Pause).
Ctrl+F Edit>Find: Opens the Find dialog.
Ctrl+G (F4) Edit>Goto Line: Opens the Goto Line dialog.
Ctrl+K Macro>Check syntax.
Ctrl+Y Yank: Deletes the entire line containing the insertion.
Home Moves the insertion point to the beginning of the line.
Ctrl+Home Moves the insertion point to the beginning of the module.
PgDn Moves the insertion point down one windowful.
Ctrl+PgDn Moves the insertion point right one windowful.
PgUp Moves the insertion point up one windowful.
Ctrl+PgUp Moves the insertion point left one windowful.
Ctrl+Left arrow Moves the insertion point one word left.
Ctrl+Right arrow Moves the insertion point one word right.
End Moves the insertion point to the end of the line.
Ctrl+End Moves the insertion point to the end of the module.
Shift+navigation key Move the insertion point, selecting the intervening text. For example,

Shift+Ctrl+Left arrow selects the word to the left of the insertion point.
Esc Deactivates the Help pointer if it is active. Otherwise, exits your macro

and returns you to the Tools>Macros dialog.
F2 During debugging, opens the Modify Variable dialog for the selected

watch variable in the watch pane. You can also double-click the variable.
F3 Edit>Find Next.
35

Using the macro editor
Editing macros
In most respects, editing macro code with the macro editor is like editing regular text with a word-
processing program. However, the macro editor also has certain capabilities specifically designed to
help you edit macro code.

In this section you'll learn how to move around within macros, select and edit text, add comments,
break long macro statements across multiple lines, search for and replace text, and check the syntax.

Moving around in a macro
Like all text editors, the macro editor lets you move around in a macro with the cursor keys and the
mouse. However, the macro editor differs from most word-processing programs in that it allows you
to place the insertion point anywhere within your macro, including "empty space," such as a tab's
expanded space or the area beyond the last character on a line. This feature allows you to place
comments anywhere in the macro file, so that you can place comments next to the relevant lines in the
macro. A corollary to this feature is that there is no automatic wordwrap in the macro editor.

In addition, there are several special movement commands. You can jump to:

• The start or end of the line with the Home and End keys.

• Any line in the macro file by selecting Edit>Goto line (Ctrl+G or F4) and typing in a line number.
This is particularly helpful if you receive a runtime error message that specifies the number of the
line containing the error.

• Up or down by windowfuls with PageUp and PageDown, and left or right by windowfuls with
Ctrl+PageUp and Ctrl+PageDown.

• To the top or bottom of the file containing the macro with Ctrl+Home and Ctrl+End. (Remember,
multiple macros can be stored in one macro file).

Color coding in macros
When you enter certain types of text in the macro editor, the text automatically appears in a distinctive
color. The default colors, which you can change, are:

• Blue for keywords

F5 Macro>Run.
F6 Switches between the watch pane and the edit pane.
F8 Debug>Single Step.
Shift+F8 Debug>Procedure Step.
F9 Debug>Toggle breakpoint.
Shift+F9 Debug>Add watch.

Key(s) Commands
36

Using the macro editor
• Black for normal text

• Green for comments

• Red for breakpoints

Adding comments to macros
Comments are lines or portions of lines of macro code that are ignored when a macro runs. You can
add comments to macros to remind yourself or others of how your code works or to temporarily
disable blocks of code.

Comments are indicated with the keyword REM or with a single apostrophe ('), which causes the
compiler to ignore all following text until the next line. You can thus have a full-line comment by
beginning a line with REM or an apostrophe, or you can follow executable code with a comment on
the same line just by inserting :REM (the colon is required) or an apostrophe at the point where you
want the comment. Just remember that, although you can place a comment at the end of a line
containing executable code, you cannot place executable code at the end of a line containing a
comment.

You can also use C-style multiline comment blocks /*...*/, as follows:

Session.Echo "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
Session.Echo "After comment"

C-style comments can be nested.

Breaking a macro statement across multiple lines
By default, a single macro statement can extend only as far as the right margin, and each new line
constitutes a new statement. However, you can break a long statement across two or more lines with
the line-continuation character, the underscore (_). Any line that ends with a space followed by the
underscore character is combined with the next line and compiled as a unit.

For the most part, long lines stitched together with underscores indicate weak design, and should be
avoided.

Searching and replacing
The macro editor makes it easy to search for specified text in your macro and automatically replace
instances of specified text. The Edit>Find command (Ctrl+F), Edit>Find Next command (F3), and
Edit>Replace command all work as you would expect in a text editor.
37

Using the macro editor
Checking the syntax of macros
When you try to run or debug a macro whose syntax hasn't been checked, the Macro Editor first
performs a syntax check automatically. You can also check the syntax of a macro whenever you please
with the Macro>Check syntax command (Ctrl+K). When you use this command, the macro editor
checks the syntax of the entire macro, stopping the check when it finds the first syntax error (if there
are any) and highlighting the line containing the error. You must correct the syntax error the macro
editor found before continuing to check the syntax or running the macro.

Debugging macros
This section explains how to use the macro debugger integrated with the macro editor to find and
correct errors in your macros. While debugging, you are actually executing the code in your macro
line by line. Therefore, to prevent any modifications to your macro while it is being run, the edit pane
is read-only during the debugging process. You are free to move the insertion point throughout the
macro, select text and copy it to the Clipboard, set breakpoints, and add and remove watch variables,
but you cannot make any changes to the macro code until you stop running it.

To let you follow and control the debugging process, the Macro Editor displays an instruction pointer
on the line of code that is about to be executed—that is, the line that will be executed next if you either
proceed with the debugging process or run your macro at full speed. When the instruction pointer is
on a line of code, the text on that line appears in black on a gray background that spans the line. In the
following illustration, the line beginning with the keyword Sub is marked with the instruction pointer.
As a comparison, the block of text that says .PushButton2 is shown with the highlighting used to
indicate selected text.

Tracing macro execution
The Macro Editor gives you two ways to trace macro execution—single step and procedure step—
both of which involve stepping through your macro code line by line. Single step simply traces
through every line in the macro, going into each subroutine called by the macro in complete detail.
Procedure step traces line by line through the code for the macro itself, but runs all of the subroutines
38

Using the macro editor
called by the macro without showing the line-by-line detail. Single step is good for debugging
relatively simple macros that do not call very many subroutines. Use procedure step on macros that
call subroutines you have already debugged and do not need to see traced in detail.

Note Single-step doesn't work when a macro uses the SmarTerm Session.StringWait, Session.Collect, or
Session.EventWait objects to control the timing and flow of the macro. In such macros you must use
breakpoints instead.

To trace a macro:
1. Click the Single Step or Procedure Step button on the toolbar, or Press F8 (Single Step) or Shift+F8

(Procedure Step). The macro editor places the instruction pointer on the first line of the macro.

Note When you start a trace, there may be a slight pause before the trace actually begins while the macro
editor compiles your macro. If it finds errors during compilation, you will have to correct them before
you can continue debugging.

2. Repeat step 1 to run the marked line and then advance the instruction pointer to the next instruction.
Each time you repeat step 1, the macro editor runs the line containing the instruction pointer and then
moves to the next line.

3. When you finish tracing the macro, either select Macro>Start (F5 or the toolbar button) to run the rest
of the macro at full speed, or select Macro>End (or the toolbar button) to stop running the macro.

While you are stepping through a subroutine, you may need to determine the subroutine calls by which
you arrived at that point in the macro. You can do this with the Calls dialog.

To use the Calls dialog:
1. Click the Calls button on the toolbar. The Calls dialog appears, which lists the subroutine calls made

by your macro in the course of arriving at the current subroutine.

2. To view one of the subroutines listed in the Calls dialog, highlight it and click Show. The macro
editor then displays that subroutine, highlighting the currently running line. (Note, however, that the
instruction pointer remains in its original location in the subroutine.)

When you are stepping through a subroutine, you may want to repeat or skip execution of a section of
code. You can use the Set Next Statement command to move the instruction pointer to a specific line
within that subroutine.

Note You can only use the Set Next Statement command to move the instruction pointer within the same
subroutine.

To move the instruction pointer to another line within a subroutine:
1. Place the insertion point in the line where you want to resume stepping through the macro.

2. Select Debug>Set Next Statement. The instruction pointer moves to the line you selected, and you
can resume stepping through your macro from there.
39

Using the macro editor
Setting and removing breakpoints
If you are debugging a long, complicated macro, stepping through it line by line can be quite time-
consuming. An alternate strategy is to set one or more breakpoints at selected lines in your macro.
Then, when you run the macro, it automatically pauses at each breakpoint, allowing you to examine
the code or step through the lines only where necessary

You can set breakpoints anywhere in a macro, but only breakpoints on lines that contain macro
commands, including lines in functions and subroutines are considered valid. (The macro editor beeps
if you set an invalid breakpoint.) When you compile and run the macro, invalid breakpoints are
automatically removed.

You can set breakpoints at any time while editing a macro or when a running macro has been paused.
For example, if you know that there are certain sections you want to debug, you can set all of the
breakpoints in the editor, and then run the macro to check the code at each breakpoint. Or, if the macro
doesn't seem to be working properly, you can use the Break command (Ctrl+Break) to pause the
macro, set a breakpoint, and then resume running the macro to move at full speed to the breakpoint.

To set a breakpoint:
1. Place the insertion point in the line where you want to start debugging.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).

Note You can set up to 255 breakpoints in a macro.

Invalid breakpoints are removed automatically when the macro is compiled and run. When you exit
the macro editor, all other breakpoints are also removed. You can also remove breakpoints manually.

To remove a single breakpoint:
1. Place the insertion point on the line containing the breakpoint that you want to remove.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).

To remove all breakpoints:
Exit the macro editor or select Debug>Clear All Breakpoints.

Using Watch variables
As you debug your macro, you can use the watch pane to monitor selected variables. For each variable
you select, the watch pane displays its context, name, and value. The values of the variables on the
watch list are updated each time you pause the macro with a breakpoint or with the Break command
(Ctrl+Break).

The Macro Editor permits you to monitor variables of fundamental data types, such as Integer, Long,
Variant, and so on; you cannot watch complex variables, such as user-defined types or arrays, or
expressions using arithmetic operators. You can, however, watch individual elements of user-defined
types or arrays using the following syntax:
40

Using the macro editor
[variable [(index,_)] [.member [(index,_)]]_]

where variable is the name of the user-defined type or array variable, index is a literal number,
and member is the name of a member of the user-defined type.

For example, the following are valid watch expressions:

To add a watch variable:
1. It is most flexible to add watch variables when running the macro, so begin by select Macro>Start

(F5 or the Start button), then press Ctrl-Break to pause the macro. Or, insert a breakpoint at an
appropriate location in the macro and then run it.

2. When the macro pauses, select Debug>Add Watch (Shift+F9 or the Add Watch button). The Add
Watch dialog appears.

3. In the Procedure box, select the name of the procedure containing the variable you want to watch. If
the variable you want to watch is global to the module, select “(All Procedures)”.

4. In the Variable box, select the name of the variable you want to add to the watch variable list.

5. In the Script box, type or select the name of the macro containing the variable you want to watch. If
you're creating a new name, don't include any spaces. If the variable you want to watch is global to
the collective, select “(All Scripts)”.

6. Click OK to add the variable to the watch variable list.

The context, name, and value of the variable appear in a three-column list in the watch pane at the top
of the macro editor window, along with any other variables you may have added during this editing
session.

Watch Variable Description
a(1) Element 1 of array a
person.age Member age of the user-defined type person
company(10,23).person.age Member age of user-defined type person that is

at element 10,23 within the array of user-defined
types called company
41

Using the macro editor
To modify the value of a watch variable:
1. Highlight the variable in the watch pane and select Debug>Modify Watch (F2), or just double-click

the variable in the watch pane. The Modify Variable dialog appears.

2. Enter the new value for the variable in the Value field.

3. Click OK. The new value of your variable appears on the watch variable list.

When you change the value of a variable, the macro editor converts the value you enter to match the
type of the variable. For example, if you change the value of an Integer variable to 1.7, the macro
editor converts this value from a floating-point number to an Integer, assigning the value 2 to the
variable.

When you modify a Variant variable, the macro editor determines both the type and value of your
entry using the following rules (in this order):

The Macro Editor will not assign a new value if it cannot be converted to the same type as the specified
variable.

To delete a watch variable:
1. Highlight the variable on the watch list.

2. Select Debug>Delete Watch or press the Delete key.

If the new value is Then
Null The Variant variable is assigned Null (VarType 1).
Empty The Variant variable is assigned Empty (VarType 0).
True The Variant variable is assigned True (VarType 11).
False The Variant variable is assigned False (VarType 11).
number The Variant variable is assigned the value of number. The type of the vari-

ant is the smallest data type that fully represents that number. You can force
the data type of the variable by using a type-declaration letter following
number, such as %, #, &, !, or @.

date The Variant variable is assigned the value of the new date (VarType 7).
Anything else The Variant variable is assigned a String (VarType 8).
42

Creating Dialogs
Creating Dialogs
Dialogs are created in two steps. First you define a dialog template that contains the definitions of the
types, sizes, placement, and so forth of all the elements of a dialog. Then you use macro commands to
create an instance of that dialog using the template you defined earlier in the macro.

To insert a new dialog template:
1. Place the insertion point where you want the new dialog template to appear in your macro. Bear in

mind that the scope rules outlined above for variables and subroutines apply to dialog templates as
well. If you want a dialog template to be available to all subroutines in a given macro file, define the
template at the top of the file. If you want the template to be private to a specific subroutine, define it
within that subroutine.

2. Select Edit>Insert New Dialog. The dialog editor appears, displaying a new dialog in its window.

3. Use the dialog editor to create the dialog.

4. Exit from the dialog editor and return to the macro editor.

The Macro Editor automatically places the new dialog template generated by Dialog Editor in your
macro at the location of the insertion point.

To edit an existing dialog template:
1. Select the lines of code that define the entire dialog template.

2. Select Edit>Edit Dialog. The dialog editor appears, displaying a dialog created from the code you
selected.

3. Use the dialog editor to modify your dialog.

4. Exit from the dialog editor and return to the macro editor. The macro editor automatically replaces
the dialog template you originally selected with the revised template generated by Dialog Editor.

To capture a dialog from another application:
You can capture the standard Windows controls from any standard Windows dialog in another
application and insert those controls into the Dialog Editor for editing. Follow these steps:

1. Display the dialog you want to capture.

2. Open the Dialog Editor.

3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is
able to capture:
43

Creating Dialogs
4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard
Windows controls from the target dialog.

Note The Dialog Editor only supports standard Windows controls and standard Windows dialogs. You
cannot capture custom dialogs or custom dialog controls.

Using the Dialog Editor
This section presents general information that will help you work most effectively with the Dialog
Editor. It includes an overview of the Dialog Editor as well as a list of accelerators and information on
using the Help system.

Before you begin creating a new custom dialog, the Dialog Editor looks like this:
44

Creating Dialogs
The application window contains the following elements:

Toolbar
A collection of buttons that you can use to provide instructions to the Dialog Editor, as discussed in
the following subsection.

Dialog
The visual layout of the dialog that you are currently creating or editing.

Status bar
Provides key information about the operation you are currently performing, including the name of the
currently selected control or dialog, together with its position on the display and its dimensions; the
name of a control you are about to add to the dialog with the mouse pointer, together with the pointer's
position on the display; the function of the currently selected menu command; and the activation of
the Dialog Editor's testing or capturing functions.

Note Dialogs created with the Dialog Editor normally appear in an 8 point Helvetica font, both in the Dialog
Editor's application window and when the corresponding macro code is run.

The Dialog Editor

Test Dialog
Runs the dialog for testing.

Information
Displays information for the selected control.

Cut
Removes the selected control from the dialog.

Copy
Copies the selected control to the clipboard.

Paste
Inserts the clipboard into the active dialog.

Undo
Reverses the effect of the preceding editing change(s).
45

Creating Dialogs
Select
Lets you select, move, and resize items and control the insertion point.

OK Button
Adds an OK button to your dialog.

Cancel Button
Adds a Cancel button to your dialog.

Help Button

Adds a Help button to your dialog.Push Button
Adds a push button to your dialog.

Option Button
Adds an option button to your dialog.

Check Box
Adds a checkbox to your dialog.

Group Box
Adds a group box to your dialog.

Text
Adds a text control to your dialog.

Text Box
Adds a text box to your dialog.

Listbox
Adds a listbox to your dialog.

Combo Box
Adds a combo box to your dialog.

Drop List Box
Adds a drop-down listbox to your dialog.
46

Creating Dialogs
Picture
Adds a picture to your dialog.

Picture Button
Adds a picture button to your dialog.

For more information, select Help.

Accelerators for the Dialog Editor

Creating a Custom Dialog
This section describes the types of controls that the Dialog Editor supports. It also explains how to
create controls and initially position them within your dialog, and offers some pointers on creating
controls efficiently.

In the next section, Editing a Custom Dialog, you'll learn how to make various types of changes to the
controls that you've created—moving and resizing them, assigning labels and accelerator keys, and so
forth.

Key(s) Function
Alt+F4 Closes the Dialog Editor.
Ctrl+C Copies the selected dialog or control and places it on the Clipboard.
Ctrl+D Creates a duplicate of the selected control.
Ctrl+G Displays the Grid dialog.
Ctrl+I Displays the Information dialog for the selected dialog or control.
Ctrl+V Inserts the contents of the Clipboard into the Dialog Editor. If the Clipboard contains

macro statements describing one or more controls, then the Dialog Editor adds those
controls to the current dialog. If the Clipboard contains the template for an entire dia-
log, then the Dialog Editor creates a new dialog from the statements in the template.

Ctrl+X Removes the selected dialog or control and places it on the Clipboard.
Ctrl+Z Undoes the preceding operation.
Del Removes the selected dialog or control.
F1 Displays Help for the active window.
F2 Sizes certain controls to fit the text they contain.
F5 Runs the dialog for testing.
Shift+F1 Toggles the Help pointer.
47

Creating Dialogs
Types of Controls

The Dialog Editor supports the following types of standard Windows controls:

Push button
A command button. The OK, Cancel, and Help buttons are special types of push buttons.

Option button
One of a group of two or more linked buttons that let users select only one from a group of mutually
exclusive choices. A group of option buttons works the same way as the buttons on a car radio: because
the buttons operate together as a group, clicking an unselected button in the group selects that button
and automatically deselects the previously selected button in that group.

Checkbox
A box that users can check or clear to indicate their preference regarding the alternative specified on
the checkbox label.

Group box
A rectangular design element used to enclose a group of related controls. You can use the optional
group box label to display a title for the controls in the box.

Text
A field containing text that you want to display for the users' information. The text in this field wraps,
and the field can contain a maximum of 255 characters. Text controls can either display stand-alone
text or be used as labels for text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and
picture buttons. You can choose the font in which the text appears.
48

Creating Dialogs
Text box
A field into which users can enter text (potentially, as much as 32K). By default, this field holds a
single line of nonwrapping text. If you choose the Multiline setting in the Text Box Information dialog,
this field will hold multiple lines of wrapping text.

Listbox
A displayed, scrollable list from which users can select one item. The currently selected item is
highlighted on the list.

Combo box
A text field with a displayed, scrollable list beneath it. Users can either select an item from the list or
enter the name of the desired item in the text field. The currently selected item is displayed in the text
field. If the item was selected from the scrolling list, it is highlighted there as well.

Drop-down listbox
A field that displays the currently selected item, followed by a downward-pointing arrow, which users
can click to temporarily display a scrolling list of items. Once they select an item from the list, the list
disappears and the newly selected item is displayed in the field.

Picture
A field used to display a Windows bitmap or metafile.

Picture button
A special type of push, or command, button on which a Windows bitmap or metafile appears.

Note Group boxes, text controls, and pictures are passive elements in a dialog, inasmuch as they are used
purely for decorative or informative purposes. Users cannot act upon these controls, and when they
tab through the dialog, the focus skips over these controls. You can obtain a Windows bitmap or
metafile from a file or from a specified library.

Adding Controls to a Dialog
This section explains how to create controls and determine approximately where they first appear
within your dialog. The next section explains how to determine the positioning of controls more
precisely. Follow these steps:

1. From the toolbar, choose the button corresponding to the type of control you want to add.

When you pass the mouse pointer over an area of the display where a control can be placed, the pointer
becomes an image of the selected control with crosshairs (for positioning purposes) to its upper left.
The name and position of the selected control appear on the status bar. When you pass the pointer over
an area of the display where a control cannot be placed, the pointer changes into a circle with a slash
through it (the "prohibited" symbol).
49

Creating Dialogs
Note You can only insert a control within the borders of the dialog you are creating. You cannot insert a
control on the dialog's title bar or outside its borders.

2. Place the pointer where you want the control to be positioned and click the mouse button.

The control you just created appears at the specified location. (To be more specific, the upper left
corner of the control will correspond to the position of the pointer's crosshairs at the moment you
clicked the mouse button.) The control is surrounded by a thick frame, which means that it is selected,
and it may also have a default label.

After the new control has appeared, the mouse pointer becomes an arrow, to indicate that the toolbar
Pick button is active and you can once again select any of the controls in your dialog.

3. To add another control of the same type as the one you just added, press Ctrl+D.

A duplicate copy of the control appears.

4. To add a different type of control, repeat steps 1 and 2.

5. To reactivate the toolbar Pick button, click the toolbar arrow-shaped button.Or, place the mouse
pointer on the title bar of the dialog or outside the borders of the dialog (that is, on any area where the
mouse pointer turns into the "prohibited" symbol) and click the mouse button.

As you plan your dialog, keep in mind that a single dialog can contain no more than 255 controls and
that a dialog will not operate properly unless it contains either an OK button, a Cancel button, a push
button, or a picture button. (When you create a new custom dialog, an OK button and a Cancel button
are provided for you by default.)

Using the Grid to Help You Position Controls within a Dialog
The preceding subsection explained how to determine approximately where a newly created control
will materialize in your dialog. Here, you'll learn how to use the Dialog Editor's grid to help you fine-
tune the initial placement of controls.

The area of your dialog in which controls can be placed (that is, the portion of the dialog below the
title bar) can be thought of as a grid, with the X (horizontal) axis and the Y (vertical) axis intersecting
in the upper left corner (the 0, 0 coordinates). The position of controls can be expressed in terms of X
units with respect to the left border of this area and in terms of Y units with respect to the top border.
(In fact, the position of controls is expressed in this manner within the dialog template that you
produce by working with the Dialog Editor.)
50

Creating Dialogs
Follow these steps:

1. Press Ctrl+G. The following dialog appears:

2. To see the grid in your dialog, select the Show Grid checkbox.

3. To change the current X and Y settings, enter new values in the X and Y fields.

Note The values of X and Y in the Grid dialog determine the grid's spacing. Assigning smaller X and Y
values produces a more closely spaced grid, which enables you to move the mouse pointer in smaller
horizontal and vertical increments as you position controls. Assigning larger X and Y values produces
the opposite effect on both the grid's spacing and the movement of the mouse pointer. The X and Y
settings entered in the Grid dialog remain in effect regardless of whether you choose to display the
grid.

4. Click OK or press Enter.

The Dialog Editor displays the grid with the settings you specified. With the grid displayed, you can
line up the crosshairs on the mouse pointer with the dots on the grid to position controls precisely and
align them with respect to other controls.

As you move the mouse pointer over the dialog after you have chosen a control button from the
toolbar, the status bar displays the name of the type of control you have selected and continually
updates the position of the mouse pointer in X and Y units. (This information disappears if you move
the mouse pointer over an area of the screen where a control cannot be placed.) After you click the
mouse button to add a control, that control remains selected, and the status bar displays the control's
width and height in dialog units as well as its name and position.

Note Dialog units represent increments of the font in which the Dialog Editor creates dialogs (namely, 8
point Helvetica). Each X unit represents an increment equal to 1/4 of that font, and each Y unit
represents an increment equal to 1/8 of that font.

Creating Controls Efficiently
Creating dialog controls in random order might seem like the fastest approach. However, the order in
which you create controls has some important implications, so a little advance planning can save you
a lot of work in the long run.

Here are several points about creating controls that you should keep in mind:
51

Creating Dialogs
Tabbing order
Users can select dialog controls by tabbing from one control to the next. The order in which you create
the controls is what determines the tabbing order. The closer you can come to creating controls in the
order in which you want them to receive the tabbing focus, the fewer tabbing-order adjustments you'll
have to make later on.

Option button grouping
If you want a series of option buttons to work together as a mutually exclusive group, you must create
all the buttons in that group one right after the other, in an unbroken sequence. If you get sidetracked
and create a different type of control before you have finished creating all the option buttons in your
group, you'll split the buttons into two (or more) separate groups.

Accelerator keys
You can provide easy access to a text box, listbox, combo box, or drop-down listbox by assigning an
accelerator key to an associated text control, and you can provide easy access to the controls in a group
box by assigning an accelerator key to the group box label. To do this, you must create the text control
or group box first, followed immediately by the controls that you want to associate with it. If the
controls are not created in the correct order, they will not be associated in your dialog template, and
any accelerator key you assign to the text control or group box label will not work properly.

If you don't create controls in the most efficient order, the resulting problems with tabbing order,
option button grouping, and accelerator keys usually won't become apparent until you test your dialog.
Although you can still fix these problems at that point, it will definitely be more cumbersome. In short,
it's easier to prevent (or at least minimize) problems of this sort than to fix them after the fact.

Editing a Custom Dialog
In the preceding section, you learned how to create controls and determine where they initially appear
within your dialog. In this section, you'll learn how to make changes to both the dialog and the controls
in it. The following topics are included:

• Selecting items so that you can work with them

• Using the Information dialog to check and/or change various attributes of items

• Changing the position and size of items

• Changing titles and labels

• Assigning accelerator keys

• Specifying pictures

• Creating or modifying picture libraries under Windows

• Duplicating and deleting controls

• Undoing editing operations
52

Creating Dialogs
Selecting Items
In order to edit a dialog or a control, you must first select it. When you select an item, it becomes
surrounded by a thick frame, as you saw in the preceding section.

To select a control:
• With the toolbar Pick button active, place the mouse pointer on the desired control and click the

mouse button.

Or

• With the Toolbar Pick button active, press the Tab key repeatedly until the focus moves to the de-
sired control.

The control is now surrounded by a thick frame to indicate that it is selected and you can edit it.

To select the dialog:
• With the Toolbar Pick button active, place the mouse pointer on the title bar of the dialog or on an

empty area within the borders of the dialog (that is, on an area where there are no controls) and
click the mouse button.

Or

• With the Toolbar Pick button active, press the Tab key repeatedly until the focus moves to the di-
alog.

The dialog is now surrounded by a thick frame to indicate that it is selected and you can edit it.

Using the Information Dialog
The Information dialog enables you to check and adjust various attributes of controls and dialogs. This
subsection explains how to display the Information dialog and provides an overview of the attributes
with which it lets you work. In the following subsections, you'll learn more about how to use the
Information dialog to make changes to your dialog and its controls.

To see the Information dialog for a dialog:
• With the Toolbar Pick button active, place the mouse pointer on an area of the dialog where there

are no controls and double-click the mouse button.

Or

• With the Toolbar Pick button active, select the dialog and either click the toolbar Information but-
ton, press Enter, or press Ctrl+I. The following dialog appears:
53

Creating Dialogs
To display the Information dialog for a control:
• With the Toolbar Pick button active, place the mouse pointer on the desired control and double-

click the mouse button.

Or

• With the Toolbar Pick button active, select the control and either click the toolbar Information but-
ton, press Enter, or press Ctrl+I.

The Information dialog corresponding to the control you selected appears:

The following lists show the attributes that you can change with the Dialog Information and
Information dialogs for the various controls. In some cases (specified below), it's mandatory to fill in
the fields in which the attributes are specified—that is, you must either leave the default information
in these fields or replace it with more meaningful information, but you can't leave the fields empty. In
other cases, filling in these fields is optional.

Note A quick way to determine whether it's mandatory to fill in a particular Information dialog field is to
see whether the OK button becomes grayed out when you delete the information in that field. If it does,
then you must fill in that field.

In many cases, you could simply leave the generic-sounding default information in the Information
dialog fields and worry about replacing it with more meaningful information after you paste the dialog
template into your macro. However, if you take a few moments to replace the default information with
54

Creating Dialogs

g
something specific when you first create your dialog, not only will you save yourself some work later
on but you may also find that your changes make the code produced by the Dialog Editor more readily
comprehensible and thus easier to work with.

Dialog Attributes

Control Attributes

Mandatory/ Optional Attribute
Optional Position: X and Y coordinates on the display, in dialog units
Mandatory Size: width and height of the dialog, in dialog units
Optional Style: options that allow you to determine whether the close box and title bar

are displayed
Optional Text$: text displayed on the title bar of the dialog
Mandatory Name: name by which you refer to this dialog template in your code
Optional .Function: name of a function in your dialog
Optional Picture Library: picture library from which one or more pictures in the dialo

are obtained

Mandatory/ Optional Control(s) Affected Attribute
Mandatory All controls Position: X and Y coordinates within the dia-

log, in dialog units
Mandatory All controls Size: width and height of the control, in dialog

units
Optional Push button, option but-

ton, checkbox, group
box, and text

Text$: text displayed on a control

Optional Help button FileName$: name of the help file invoked
when the user clicks this button

Optional Text Font: font in which text is displayed
Optional Text box Multiline: option that allows you to determine

whether users can enter a single line of text or
multiple lines

Optional OK button, Cancel but-
ton, push button, option
button, group box, and
text

.Identifier: name by which you refer to a con-
trol in your code
55

Creating Dialogs
Position and Size
This section explains how the Dialog Editor helps you keep track of the location and dimensions of
dialogs and controls, and presents several ways to move and resize these items.

Keeping Track of Position and Size
The Dialog Editor's display can be thought of as a grid, in which the X (horizontal) axis and the Y
(vertical) axis intersect in the upper left corner of the display (the 0, 0 coordinates). The position of
the dialog you are creating can be expressed in terms of X units with respect to the left border of the
parent window and in terms of Y units with respect to the top border.

When you select a dialog or control, the status bar displays its position in X and Y units as well as its
width and height in dialog units. Each time you move or resize an item, the corresponding information
on the status bar is updated. You can use this information to position and size items more precisely.

The Dialog Editor provides several ways to reposition dialogs and controls.

To reposition an item with the mouse:
1. With the Toolbar Pick button active, place the mouse pointer on an empty area of the dialog or on a

control.

2. Click the mouse button and drag the dialog or control to the desired location.

Note The increments by which you can move a control with the mouse are governed by the grid setting. For
example, if the grid's X setting is 4 and its Y setting is 6, you'll be able to move the control horizontally
only in increments of 4 X units and vertically only in increments of 6 Y units. This feature is handy if
you're trying to align controls in your dialog. If you want to move controls in smaller or larger
increments, press Ctrl+G to display the Grid dialog and adjust the X and Y settings.

Mandatory Checkbox, text box, list-
box, combo box, drop-
down listbox, and help
button

.Identifier: name by which you refer to a con-
trol in your code; also contains the result of the
control after the dialog has been processed

Optional Picture, picture button .Identifier: name of the file containing a pic-
ture that you want to display or the name of a
picture that you want to display from a speci-
fied picture library

Optional Picture Frame: option that allows you to display a 3-D
frame

Mandatory Listbox, combo box, and
drop-down listbox

Array$: name of an array variable in your
code

Mandatory Option button .Option Group: name by which you refer to a
group of option buttons in your code

Mandatory/ Optional Control(s) Affected Attribute
56

Creating Dialogs
To reposition an item with the arrow keys:
1. Select the dialog or control that you want to move.

2. Press an arrow key once to move the item by 1 X or Y unit in the desired direction. Or, click an arrow
key to "nudge" the item steadily along in the desired direction.

Note When you reposition an item with the arrow keys, a faint, partial afterimage of the item may remain
visible in the item's original position. These afterimages are rare and will disappear once you test your
dialog.

To reposition a dialog with the Information dialog:
1. Display the Information dialog.

2. Change the X and Y coordinates in the Position group box. Or, leave the X and/or Y coordinates
blank.

3. Click OK or press Enter.

If you specified X and Y coordinates, the dialog moves to that position. If you left the X coordinate
blank, the dialog will be centered horizontally relative to the parent window of the dialog when the
dialog is run. If you left the Y coordinate blank, the dialog will be centered vertically relative to the
parent window of the dialog when the dialog is run.

To reposition a control with the Information dialog:
1. Display the Information dialog for the control that you want to move.

2. Change the X and Y coordinates in the Position group box.

3. Click OK or press Enter.

The control moves to the specified position.

Note When you move a dialog or control with the arrow keys or with the Information dialog, the item's
movement is not restricted to the increments specified in the grid setting. When you attempt to test a
dialog containing hidden controls (i.e., controls positioned entirely outside the current borders of your
dialog), the Dialog Editor displays a message advising you that there are controls outside the dialog's
borders and asks whether you wish to proceed with the test. If you proceed, the hidden controls will
be disabled for testing purposes. (Testing dialogs is discussed later in the chapter.)

 Dialogs and controls can be resized either by directly manipulating them with the mouse or by using
the Information dialog. Certain controls can also be resized automatically to fit the text displayed on
them.

To resize an item with the mouse:
1. With the Toolbar Pick button active, select the dialog or control that you want to resize.

2. Place the mouse pointer over a border or corner of the item.

3. Click the mouse button and drag the border or corner until the item reaches the desired size.
57

Creating Dialogs
To resize an item with the Information dialog:
1. Display the Information dialog for the dialog or control that you want to resize.

2. Change the Width and Height settings in the Size group box.

3. Click OK or press Enter.

The dialog or control is resized to the dimensions you specified.

To resize selected controls automatically:
1. With the Toolbar Pick button active, select the option button, text control, push button, checkbox, or

text box that you want to resize.

2. Press F2. The borders of the control expand or contract to fit the text displayed on it.

Note Windows metafiles always expand or contract proportionally to fit within the picture control or picture
button control containing them. In contrast, Windows bitmaps are of a fixed size. If you place a bitmap
in a control that is smaller than the bitmap, the bitmap is clipped off on the right and bottom. If you
place a bitmap in a control that is larger than the bitmap, the bitmap is centered within the borders of
the control. Picture controls and picture button controls must be resized manually.

Changing Titles and Labels
By default, when you begin creating a dialog, its title reads "Untitled," and when you first create group
boxes, option buttons, push buttons, text controls, and checkboxes, they have generic-sounding default
labels, such as "Group Box" and "Option Button."

To change a dialog title or a control label:
1. Display the Information dialog for the dialog whose title you want to change or for the control whose

label you want to change.

2. Enter the new title or label in the Text$ field.

Note Dialog titles and control labels are optional. Therefore, you can leave the Text$ field blank.

3. If the information in the Text$ field should be interpreted as a variable name rather than a literal
string, select the Variable Name checkbox.

4. Click OK or press Enter. The new title or label appears on the title bar or on the control.

Although OK and Cancel buttons also have labels, you cannot change them. The remaining controls
(text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and picture buttons) don't have
their own labels, but you can position a text control above or beside these controls to serve as a de facto
label for them.

Assigning Accelerator Keys
Accelerator keys enable users to access dialog controls simply by pressing Alt plus a specified letter.
Users can employ accelerator keys to choose a push button or an option button; toggle a checkbox on
58

Creating Dialogs
or off; and move the insertion point into a text box or group box or to the currently selected item in a
listbox, combo box, or drop-down listbox.

An accelerator key is essentially a single letter that you designate for this purpose from a control's
label. You can assign an accelerator key directly to controls that have their own label (option buttons,
push buttons, checkboxes, and group boxes). (You can't assign an accelerator key to OK and Cancel
buttons because, as noted above, their labels can't be edited.) You can create a de facto accelerator key
for certain controls that don't have their own labels (text boxes, listboxes, combo boxes, and drop-
down listboxes) by assigning an accelerator key to an associated text control.

To assign an accelerator key:
1. Display the Information dialog for the control to which you want to assign an accelerator key.

2. In the Text$ field, type an ampersand (&) before the letter you want to designate as the accelerator
key.

3. Click OK or press Enter.

The letter you designated is now underlined on the control's label, and users will be able to access the
control by pressing Alt plus the underlined letter.

Note Accelerator key assignments must be unique within a particular dialog. If you attempt to assign the
same accelerator key to more than one control, the Dialog Editor displays a reminder that letter has
already been assigned.

If, for example, you have a push button whose label reads Apply, you can designate A as the accelerator
key by displaying the Push Button Information dialog and typing &Apply in the Text$ field. When
you press Enter, the button label says Apply, and users will be able to choose the button by pressing
Alt+A.

Note In order for such a default accelerator key to work properly, the text control or group box label to
which you assign the accelerator key must be associated with the control(s) to which you want to
provide user access. That is, in the dialog template, the description of the text control or group box
must immediately precede the description of the control(s) that you want associated with it. The
simplest way to establish such an association is to create the text control or group box first, followed
immediately by the associated control(s).

Specifying Pictures
In the preceding section, you learned how to add picture controls and picture button controls to your
dialog. But these controls are nothing more than empty outlines until you specify the pictures that you
want them to display.

A picture control or picture button control can display a Windows bitmap or metafile, which you can
obtain from a file or from a specified library. (Refer to the following subsection for information on
creating or modifying picture libraries under Windows.)
59

Creating Dialogs
To specify a picture from a file:
1. Display the Information dialog for the picture control or picture button control whose picture you

want to specify.

2. In the Picture source option button group, select File.

3. In the Name$ field, enter the name of the file containing the picture you want to display in the picture
control or picture button control.

Note Click Browse to see the Select a Picture File dialog and use it to find the file.

4. Click OK or press Enter. The picture control or picture button control now displays the picture you
specified.

To specify a picture from a picture library:
1. Display the Information dialog.

2. In the Picture Library field, specify the name of the picture library that contains the picture(s) you
want to display in your dialog.

Note Click Browse to see the Select a Picture Library dialog and use it to find the file. If you specify a
picture library in the Information dialog, all the pictures in your dialog must come from this library.

3. Click OK or press Enter.

4. Display the Information dialog for the picture control or picture button control whose picture you
want to specify.

5. In the Picture source option button group, select Library.

6. In the Name$ field, enter the name of the picture you want to display on the picture control or picture
button control. (This picture must be from the library that you specified in step 2.)

7. Click OK button or Enter. The picture control or picture button control now displays the picture you
specified.

Creating or Modifying Picture Libraries under Windows
The Picture statement allows images to be specified as individual picture files or as members of a
picture library, which is a DLL that contains a collection of pictures. Both Windows bitmaps and
metafiles are supported. You can obtain a picture library either by creating a new one or by modifying
an existing one, as described below.

Each image is placed into the DLL as a resource identified by its unique resource identifier. This
identifier is the name used in the Picture statement to specify the image.

The following resource types are supported in picture libraries:
60

Creating Dialogs
To create a picture library under Windows:
1. Create a C file containing the minimal code required to establish a DLL. The following code can be

used:

#include <windows.h>
int CALLBACK LibMain(

HINSTANCE hInstance,
WORD wDataSeg,
WORD wHeapSz,
LPSTR lpCmdLine) {
UnlockData(0);
return 1;

}

2. Use the following code to create a DEF file for your picture library:

LIBRARY
DESCRIPTION "My Picture Library"
EXETYPE WINDOWS
CODE LOADONCALL MOVABLE DISCARDABLE
DATA PRELOAD MOVABLE SINGLE
HEAPSIZE 1024

3. Create a resource file containing your images. The following example shows a resource file using a
bitmap called sample.bmp and a metafile called usa.wmf.

#define METAFILE 256
USA METAFILE "usa.wmf"
MySample BITMAP "sample.bmp"

4. Create a make file that compiles your C module, creates the resource file, and links everything
together.

To modify an existing picture library:
1. Make a copy of the picture library you want to modify.

2. Modify the copy by adding images using a resource editor such as Borland's Resource Workshop or
Microsoft's App Studio.

Note When you use a resource editor, you need to create a new resource type for metafiles (with the value
256).

Duplicating Controls
1. Select the control that you want to duplicate.

2. Press Ctrl+D. A duplicate copy of the selected control appears in your dialog.

Resource Type Description
2 Bitmap. This is defined in windows.h as RT_BITMAP.
256 Metafile. Since there is no resource type for metafiles, 256 is

used.
61

Creating Dialogs
3. Repeat step 2 as many times as necessary to create the desired number of duplicate controls.

Duplicating is a particularly efficient approach if you need to create a group of controls, such as a
series of option buttons or checkboxes. Simply create the first control in the group and then, while the
newly created control remains selected, repeatedly press Ctrl+D until you have created the necessary
number of copies.

The Dialog Editor also enables you to delete single controls or even clear the entire dialog.

Deleting Controls
To delete a single control:

1. Select the control you want to delete.

2. Press Del.

The selected control is removed from your dialog.

To delete all the controls in a dialog:
1. Select the dialog.

2. Press Del.

3. If the dialog contains more than one control, the Dialog Editor prompts you to confirm that you want
to delete all controls. Click the Yes button or press Enter.

All the controls disappear, but the dialog's title bar and close box (if displayed) remain unchanged.

Undoing Editing Operations
You can undo editing operations that produce a change in your dialog, including:

• The addition of a control

• The insertion of one or more controls from the Clipboard

• The deletion of a control

• Changes made to a control or dialog, either with the mouse or with the Information dialog

You cannot undo operations that don't produce any change in your dialog, such as selecting controls
or dialogs and copying material to the Clipboard.

To undo an editing operation:
• Press Ctrl+Z.

Your dialog is restored to the way it was before you performed the editing operation.

Editing an Existing Dialog
There are three ways to edit an existing dialog:
62

Creating Dialogs
• You can copy the template of the dialog you want to edit from a macro to the Clipboard and paste
it into the Dialog Editor.

• You can use the capture feature to "grab" an existing dialog from another application and insert a
copy of it into the Dialog Editor.

• You can open a dialog template file that has been saved on a disk. Once you have the dialog dis-
played in the Dialog Editor's application window, you can edit it using the methods described ear-
lier in the chapter.

Pasting an Existing Dialog into the Dialog Editor
You can use the Dialog Editor to modify the macro statements that correspond to an entire dialog or
to one or more dialog controls.

If you want to modify a dialog template contained in your macro, here's how to select the template and
paste it into the Dialog Editor for editing.

To paste an existing dialog into the Dialog Editor:
1. Copy the entire dialog template (from the Begin Dialog instruction to the End Dialog instruction)

from your macro to the Clipboard.

2. Open the Dialog Editor.

3. Press Ctrl+V.

4. When the Dialog Editor asks whether you want to replace the existing dialog, click the Yes button.

The Dialog Editor creates a new dialog corresponding to the template contained on the Clipboard.

If you want to modify the macro statements that correspond to one or more dialog controls, here's how
to select the statements and paste them into the Dialog Editor for editing.

To paste one or more controls from an existing dialog into the Dialog Editor:
1. Copy the description of the control(s) from your macro to the Clipboard.

2. Open the Dialog Editor.

3. Press Ctrl+V.

The Dialog Editor adds to your current dialog one or more controls corresponding to the description
contained on the Clipboard.

Note When you paste a dialog template into the Dialog Editor, the tabbing order of the controls is
determined by the order in which the controls are described in the template. When you paste one or
more controls into the Dialog Editor, they will come last in the tabbing order, following the controls
that are already present in the current dialog.
63

Creating Dialogs
If there are any errors in the statements that describe the dialog or controls, the Dialog Translation
Errors dialog will appear when you attempt to paste these statements into the Dialog Editor. This
dialog shows the lines of code containing the errors and provides a brief description of the nature of
each error.

Capturing a Dialog
Here's how to capture the standard Windows controls from any standard Windows dialog in another
application and insert those controls into the Dialog Editor for editing.

To capture an existing standard Windows dialog:
1. Display the dialog you want to capture.

2. Open the Dialog Editor.

3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is
able to capture:

4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard
Windows controls from the target dialog.

Note The Dialog Editor only supports standard Windows controls and standard Windows dialogs.
Therefore, if the target dialog contains both standard Windows controls and custom controls, only the
standard Windows controls will appear in the Dialog Editor's application window. If the target dialog
is not a standard Windows dialog, you will be unable to capture the dialog or any of its controls.

Opening a Dialog Template File
Here's how to open any dialog template file that has been saved on a disk so you can edit the template
in the Dialog Editor.

To open a dialog template file:
1. Select File>Open. The Open Dialog File dialog appears.

2. Select the file containing the dialog template that you want to edit and click the OK button.

The Dialog Editor creates a dialog from the statements in the template and displays it in the application
window.
64

Creating Dialogs
Note If there are any errors in the statements that describe the dialog, the Dialog Translation Errors dialog
will appear when you attempt to load the file into the Dialog Editor. This dialog shows the lines of
code containing the errors and provides a brief description of the nature of each error.

Testing a Dialog
The Dialog Editor lets you run your edited dialog for testing purposes. When you click the toolbar Test
Dialog button, your dialog comes alive, which gives you an opportunity to make sure it functions
properly and fix any problems before you incorporate the dialog template into your macro.

Before you run your dialog, take a moment to look it over for basic problems such as the following:

• Does the dialog contain a command button—that is, a default OK or Cancel button, a push button,
or a picture button?

• Does the dialog contain all the necessary push buttons?

• Does the dialog contain a Help button if one is needed?

• Are the controls aligned and sized properly?

• If there is a text control, is its font set properly?

• Are the close box and title bar displayed (or hidden) as you intended?

• Are the control labels and dialog title spelled and capitalized correctly?

• Do all the controls fit within the borders of the dialog?

• Could you improve the design of the dialog by adding one or more group boxes to set off groups
of related controls?

• Could you clarify the purpose of any unlabeled control (such as a text box, listbox, combo box,
drop-down listbox, picture, or picture button) by adding a text control to serve as a de facto label
for it?

• Have you made all the necessary accelerator key assignments?

After you've fixed any elementary problems, you're ready to run your dialog so you can check for
problems that don't become apparent until a dialog is activated.

Testing your dialog is an iterative process that involves running the dialog to see how well it works,
identifying problems, stopping the test and fixing those problems, then running the dialog again to
make sure the problems are fixed and to identify any additional problems, and so forth—until the
dialog functions the way you intend. Here's how to test your dialog and fine-tune its performance.
65

Creating Dialogs
To test your dialog:
1. Click the toolbar Test Dialog button or press F5. The dialog becomes operational, and you can check

how it functions.

2. To stop the test, click the toolbar Test Dialog button, press F5, or double-click the dialog's close box
(if it has one).

3. Make any necessary adjustments to the dialog.

4. Repeat steps 1–3 as many times as you need in order to get the dialog working properly.

When testing a dialog, you can check for operational problems such as the following:

Tabbing order
When you press the Tab key, does the focus move through the controls in a logical order? (Remember,
the focus skips over items that users cannot act upon, including group boxes, text controls, and
pictures.)

When you paste controls into your dialog, the Dialog Editor places their descriptions at the end of your
dialog template, in the order in which you paste them in. Therefore, you can use a simple cut-and-paste
technique to adjust the tabbing order. First, click the toolbar Test Dialog button to end the test and
then, proceeding in the order in which you want the controls to receive the focus, select each control,
cut it from the dialog (by pressing Ctrl+X), and immediately paste it back in again (by pressing
Ctrl+V). The controls will now appear in the desired order in your template and will receive the
tabbing focus in that order.

Option button grouping
Are the option buttons grouped correctly? Does selecting an unselected button in a group
automatically deselect the previously selected button in that group?

To merge two groups of option buttons into a single group, click the toolbar Test Dialog button to end
the test and then use the Option Button Information dialog to assign the same .Option Group name for
all the buttons that you want included in that group.

Text box functioning
Can you enter only a single line of nonwrapping text, or can you enter multiple lines of wrapping text?

If the text box doesn't behave the way you intended, click the toolbar Test Dialog button to end the
test; then display the Text Box Information dialog and select or clear the Multiline checkbox.

Accelerator keys
If you have assigned an accelerator key to a text control or group box in order to provide user access
to a text box, listbox, combo box, drop-down listbox, or group box, do the accelerator keys work
properly? That is, if you press Alt + the designated accelerator key, does the insertion point move into
66

Using Dialogs
the text box or group box or to the currently selected item in the listbox, combo box, or drop-down
listbox?

If the accelerator key doesn't work properly, it means that the text box, listbox, combo box, drop-down
listbox, or group box is not associated with the text control or group box to which you assigned the
accelerator key—that is, in your dialog template, the description of the text control or group box does
not immediately precede the description of the control(s) that should be associated with it. As with
tabbing-order problems (discussed above), you can fix this problem by using a simple cut-and-paste
technique to adjust the order of the control descriptions in your template. First, click the toolbar Test
Dialog button to end the test; then cut the text control or group box from the dialog and immediately
paste it back in again; and finally, do the same with each of the controls that should be associated with
the text control or group box. The controls will now appear in the desired order in your template, and
the accelerator keys will work properly.

Incorporating a Dialog into a Macro
Once you have created a dialog or dialog controls, you can paste it into your macro via the Clipboard.
Follow these steps.

To incorporate a dialog or control into your macro:
1. Select the dialog or control that you want to incorporate into your macro.

2. Press Ctrl+C.

3. Open your macro and paste in the contents of the Clipboard at the desired point.

You can also select File>Save As on the Dialog Editor and save the dialog to a .DLG file. Later you
can open the macro in the Macro Editor and the saved dialog in the Dialog Editor, and copy the dialog
into the macro.

The dialog template or control is now described in statements in your macro.

Using Dialogs
After using the Dialog Editor to insert a custom dialog template into your macro, you'll need to make
the following modifications to your macro:

1. Create a dialog record with the Dim statement.

2. Put information into the dialog by assigning values to its controls.

3. Display the dialog with either the Dialog() function or the Dialog statement.

4. Retrieve values from the dialog after the user closes it.
67

Using Dialogs
Creating a Dialog Record
To store the values retrieved from a custom dialog, create a dialog record with a Dim statement using
the following syntax:

Dim DialogRecord As DialogVariable

Here are some examples of how to create dialog records:

Dim b As UserDialog 'Define a dialog record "b"
Dim PlayCD As CDDialog 'Define dialog record PlayCD.

Here is a sample macro that illustrates how to create a dialog record named b within a dialog template
named UserDialog. Notice that the order of the statements within the macro is: the dialog template
precedes the statement that creates the dialog record, and the Dialog statement follows both of them.

Sub Main
'!
 Dim ListBox1$() 'Initialize listbox array.
 'Define the dialog template.
 Begin Dialog UserDialog ,,163,94,"Grocery Order"
 Text 13,6,32,8,"&Quantity:",.Text1
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 Dim b As UserDialog 'Create the dialog record.
 Dialog b 'Display the dialog.
End Sub

Putting Information into the Dialog
When you open and run the sample macro shown in the preceding subsection, you see a dialog like
the following:

To put information into this dialog, assign values to its controls by modifying the statements in your
macro that are responsible for displaying those controls to the user. The following table lists the dialog
controls to which you can assign values and the types of information you can control:
68

Using Dialogs
The following sections explain how to define and fill an array, set the default text in a text box, and
set the initial focus and tab order for the controls in a custom dialog.

Defining and Filling an Array
You can store items in the listbox shown in the example above by creating an array and then assigning
values to the elements of the array. For example, you could include the following lines to initialize an
array with three elements and assign the names of three common fruits to these elements of your array:

Dim ListBox1$(3) 'Initialize listbox array.
ListBox1$(0) = "Apples"
ListBox1$(1) = "Oranges"
ListBox1$(2) = "Pears"

Setting Default Text in a Text Box
You can set the default value of the text box in your macro to 12 with the following assignment
statement. This assignment must follow the definition of the dialog record but precede the statement
or function that displays the custom dialog.

b.TextBox1 = "12"

Setting the Initial Focus and Controlling the Tabbing Order
You can determine which control has the focus when your custom dialog appears as well as the
tabbing order between controls by understanding two rules. First, the focus in a custom dialog is
always set initially to the first control to appear in the dialog template. Second, the order in which
subsequent controls appear within the dialog template determines the tabbing order. That is, pressing
the Tab key will change the focus from the first control to the second one, pressing the Tab key again
will change the focus to the third control, and so on.

Displaying the Custom Dialog
To display a custom dialog, use either the Dialog() function or the Dialog statement.

Using the Dialog() Function
Use the Dialog() function to determine how the user closed your custom dialog. For example, the
following statement returns a value when the user clicks an OK button or a Cancel button or takes
another action:

response% = Dialog(b)

Control(s) Types of Information
Listbox, drop-down listbox, combo box Items
Text box Default text
Checkbox Values
69

Using Dialogs
The Dialog() function returns any of the following values:

Using the Dialog Statement
Use the Dialog statement when you don't need to determine how the user closed your dialog. You can
still retrieve other information from the dialog record, such as the value of a listbox or other dialog
control. The following is an example of the correct use of the Dialog statement:

Dialog b

Retrieving Values from the Custom Dialog
After displaying a custom dialog, the macro must retrieve the values of the dialog controls by
referencing the appropriate identifiers in the dialog record. The following example uses several of the
techniques described earlier to explain this process.

In this macro, the array named ListBox1 is filled with three elements ("Apples", "Oranges", and
"Pears"). The default value of TextBox1 is set to 12. A variable named response is used to store
information about how the custom dialog was closed. An identifier named ListBox1 is used to
determine whether the user chose "Apples", "Oranges", or "Pears" in the listbox named ListBox$.
Finally, a Select Case...End Select statement is used to display a message box appropriate to the
manner in which the user dismissed the dialog.

Sub Main
'!
 Dim ListBox1$(2) 'Initialize listbox array.
 Dim response%
 ListBox1$(0) = "Apples"
 ListBox1$(1) = "Oranges"
 ListBox1$(2) = "Pears"
 Begin Dialog UserDialog ,,163,94,"Grocery Order"
 'First control gets focus.
 Text 13,6,32,8,"&Quantity:",.Text1
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 Dim b As UserDialog 'Create the dialog record.
 'Set default value of the text box to 1 dozen.
 b.TextBox1 = "12"
 response% = Dialog(b) 'Display the dialog.

Value Returned If
–1 The user clicked the OK button.
0 The user clicked the Cancel button.
>0 The user clicked a push button. The returned number represents which button

was clicked based on its order in the dialog template (1 is the first push button, 2
is the second push button, and so on).
70

Using Dialogs
 Select Case response%
 Case -1
 Fruit$ = ListBox1$(b.ListBox1)
 MsgBox "Thank you for ordering " + _
 b.TextBox1 + " " + Fruit$ + "."
 Case 0
 MsgBox "Your order has been canceled."
 End Select
End Sub

Using a Dynamic Dialog in a Macro
The preceding section explained how to use a custom dialog in your macro. As you learned, you can
retrieve the values from dialog controls after the user dismisses the dialog by referencing the
identifiers in the dialog record.

You can also retrieve values from a custom dialog while the dialog is displayed, using a feature of
called dynamic dialogs.

The following macro illustrates the most important concepts you'll need to understand in order to
create a dynamic dialog in your macro:

'Dim "Fruits" and "Vegetables" arrays here to make them
'accessible to all procedures.
Dim Fruits(2) As String
Dim Vegetables(2) As String
'Dialog procedure--must precede the procedure that defines
'the custom dialog.
Function DialogControl(ctrl$, action%, suppvalue%) As Integer
 Select Case action%
 Case 1
 'Fill listbox with items before dialog is visible.
 DlgListBoxArray "ListBox1", fruits
 'Set default value to first item in listbox.
 DlgValue "ListBox1", 0
 Case 2
 'Fill the listbox with names of fruits or vegetables
 'when the user selects an option button.
 If ctrl$ = "OptionButton1" Then
 DlgListBoxArray "ListBox1", fruits
 DlgValue "ListBox1", 0
 ElseIf ctrl$ = "OptionButton2" Then
 DlgListBoxArray "ListBox1", vegetables
 DlgValue "ListBox1", 0
 End If
 End Select
End Function
Sub Main
'!
 'Initialize array for use by ListBox statement in template.
 Dim ListBox1$()
 Dim Produce$
 'Assign values to elements in the Fruits and Vegetables arrays.
 Fruits(0) = "Apples"
 Fruits(1) = "Oranges"
 Fruits(2) = "Pears"
71

Using Dialogs
 Vegetables(0) = "Carrots"
 Vegetables(1) = "Peas"
 Vegetables(2) = "Lettuce"
 'Define the dialog template.
 Begin Dialog UserDialog ,,163,94,"Grocery Order", .DialogControl
 Text 13,6,32,8,"&Quantity:",.Text1'First control
 'in template gets the focus.
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OptionGroup .OptionGroup1
 OptionButton 12,68,48,8,"&Fruit",.OptionButton1
 OptionButton 12,80,48,8,"&Vegetables",.OptionButton2
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 Dim b As UserDialog 'Create the dialog record.
 'Set the default value of the text box to 1 dozen.
 b.TextBox1 = "12"
 response% = Dialog(b) 'Display the dialog.
 Select Case response%
 Case -1
 If b.OptionGroup1 = 0 Then
 produce$ = fruits(b.ListBox1)
 Else
 produce$ = vegetables(b.ListBox1)
 End If
 MsgBox "Thank you for ordering " & _
 b.TextBox1 & " " & produce$ & "."
 Case 0
 MsgBox "Your order has been canceled."
 End Select
End Sub

The remainder of this section explains how to make a dialog dynamic by examining the workings of
this sample macro.

Making a Dialog Dynamic
The first thing to notice about the preceding macro, which is a more complex variation of the macro
described earlier in this chapter, is that an identifier named .DialogControl has been added to the
Begin Dialog statement. As you will learn in the following subsection, this parameter to the Begin
Dialog statement tells the compiler to pass control to a function procedure named DialogControl.

Using a Dialog Function
Before the compiler displays a custom dialog by executing a Dialog statement or Dialog() function,
it must first initialize the dialog. During this initialization process, the compiler checks to see whether
there is a dialog function defined in the dialog template. If so, it gives control to the dialog function,
allowing the macro to carry out certain actions, such as hiding or disabling dialog controls.

After completing its initialization, the compiler displays the custom dialog. When the user selects an
item in a listbox, clears a checkbox, or carries out certain other actions within the dialog, the compiler
will again call the dialog function.
72

Using objects in an external OLE application
In fact, the compiler also calls the dialog function repeatedly even while the user is not interacting with
the dialog. You can use this fact to update a dialog continuously.

Responding to User Actions
A dialog function can respond to six types of user actions:

Using objects in an external OLE application
When SmarTerm is operated through an external OLE Automation controller, only those macro
commands relating directly to the SmarTerm objects are available. This means that another
application can use commands such as Session.Circuit.Connect, but not commands such as LTrim$
or Open. This is not a great hardship, however, since programming commands not directly related to
the operation of SmarTerm should be available in the macro language for the controlling application.

To provide another application with OLE access to SmarTerm objects, you must include some basic
definitions in the controlling application's code. The following preamble will provide a controlling
application complete access to the SmarTerm objects:

' acquire access to SmarTerm for automation control
 Dim Application as Object
 Set Application = CreateObject("SmarTerm.Application")

Action Description
1 This action is sent immediately before the dialog is shown for the first time.
2 This action is sent when:

• A button is clicked, such as OK, Cancel, or a push button.

• A checkbox's state has been modified.

• An option button is selected. In this case, ControlName$ contains the name of the
option button that was clicked, and SuppValue contains the index of the option but-
ton within the option button group (0 is the first option button, 1 is the second, and so
on).

• The current selection is changed in a listbox, drop-down listbox, or combo box. In
this case, ControlName$ contains the name of the listbox, combo box, or drop-down
listbox, and SuppValue contains the index of the new item (0 is the first item, 1 is the
second, and so on).

3 This action is sent when the content of a text box or combo box has been changed and
that control loses focus.

4 This action is sent when a control gains the focus.
5 This action is sent continuously when the dialog is idle.
6 This action is sent when the dialog is moved.
73

Communicating with a host
' initialize a Session object by opening a session file
 Dim Session as Object
 Set Session = Application.Sessions.Open("Session1.STW")

' initialize a Circuit object for access to communications
' features
 Dim Circuit as Object
 Set Circuit = Session.Circuit

' initialize a Transfer object for access to file transfer
' features
 Dim Transfer as Object
 Set Transfer = Session.Transfer

Once you have included this preamble, you can then construct the rest of the controlling application's
macro code to access SmarTerm objects exactly as described in the online help.

Communicating with a host
Since the primary purpose of terminal emulation software is to communicate with a host, a high
proportion of the macro commands support host communication tasks, such as connecting to the host,
transferring data, and handling user interaction with the host. These tasks are handled by three
SmarTerm objects: Circuit, Session, and Transfer. In this section we discuss common host
communication tasks and provide generalized sample macros that should help you design your own
macros specific to the tasks you need to accomplish.

Handling host connections
The macro commands that control host connection are all properties or methods of the SmarTerm
Circuit object. These commands fall into two groups:

• Connection commands (such as Circuit.Connect, Circuit.Connected, and Circuit.Discon-
nect), which are common to all communication methods

• Setup commands, which are unique to each communication method

For example, suppose that you need to connect to multiple telnet hosts that all use the same display
and keyboard settings, but you can only make one connection at a time due to network cost constraints.
One way in which you can do this is to set up a single session file with the common display and
keyboard settings, then provide that session file with SmarTerm buttons that allow you to connect to
several hosts. Follow these steps:

1. Create a session. When asked for the connection settings, pick one of the hosts you routinely connect
to.

2. Set up the display, terminal type, keyboard map, and so forth, the way you want them. Then save the
session file.

3. Now use Tools>SmarTerm buttons to create a set of buttons, one for each host. Attach to each button
a macro like the following:
74

Communicating with a host
Sub Connect_ThisHost
'! Use this macro to connect to ThisHost.com

If Circuit.Connected = True Then 'Are we connected?
 If Circuit.TelnetHostname = "ThisHost.com" Then
 End 'Already connected to target host--quit!using se
 Else
 Session.Send "Logout" 'log off other host
 Circuit.Disconnect
 End If
End If
 Circuit.Telnet.Hostname = "ThisHost.com"
 Circuit.Connect
End Sub

For each SmarTerm button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". You may also need to change the logout command.

4. When you have created all your buttons, save them and save the session. From now on, when you
open the session you will have a set of SmarTerm buttons that allow you to switch from host to host.

Possible improvements
There are several improvements you could make to the host connection macro. First, you can add
error-checking to handle situations in which things do not go as planned. This is simplified by the fact
that the Circuit methods Circuit.Connect and Circuit.Disconnect are functions that return either
True or False, depending on whether they succeed or not. If we add a check for success into the
sample above, we get the following macro.

Sub Connect_ThisHost
'! Use this macro to connect to ThisHost.com
' Improved to check for success on connect and disconnect

If Circuit.Connected = True Then 'Are we connected?
 If Circuit.TelnetHostname = "ThisHost.com" Then
 End 'Already connected to target host--quit!
 Else
 Session.Send "Logout" 'log off other host
 'Unable to disconnect?
If Circuit.Disconnect = False Then
 Session.Echo "Unable to disconnect from " +_
 Circuit.Telnethostname + ". Please contact IS."
 End 'Quit!
 End If
 End If
End If
 Circuit.Telnet.Hostname = "ThisHost.com"
 If Circuit.Connect = False Then ' Unable to connect?
 Session.Echo "Unable to connect to " +_
 Circuit.Telnethostname +_
 ". Please contact IS."
 End 'Quit!
 End If
End Sub
75

Communicating with a host
This macro is now a little more robust, and can at least let the user know that something is wrong. You
could also take another action, such as trying a different host name, switching to the IP address, and
so forth.

Another improvement might be to observe that all of the host connection macros attached to the
buttons are identical except for the host name and (potentially) the command required to log off. To
streamline the button macros and centralize the connection macro, you can take advantage of the
organization of SmarTerm macros into a collective. You can put the host-specific information in each
button macro, and then call a single host connection macro stored in the user macro file. Try this:

1. Use Tools>Macros to create a macro in the user macro file that will do the actual connecting. It might
look like this:

Sub ConnectToHost Hostname$
! Use this macro to connect to the host specified with Hostname$
' The actual hostname is passed in from the button macro.

If Circuit.Connected = True Then 'Are we connected?
 If Circuit.TelnetHostname = Hostname$ Then
 End 'Already connected to target host--quit!
 Else
 Session.Send LogoutCommand$ 'log off other host
 'Unable to disconnect?
 If Circuit.Disconnect = False Then
 Session.Echo "Unable to disconnect from " +_
 Circuit.Telnethostname + ". Please contact IS."
 End 'Quit!
 End If
 End If
End If
 Circuit.Telnet.Hostname = Hostname$
 If Circuit.Connect = False Then ' Unable to connect?
 Session.Echo "Unable to connect to " + Hostname$ +_
 ". Please contact IS."
 End 'Quit!
 End If
End Sub

2. At the top of the macro, add a public string variable that will hold the logout command for the
previous host:

Public LogoutCommand As String

Sub ConnectToHost Hostname$
.
.
.
End Sub

3. Save the macro. Then use Tools>SmarTerm Buttons to create one button for each host. Attach the
following macro to each button:

Public LogoutCommand As String

Sub Connect_ThisHost
76

Communicating with a host
' This macro sets the public variable LogoutCommand$ to "quit"
' (which is used when the next host is connected to) and
' connects to ThisHost.com using the common macro ConnectToHost.

LogoutCommand$ = "quit"
ConnectToHost "ThisHost.com"

End Sub

As before, for each button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". You may also need to change the logout command.

4. Save the macros and the buttons.

You have now streamlined the macro in each button, which merely supply a little data to the central
ConnectToHost macro. If you now wanted to further improve the connection macro by adding more
error-checking, starting or stopping a logfile, and so on, you need only change the ConnectToHost
macro in one place, rather than in each button macro.

Sending and receiving data
The SmarTerm macro language handles all transfer of data between the host and SmarTerm, whether
text or files or keystrokes, with the Session object and the Transfer object. Use the Transfer object
for file transfer using one of the file transfer protocols SmarTerm supports (such as FTP, IND$FILE,
Kermit, XMODEM, YMODEM, or ZMODEM). Use the Session object to send and receive
keystrokes, to transfer text, and to read or write data directly to or from the terminal screen.

Note The Session and Transfer objects are those associated with the active session. If you have multiple
sessions available, you should make sure that the correct one is active before sending data to the host.

Sending and receiving strings and keystrokes
There are two ways to send strings and keystrokes via a script to the host, one for text-based session
types and one for form-based session types. If you are using a text-based session type such as Digital
VT, Digital VT Graphics, Data General Dasher, ANSI, SCO ANSI, or Wyse, you embed the
keystrokes in a string and use the Session.Send or Session.SendLiteral method. If you are using a
form-based session type such as IBM 3270 or IBM 5250, you use the Session.Sendkey method,
specifying the key with a special mnemonic.

Using Session.Send and Session.SendLiteral
The Session.Send and Session.SendLiteral commands are really quite simple. All you need to do
is pass the string that you want sent to the host (or the screen, if the host is currently offline) to the
Session object. For example, to send your username to a login prompt (as is done by the
Session_Connect macro), you use the following command:

Session.Send "nguyenp" + chr(13)

This sends the text "ngyuenp" to the host, followed by a carriage return (ASCII character number 13).
You can also specify the carriage-return right in the string with the built-in mnemonic "<CR>":
77

Communicating with a host
Session.Send "nguyenp<CR><LF>"

However, you cannot use built-in mnemonics for macro commands that do not relate to SmarTerm
objects. So, for example, you can assign the string to a string variable or string constant, and then pass
that variable or constant to the session:

Dim StringToSend As String
.
.
.
StringToSend = "nguyenp<CR><LF>"
Session.Send StringToSend

But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such as in a dialog definition.

When you use the Session.Send command, SmarTerm takes the string you specify, converts any
control characters you may have included to the form appropriate to the host connection (7-bit controls
or 8-bit controls), and performs any character translation that you may have set with the
Properties>Session Options>Character Translation tab. If you want to skip the character translation
step for some reason, use the Session.SendLiteral command. This command, which otherwise
works exactly like the Session.Send command, performs any 7-bit to 8-bit conversion but skips the
character translation step.

Using Session.Sendkey
The Session.Sendkey command (only supported for form-based session types such as IBM 3270 and
IBM 5250) allows you to send specific host keystrokes using standard mnemonics. These mnemonics
are listed in the online help for the command. For example, you can send a down arrow keystroke with
the following command:

Session.Sendkey "CURSORDOWN"

Note that, even though you use a standard mnemonic, the Session.SendKey command still requires
you to form the keystroke into a string. This allows you to chain keystrokes together for more
complicated procedures:

Session.Sendkey "CURSORDOWN" + "DELETEWORD" + "ENTER"

And, as with the Session.Send command, you can build the string elsewhere in the macro, assign it
to a variable or constant, and then pass that variable or constant on to the command:

Dim KeysToSend As String
.
.
.
KeysToSend = "CURSORDOWN" + "DELETEWORD" + "ENTER"
Session.Sendkey KeysToSend
78

Communicating with a host
But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such as in a dialog definition.

Transferring text
The SmarTerm Macro Language provides a number of commands that allow you to move text back
and forth between SmarTerm and a text-based host. With the SmarTerm Session object you can paste
text to the host from a file on SmarTerm and capture text from the host into a file on SmarTerm .

Note If you routinely transfer large ASCII text files between SmarTerm and a host and you want to
automate that process, you should consider using one of the file transfer protocols, such as FTP,
Kermit, XMODEM, and so forth. These protocols provide extra security for your data, as they can
detect and correct transmission errors and generally have a much higher throughput than straight
ASCII text transfer. See the next section for information on using macros for protocol-based file
transfer.

Transferring text from the host to SmarTerm
There are three ways to transfer text from the host to SmarTerm:

• Start up a text display command on the host and then use the Session.Capture command to save
everything the host sends in a file on SmarTerm .

• If the information is already on the screen, use the Session.ScreenToFile command to put a snap-
shot of the text in the session window in a file on SmarTerm .

• Use the Session.Collect object to collect text from the host into an array of strings, and then use
file-handling commands to save the strings in a file. In this section we cover only the first option,
Screen.Capture. The second option, Session.ScreenToFile, is fully documented in the online
help. For the third option, Session.Collect, see “Collect” on page 21.

There are three Session.Capture commands:

• Session.CaptureFileHandling, which lets you set whether the PC file will be replaced, or ap-
pended to

• Session.Capture, which starts a capture procedure

• Session.CaptureEnd, which ends the procedure

To use these commands properly, you also need to know the commands your host uses to display text
files. In the following example, we set up the capture file handling, then capture a text file on a Digital
VMS host to a file on the PC.

Sub CaptureHostFile
'! Capture the host file LOGIN.COM to the PC file VMSLOGIN.TXT

' First, make sure that any new capture will overwrite
' the old one
 Session.CaptureFileHandling = 0
 ' Actually, this is the default
79

Communicating with a host
' Now set up a LockStep object so everything stays in sync
 Dim LockStep As Object
 Set LockStep = Session.LockStep
 LockStep.Start

'Now, start up the capture
 Session.Capture("c:\vmslogin.txt")

' Now, display the host file
 Session.Send "TYPE LOGIN.COM"

' When the TYPE command is done, end the capture and
' close the file
 Session.EndCapture

' Don't forget to destroy the LockStep object!
Set LockStep = Nothing

End Sub

Transferring text from the SmarTerm server to the host
There are two ways in which to send text to the host:

• Use the Session.Send command (see “Session_Connect macro” on page 25) send individual
strings to the host.

• Use the Session.TransmitFile command to send an ASCII text file to the host, displaying it in
the session window as it does so. To use this command properly, you need to know the host com-
mands for creating a text file, or those for starting a host application if you want to paste the text
into a file.

The following sample code provides a simple example using the VMS CREATE command.

Sub TransmitToHost
'! Send the PC file AUTOEXEC.BAT to the host file PCAUTO.TXT

' First, set up a LockStep object so everything stays in sync
 Dim LockStep As Object
 Set LockStep = Session.LockStep
 LockStep.Start

'Now, create the file on the host
 Session.Send "CREATE PCAUTO.TXT<CR>"

' Wait a moment for the host to do its work
 Sleep 2000

' Now, display the host file
 If Session.Transmit("c:\autoexec.bat") = True Then
 Session.Send "<^Z>" 'All done--close the host file
 Session.Send "File transmitted."
 Else
 Session.Send "<^Y>" 'Error--Cancel the file creation
 Session.Send "Unable to create file."
 End If
80

Communicating with a host
' Don't forget to destroy the LockStep object!
Set LockStep = Nothing

End Sub

Transferring files
The previous section explained how to use the Session object to move text between SmarTerm and a
host. You can also move other kinds of files with these methods, but it is safer to use the Transfer
object. This section explains how to use the Transfer object to move files between SmarTerm and a
host.

One difference between transferring text and transferring files is that there are a number of file transfer
protocols that may or may not be available, depending on what the host supports. Each protocol
provides different features and different interfaces. The session file always has a default transfer
method installed. It is probably best to make sure that the right file transfer protocol is active before
trying to use it. Use a block of code like the following:

'Check that we are using ZMODEM, and change to if we aren't

If Transfer.ProtocolName <> "ZMODEM" Then
 If Session.TransferProtocol "ZMODEM" = False Then
 Session.Send "Unable to select ZMODEM."
 End
 End If
End If

Having settled which protocol you are using, you can then use it to transfer files. The details of each
file transfer protocol differ from each other. However, there are two commands that work with all
transfer protocols except FTP: Transfer.SendFile and Transfer.ReceiveFile. You use both
commands in much the same way, the only difference being that Transfer.SendFile sends a file to
the host, while Transfer.ReceiveFile receives a file from the host. The following example uses
Transfer.SendFile.

Sub SendFileToHost
'!Sends the file AUTOEXEC.BAT to the host using ZMODEM

'Check that we are using ZMODEM, and change to if we aren't

 If Transfer.ProtocolName <> "ZMODEM" Then
 If Session.TransferProtocol "ZMODEM" = False Then
 Session.Send "Unable to select ZMODEM."
 End
 End If
 End If

' Now set up a LockStep object so everything stays in sync
 Dim LockStep As Object
 Set LockStep = Session.LockStep
 LockStep.Start

'Start ZMODEM on the host and wait for it to take effect
 Session.Send "zmodem<CR><LF>"
81

Compiling Macros
 sleep 2

'Now send the file
 If Transfer.SendFile("c:\autoexec.bat") = False Then
 Session.Send "Unable to transfer file."
 End
 Else
 Session.Send "File transferred."
 End If

' Don't forget to destroy the LockStep object!
Set LockStep = Nothing

End Sub

Compiling Macros
You can compile and save any macro file, which is then included in the collective. Compiled macros
files are available to all macro collectives in a given installation of SmarTerm, and they load and run
more quickly than uncompiled macros. They cannot be debugged dynamically with the macro editor,
however.

Note Compiled macro files are available to any collective. If you use more than one session type, or
regularly connect to more than one host, organize your macros carefully so that you don’t accidentally
call a macro for the wrong session type or host.

Follow these steps to compile a macro file:

1. Make sure that the macro file contains bug-free macros that work properly.

2. Save the macro file with a unique name that identifies the contents of the file. For example, save all
of the macros used to work on Host X as HOSTX.STM.

3. Load the new file into the macro editor and select any of the macros in the file for editing.

4. Save the file as a compiled macro file by typing Ctrl+Shift+D (for safety’s sake, there is no menu
equivalent). The macro editor compiles and saves the contents of the entire macro file in a new file
with the same name but with the file extension .PCD. For example, the filename HOSTX.STM becomes
HOSTX.PCD.

SmarTerm saves the compiled macro file in the same folder as the source macro file, usually the
\MACROS folder. To use the new file, move (or copy) it to the SmarTerm program folder without
changing the name.

Note SmarTerm will only find and use compiled macro files if they use the .PCD file extension and reside
in the SmarTerm program folder.
82

Compiling Macros
Using compiled macros
When SmarTerm starts up, it looks for .PCD files in its program directory, loading any it finds. All the
macros in the compiled files are then automatically available to macro collectives for all session types.
You do not have to call the macros in a special way; they are simply available.
83

Symbols

' (single quote)
Syntax 'text

Description Causes the compiler to skip all characters between this character and the end of the current line.

Example Sub Main
 'This whole line is treated as a comment.
 i$="Strings" 'This is a valid assignment with a comment.
 This line will cause an error (the apostrophe is missing).
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6

'! (description comment)
Syntax ’! text

Description When used at the very top of a subroutine macro, causes the macro name to appear in the
Tools>Macros dialog. Any text following the ’! appears in the Description box on the Tools>Macros
dialog. A macro can have up to three lines beginning with ’! as long as they are at the very top of the
macro.

Note Functions never appear in the Tools>Macro dialog, even if they begin with description comments.

Example Sub Main
 '!This line appears in the Tools>Macro dialog.
 ’!So does this line.
 ’!As does this line.
 ’!This line will not appear in the dialog
 i$="This descriptive macro is now over."
 MsgBox i$
End Sub
85

- (subtraction)
See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6

- (subtraction)
Syntax 1 expression1 - expression2

Syntax 2 -expression

Description Returns the difference between expression1 and expression2 or, in the second syntax, returns the
negation of expression.

expression1 - expression2
The type of the result is the same as that of the most precise expression, with the following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions are variant, the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

• If the type of the result is an Integer variant that overflows, then the result is a Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then the result is a Double
variant.

-expression
If expression is numeric, then the type of the result is the same type as expression. If expression is
Boolean, then the result is Integer.

Note In 2's complement arithmetic, unary minus may result in an overflow with Integer and Long variables
when the value of expression is the largest negative number representable for that data type. For
example, the following generates an overflow error:

Sub Main()
 Dim a As Integer
 a = -32768
 a = -a 'Generates overflow here.
End Sub

Expression One Expression Two Result
Long Single Double
Boolean Boolean Integer
86

#Const
When negating variants, overflow will never occur because the result will be automatically promoted:
integers to longs and longs to doubles.

Example Sub Main
 i% = 100
 j# = 22.55
 k# = i% - j#
 Session.Echo "The difference is: " & k#
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

#Const
Syntax #Const constname = expression

Description Defines a preprocessor constant for use in the #If...Then...#Else statement. Internally, all
preprocessor constants are of type Variant. Thus, the expression parameter can be any type.
Variables defined using #Const can only be used within the #If...Then...#Else statement and other
#Const statements. Use the #Const statement to define constants that can be used within your code.

Example #Const SUBPLATFORM = "NT"
#Const MANUFACTURER = "Windows"
#Const TYPE = "Workstation"
#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE
Sub Main
 #If PLATFORM = "Windows NT Workstation" Then
 Session.Echo "Running under Windows NT Workstation"
 #End If
End Sub

See Also Macro Control and Compilation on page 6

#If...Then...#Else
Syntax #If expression Then

[statements]
[#ElseIf expression Then
 [statements]]
[#Else
 [statements]]
#End If

Description Causes the compiler to include or exclude sections of code based on conditions. The expression
represents any valid boolean expression evaluating to True of False. The expression may consist of
literals, operators, constants defined with #Const, and any of the following predefined constants:
87

#If...Then...#Else
The expression can use any of the following operators: +, -, *, /, \, ̂ , + (unary), - (unary),
Mod, &, =, <>, >=, >, <=, <, And, Or, Xor, Imp, Eqv.

If the expression evaluates to a numeric value, then it is considered True if non-zero, False if zero.
If the expression evaluates to String not convertible to a number or evaluates to null, then a "Type
mismatch" error is generated.

Text comparisons within expression are always case-insensitive, regardless of the Option Compare
setting

You can define your own constants using the #Const directive, and test for these constants within the
expression parameter as shown below:

#Const VERSION = 2
Sub Main
 #If VERSION = 1 Then
 directory$ = "\apps\widget"
 #ElseIf VERSION = 2 Then
 directory$ = "\apps\widget32"
 #Else
 Session.Echo "Unknown version."
 #End If
End Sub

Any constant not already defined evaluates to Empty.

A common use of the #If...Then...#Else directive is to optionally include debugging statements in
your code. The following example shows how debugging code can be conditionally included to check
parameters to a function:

#Const DEBUG = 1
Sub ChangeFormat(NewFormat As Integer,StatusText As String)
 #If DEBUG = 1 Then
 If NewFormat <> 1 And NewFormat <> 2 Then
 Session.Echo "Parameter ""NewFormat"" is invalid."
 Exit Sub
 End If
 If Len(StatusText) > 78 Then
 Session.Echo "Parameter ""StatusText"" is too long."
 Exit Sub
 End If

Constant Value
Win32 True

Empty Empty

False False

Null Null

True True
88

& (concatenation)
 #End If
 Rem Change the format here...
End Sub

Excluded section are not compiled, allowing you to exclude sections of code that have errors or don’t
even represent valid syntax. For example, the following code uses the #If...Then...#Else statement
to include a multi-line comment:

Sub Main
 #If 0
 The following section of code causes the host to display the
 first line of a famous poem:
 #End If
 Session.Echo "Don’t let that horse eat that violin"
End Sub

In the above example, since the expression #If 0 never evaluates to True, the text between that and
the matching #End If will never be compiled.

Example #If Win32 Then
 Declare Sub GetWindowsDirectory Lib "KERNEL32" Alias _
 "GetWindowsDirectoryA" (ByVal DirName As String,ByVal _
 MaxLen As Long)
#End If

Sub Main
 Dim DirName As String * 256
 GetWindowsDirectory DirName,len(DirName)
 Session.Echo "Windows directory = " & DirName
End Sub

See Also Macro Control and Compilation on page 6

& (concatenation)
Syntax expression1 & expression2

Description Returns the concatenation of expression1 and expression2. If both expressions are strings, then the
type of the result is String. Otherwise, the type of the result is a String variant. When nonstring
expressions are encountered, each expression is converted to a String variant. If both expressions are
Null, then a Null variant is returned. If only one expression is Null, then it is treated as a zero-length
string. Empty variants are also treated as zero-length strings.

Note In many instances, the plus (+) operator can be used in place of &. The difference is that + attempts
addition when used with at least one numeric expression, whereas & always concatenates.

Example Sub Main
 s$ = "This string" & " is concatenated"
 s2$ = " with the & operator."
 Session.Echo s$ & s2$
End Sub
89

() (precedence)
See Also Keywords, Data Types, Operators, and Expressions on page 4; Character and String Manipulation on
page 2.

 () (precedence)
Syntax 1 ...(expression)...

Syntax 2 ...,(parameter),...Description

Parentheses override the normal precedence order of operators, forcing a subexpression to be
evaluated before other parts of the expression. For example, the use of parentheses in the following
expressions causes different results:

i = 1 + 2 * 3 'Assigns 7.

i = (1 + 2) * 3 'Assigns 9.

Use parentheses to make your code easier to read, removing any ambiguity in complicated
expressions. You can also use parentheses when passing parameters to functions or subroutines to
force a given parameter to be passed by value:

ShowForm i 'Pass i by reference.

ShowForm (i) 'Pass i by value.

Enclosing parameters within parentheses can be misleading. For example, the following statement
appears to be calling a function called ShowForm without assigning the result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the variable i by value. It
may be clearer to use the ByVal keyword in this case, which accomplishes the same thing:

ShowForm ByVal i

Note The result of an expression is always passed by value.

Example Sub Main
 bill = False
 dave = True
 jim = True
 If (dave And bill) Or (jim And bill) Then
 Session.Echo "The required parties for the meeting are here."
 Else
 Session.Echo "Someone is late again!"
 End If

End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6
90

* (multiplication)
* (multiplication)
Syntax expression1 * expression2

Description Returns the product of expression1 and expression2. The result is the same type as the most precise
expression, with the following exceptions:

When the * operator is used with variants, the following additional rules apply:

• Empty is treated as 0.

• If the type of the result is an Integer variant that overflows, then the result is automatically pro-
moted to a Long variant.

• If the type of the result is a Single, Long, or Date variant that overflows, then the result is auto-
matically promoted to a Double variant.

• If either expression is Null, then the result is Null.

Example Sub Main
 s# = 123.55
 t# = 2.55
 u# = s# * t#
 Session.Echo s# & " * " & t# & " = " & u#
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5

. (dot)
Syntax 1 object.property

Syntax 2 structure.member

Description Separates an object from a property or a structure from a structure member.

Examples Use the period to separate an object from a property.

Sub Main
 Session.Echo Clipboard.GetText()
End Sub

Use the period to separate a structure from a member.

Expression One Expression Two Result
Single Long Double
Boolean Boolean Integer
Date Date Double
91

/* and */ (C-style comment block)
Type Rect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type

Sub Main
 Dim r As Rect
 r.left = 10
 r.right = 12
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Objects on page 10.

/* and */ (C-style comment block)
Syntax /* text

.

.

.
*/

Description Causes the compiler to skip all characters between the /* pair and the */ pair.

Example Sub Main
 /* This is the beginning of the comment block.
 nothing you read here will have any effect on the macro
And it doesn’t matter where the text appears, until
 the appearance of the second pair: */
 i$="The comment block is done" 'This is a valid assignment.
 MsgBox i$
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6

/ (division)
Syntax expression1 / expression2

Description Returns the quotient of expression1 and expression2. The type of the result is Double, with the
following exceptions:

A runtime error is generated if the result overflows its legal range.

Expression One Expression Two Result
Integer Integer Single
Single Single Single
Boolean Boolean Single
92

\ (integer division)
When either or both expressions is variant, then the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

• If both expressions are either Integer or Single variants and the result overflows, then the result
is automatically promoted to a Double variant.

Example Sub Main
 i% = 100
 j# = 22.55
 k# = i% / j#
 Session.Echo "The quotient of i/j is: " & k#
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5

\ (integer division)
Syntax expression1 \ expression2

Description Returns the integer division of expression1 and expression2. Before the integer division is
performed, each expression is converted to the data type of the most precise expression. If the type of
the expressions is either Single, Double, Date, or Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

Example Sub Main
 s% = 100.99 \ 2.6
 Session.Echo "Integer division of 100.99\2.6 is: " & s%
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5.

^ (exponentiation)
Syntax expression1 ^ expression2

Description Returns expression1 raised to the power specified in expression2. The following are special cases:
93

_ (line continuation)

The type of the result is always double, except with Boolean expressions, in which case the result is
Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a fractional result.

Example Sub Main
 s# = 2 ^ 5 'Returns 2 to the 5th power.
 r# = 16 ^ .5 'Returns the square root of 16.
 Session.Echo "2 to the 5th power is: " & s#
 Session.Echo "The square root of 16 is: " & r#
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5.

_ (line continuation)
Syntax text1 _

text2

Description The line-continuation character, which allows you to split a single statement onto more than one line.
You cannot use the line-continuation character within strings and must precede it with white space
(either a space or a tab). You can follow the line-continuation character with a comment:

i = 5 + 6 & _ 'Continue on the next line.
 "Hello"

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 'The line-continuation operator is useful when concatenating
 'long strings.
 mg = "This line is a line of text that" + crlf + "extends" _
 + "beyond the borders of the editor" + crlf + "so it" _
 + "is split into multiple lines"
 'It is also useful for separating and continuing long
 'calculation lines.
 b# = .124
 a# = .223
 s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

Case Value
n^0 1
0^-n Undefined
0^+n 0
1^n 1
94

+ (addition/concatenation)
 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00
 Session.Echo mg & crlf & "The value of s# is: " & s#
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Character and String Manipulation on
page 2.

+ (addition/concatenation)
Syntax expression1 + expression2

Description Adds or concatenates two expressions. Addition operates differently depending on the type of the two
expressions:

When using + to concatenate two variants, the result depends on the types of each variant at runtime.
You can remove any ambiguity by using the & operator.

Numeric add
A numeric add is performed when both expressions are numeric (i.e., not variant or string). The result
is the same type as the most precise expression, with the following exceptions:

A runtime error is generated if the result overflows its legal range.

Expression One Expression Two Result
Numeric Numeric Perform a numeric add.
String String Concatenate, returning a string.
Numeric String A runtime error is generated.
Variant String Concatenate, returning a string variant.
Variant Numeric Perform a variant add.
Empty variant Empty variant Return an integer variant, value 0.
Empty variant Any data type Return the non-empty operand unchanged.
Null variant Any data type Return null.
Variant Variant Add if either is numeric; otherwise, concatenate.

Expression One Expression Two Result
Single Long Double
Boolean Boolean Integer
95

<, <=, <>, =, >, >= (comparison)
Variant add
If both expressions are variants, or one expression is Numeric and the other expression is Variant, then
a variant add is performed. The rules for variant add are the same as those for normal numeric add,
with the following exceptions:

• If the type of the result is an Integer variant that overflows, then the result is a Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then the result is a Double
variant.

Example Sub Main
 i$ = "Concatenation" + " is fun!"
 j% = 120 + 5 'Addition of numeric literals
 k# = j% + 2.7 'Addition of numeric variable
 Session.Echo "This concatenation becomes: '" i$ + _
 Str(j%) + Str(k#) & "'"
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5; Character and String Manipulation on page 2.

<, <=, <>, =, >, >= (comparison)
See Comparison Operators (topic); Keywords, Data Types, Operators, and Expressions on page 4.

= (assignment)
Syntax variable = expression

Description Assigns the result of an expression to a variable. When assigning expressions to variables, internal
type conversions are performed automatically between any two numeric quantities. Thus, you can
freely assign numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting from larger to smaller types. This occurs when the larger type
contains a numeric quantity that cannot be represented by the smaller type. For example, the following
code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer
amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Note The assignment operator (=) cannot be used to assign objects. Use the Set statement instead.

Example Sub Main
 a$ = "This is a string"
 b% = 100
96

= (assignment)
 c# = 1213.3443
 Session.Echo a$ & "," & b% & "," & c#
End Sub

See Also Macro Control and Compilation on page 6
97

A

Abs
Syntax Abs(expression)

Description Returns the absolute value of expression. If expression is Null, then Null is returned. Empty is
treated as 0. The type of the result is the same as that of expression, with the following exceptions:

• If expression is an Integer that overflows its legal range, then the result is returned as a Long.
This only occurs with the largest negative Integer:

Dim a As Variant
Dim i As Integer
i = -32768
a = Abs(i) 'Result is a Long.
i = Abs(i) 'Overflow·!

• If expression is a Long that overflows its legal range, then the result is returned as a Double. This
only occurs with the largest negative Long:

Dim a As Variant
Dim l As Long
l = -2147483648
a = Abs(l) 'Result is a Double.
l = Abs(l) 'Overflow!

• If expression is a Currency value that overflows its legal range, an overflow error is generated.

Example Sub Main
 s1% = Abs(-10.55)
 s2& = Abs(-10.55)
 s3! = Abs(-10.55)
 s4# = Abs(-10.55)
 Session.Echo "The absolute values are: " & s1% & "," & s2& & "," & s3! & ","_
& s4#
End Sub

See Also Numeric, Math, and Accounting Functions on page 5
99

And
And
Syntax result = expression1 And expression2

Description Performs a logical or binary conjunction on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical conjunction is performed as follows:

Binary conjunction
If the two expressions are Integer, then a binary conjunction is performed, returning an Integer
result. All other numeric types (including Empty variants) are converted to Long, and a binary
conjunction is then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

Examples Sub Main
n1 = 1001
n2 = 1000
b1 = True
b2 = False

'Perform a numeric bitwise And and store the result in N3.
n3 = n1 And n2

'Performs a logical And on B1 and B2.
If b1 And b2 Then
 Session.Echo "b1 and b2 are True; n3 is: " & n3

Expression One Expression Two Result
True True True
True False False
True Null Null
False True False
False False False
False Null Null
Null True Null
Null False False
Null Null Null

Bit in Expression One Bit in Expression Two Result
1 1 1
0 1 0
1 0 0
0 0 0
100

AnswerBox
Else
 Session.Echo "b1 and b2 are False; n3 is: " & n3
End If

End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

AnswerBox
Syntax AnswerBox(prompt [,[button1] [,[button2] [,[button3] [,[title]

[,helpfile,context]]]]]]])

Description Displays a dialog prompting the user for a response and returns an Integer indicating which button was
clicked (1 for the first button, 2 for the second, and so on).AnswerBox takes the following parameters:

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

If both the helpfile and context parameters are specified, then context-sensitive help can be invoked
using the help key F1. Invoking help does not remove the dialog.

Parameter Description
prompt Text to be displayed above the text box. The prompt parameter can be any

expression convertible to a string. The compiler resizes the dialog to hold the
entire contents of prompt, up to a maximum width of 5/8 of the width of the
screen and a maximum height of 5/8 of the height of the screen. The compiler
word-wraps any lines too long to fit within the dialog and truncates all lines
beyond the maximum number of lines that fit in the dialog. You can insert a car-
riage-return/line-feed character in a string to cause a line break in your message.
A runtime error is generated if this parameter is null.

button1 The text for the first button. If omitted, then "OK and "Cancel" are used. A runt-
ime error is generated if this parameter is null.

button2 The text for the second button. A runtime error is generated if this parameter is
null.

button3 The text for the third button. A runtime error is generated if this parameter is
null.

title String specifying the title of the dialog. If missing, then the default title is used.
helpfile Name of the file containing context-sensitive help for this dialog. If this param-

eter is specified, then context must also be specified.
context Number specifying the ID of the topic within helpfile for this dialog's help. If

this parameter is specified, then helpfile must also be specified.
101

Any (data type)
Example Display a dialog containing three buttons. Display an additional message based on which of the three
buttons is selected.

Sub Main
 r% = AnswerBox("Copy files?", "Save", "Restore", "Cancel")
 Select Case r%
 Case 1
 Session.Echo "Files will be saved."
 Case 2
 Session.Echo "Files will be restored."
 Case Else
 Session.Echo "Operation canceled."
 End Select
End Sub

See Also User Interaction on page 9

Any (data type)
Description Use with the Declare statement to indicate that type checking is not to be performed with a given

argument. For example, given the following declaration:

Declare Sub Foo Lib "FOO.DLL" (a As Any)

the following calls are valid:

Foo 10
Foo "Hello, world."

Example Call FindWindow to determine whether Program Manager is running. This example uses the Any
keyword to pass a NULL pointer, which is accepted by the FindWindow function.

Declare Function FindWindow32 Lib "user32" Alias "FindWindowA" _
(ByVal Class As Any,ByVal Title As Any) As Long

Sub Main
 Dim hWnd As Variant
 hWnd = FindWindow32("PROGMAN",0&)
 If hWnd <> 0 Then
 Session.Echo "Program manager is running, window handle is " & hWnd
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

AppActivate
Syntax AppActivate title | taskID,[wait]

Description Activates an application given its name or task ID. The AppActivate statement takes the following
named parameters:
102

AppActivate

Note When activating applications using the task ID, it is important to declare the variable used to hold the
task ID as a Variant.

Applications don’t always activate immediately. To compensate, the AppActivate statement will wait
a maximum of 10 seconds before failing, giving the activated application plenty of time to become
activated.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if that application
is currently displaying a modal dialog.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Examples Activate the Calculator.

Sub Main
 AppActivate "Calculator"
End Sub

Run another application, then activate it.

Sub Main
 Dim id as variant
 id = Shell("Notepad",7) 'Run Notepad minimized.
 AppActivate "Calculator" 'Activate Calculator.
 AppActivate id 'Now activate Notepad.
End Sub

Parameter Description
title A string containing the name of the application to be activated.
taskID A number specifying the task ID of the application to be activated. Acceptable

task IDs are returned by the Shell function.
wait An optional boolean value indicating whether the compiler will wait for calling

application to be activated before activating the specified application. If False (the
default), then the compiler will activate the specified application immediately.
103

AppClose
See Also Operating System Control on page 9

AppClose
Syntax AppClose [title | taskID]

Description Closes the named application.

The title parameter is a String containing the name of the application. If the title parameter is
absent, then the AppClose statement closes the active application. Or, you can specify the ID of the
task as returned by the Shell function.

A runtime error results if the application being closed is not enabled, as is the case if that application
is currently displaying a modal dialog.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example Sub Main
 If AppFind$("Microsoft Excel") = "" Then
 Session.Echo "Excel is not running."
 Exit Sub
 End If
 AppActivate "Microsoft Excel"
 AppClose "Microsoft Excel"
End Sub

See Also Operating System Control on page 9

AppFind, AppFind$
Syntax AppFind[$] (title | taskID)

Description Returns a String containing the full name of the application matching either title or taskID.

The title parameter specifies the title of the application to find. If there is no exact match, the
compiler will find an application whose title begins with title. Or, you can specify the ID of the task
as returned by the Shell function.
104

AppGetActive$
The AppFind$ functions returns a String, whereas the AppFind function returns a String variant. If
the specified application cannot be found, then AppFind$ returns a zero-length string and AppFind
returns Empty. Using AppFind allows you detect failure when attempting to find an application with
no caption (i.e., Empty is returned instead of a zero-length String).

AppFind$ is generally used to determine whether a given application is running. The following
expression returns True if Microsoft Word is running:

AppFind$("Microsoft Word")

Example Sub Main
 If AppFind$("Microsoft Excel") <> "" Then
 AppActivate "Microsoft Excel"
 Else
 Session.Echo "Excel is not running."
 End If
End Sub

See Also Operating System Control on page 9

AppGetActive$
Syntax AppGetActive$()

Description Returns a String containing the name of the application. If no application is active, the
AppGetActive$ function returns a zero-length string.

You can use AppGetActive$ to retrieve the name of the active application. You can then use this name
in calls to routines that require an application name.

Example Sub Main
 n$ = AppGetActive$()
 AppMinimize n$
End Sub

See Also Operating System Control on page 9

AppGetPosition
Syntax AppGetPosition x,y,width,height [,title | taskID]

Description Retrieves the position of the named application. The AppGetPosition statement takes the following
parameters:
105

AppGetState

The x, y, width, and height variables are filled with the position and size of the application's window.
If an argument is not a variable, then the argument is ignored, as in the following example, which only
retrieves the x and y parameters and ignores the width and height parameters:

Dim x as integer, y as integer
AppGetPosition x,y,0,0,"Program Manager"

The position and size of the window are returned in twips (1440th parts of an inch).

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example Sub Main
 Dim x As Integer, y As Integer
 Dim cx As Integer, cy As Integer
 AppGetPosition x,y,cx,cy,"Program Manager"
End Sub

See Also Operating System Control on page 9

AppGetState
Syntax AppGetState[([title | taskID])]

Description Returns an Integer specifying the state of the specified top-level window. The AppGetState function
returns any of the following values:

Parameter Description
x, y Names of integer variables to receive the position of the application's win-

dow.
width, height Names of integer variables to receive the size of the application's window.
title A string containing the name of the application. If the title parameter is

omitted, then the active application is used.
taskID A number specifying the task ID of the application to be activated. Accept-

able task IDs are returned by the Shell function.
106

AppHide
The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppGetState function returns the name of the active application.

Or, you can specify the ID of the task as returned by the Shell function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example Sub Main
 If AppFind$("Untitled - Notepad") = "" Then
 Session.Echo "Can't find Untitled - Notepad."
 Exit Sub
 End If
 AppActivate "Untitled - Notepad" 'Activate ProgMan
 state = AppGetState 'Save its state.
 AppMinimize 'Minimize it.
 Session.Echo "Notepad is now minimized. Select OK to restore it."
 AppActivate "Untitled - Notepad"
 AppSetState state 'Restore it.
End Sub

See Also Operating System Control on page 9

AppHide
Syntax AppHide [title | taskID]

Description Hides the named application. If the named application is already hidden, the AppHide statement will
have no effect.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppHide statement hides the active application. Or, you can specify the ID of the task as returned
by the Shell function.

AppHide generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is

If Window Is AppGetState Returns Value
Maximized ebMinimized 1
Minimized ebMaximized 2
Restored ebRestored 3
107

Application (object)
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example Sub Main
 'See whether Untitled - Notepad is running.
 If AppFind$("Untitled - Notepad") = "" Then Exit Sub
 AppHide "Untitled - Notepad"
 Session.Echo "Untitled - Notepad is now hidden. Press OK to show it once again."
 AppShow "Untitled - Notepad"
End Sub

See Also Operating System Control on page 9

Application (object)
The Application object provides access to aspects of SmarTerm that are global to all session types,
such as the exact product name and version, the locations of the user files, and so forth.

Application.ActiveSession
Syntax Application.ActiveSession

Description Returns an object representing SmarTerm’s current session.

Example Dim Active as Object
Set Active = Application.ActiveSession

Application.Application
Syntax Application.Application

Description Returns SmarTerm’s application object.

Example Dim App as Object
Set App = Application.Application

See Also Application and Session Features on page 7

Application.Caption
Syntax Application.Caption

Description Returns or sets SmarTerm’s application window caption (string).

Example Return SmarTerm's main window caption and set it to "SmarTerm"

Sub Main
 Dim CurrentCaption as String
 CurrentCaption = Application.Caption
108

Application (object)
 Session.Echo "Current window caption is " & CurrentCaption
 Application.Caption = "SmarTerm"
End Sub

See Also Session.Caption; Application and Session Features on page 7

Application.CommandLine
Syntax Application.CommandLine

Description Returns the command line from when the application was started (string). The command line switch
"-$" or "/$" causes SmarTerm to ignore all command line arguments that follow it. Additional
characters can be appended to the switch (e.g., "-$hello") and still be recognized. This can be useful
for placing parameters on the command line that are intended for access by a macro.

Example Sub Main
 Dim StCmdLine as String
 StCmdLine = Application.CommandLine
 Session.Echo "Current command line is " & StCmdLine
End Sub

See Also Session.Caption; Application and Session Features on page 7

Application.DoMenuFunction
Syntax Application.DoMenuFunction menuitem$

where menuitem$ is the menu item to trigger (string).

Description Triggers an application-based menu action in SmarTerm.Possible values:

Example Sub Main
 Application.DoMenuFunction "ViewFullScreen"
End Sub

See Also Session.DoMenuFunction; Application and Session Features on page 7

FileExit PropertiesOptions

FileNew ToolsRestoreAll

FileOpen ToolsUndoRestore

FilePageSetup ViewFullScreen

FileSaveWorkspace ViewMenuBar

HelpAboutSmarTermOffice ViewStatusBar

HelpMacroGuide ViewToolbar

HelpSmarTermHelpTopics ViewWorkbook

HelpTechnicalSupport WindowArrangeIcons

HelpUserHelp WindowCascade

PropertiesLanguage WindowTile
109

Application (object)
Application.FlashIcon
Syntax Application.FlashIcon

Description Returns or sets whether SmarTerm’s session icon should blink when new information is received from
a host (boolean).

Example Sub Main
 Dim FlashState as Boolean
 FlashState = Application.FlashIcon
 If FlashState = FALSE then
 Session.Echo "Setting SmarTerm session icon to flash"
 Application.FlashIcon = TRUE
 End If
End Sub

See Also Session.DoMenuFunction; Application and Session Features on page 7

Application.InstalledLanguages
Syntax Application.InstalledLanguages(index)

where index is the index of the language value to retrieve (integer).

Description Returns a value representing the installed language corresponding to the index value provided
(integer). This function should be called initially with the index set to 1. This will return a non-zero
value if a language has been retrieved. While the value returned is non-zero, increment the index by
one and continue calling. This will retrieve as many languages as have been installed.

Possible values are:

Example Sub Main
 Dim LanguageChoices() as Integer
 Dim Continue as Boolean
 Dim i, Value as Integer
 Continue = True
 i = 1
 Do
 Value = Application.InstalledLanguages (I)
 If Value <> 0 Then
 Redim Preserve LanguageChoices(i)
 LanguageChoices(i-1) = Value
 i = i + 1
 Else
 Continue = False

Value Constant Meaning
1031 smlGERMAN German.
1033 smlENGLISH English.
1036 smlFRENCH French.
1034 smlSPANISH Spanish.
110

Application (object)
 End If
 Loop While Continue = True
End Sub

See Also Application.StartupLanguage; Session.Language; Application and Session Features

Application.Parent
Syntax Application.Parent

Description Returns the SmarTerm application's parent object (which is always Nothing).

Example Dim Parent as Object
Parent = Application.Parent

See Also Application and Session Features on page 7

Application.Product
Syntax Application.Product

Description Returns a string identifying the SmarTerm product in use.

Example Sub Main
 Dim ProdName as String
 ProdName = Application.Product
 Session.Echo "The SmarTerm product name is " & ProdName
End Sub

See Also Application.Version; Application and Session Features on page 7

Application.Quit
Syntax Application.Quit

Description Terminates the SmarTerm application, including all open sessions.

Example Sub Main
 Dim nMsg as integer
 nMsg = Session.Echo ("This script will stop SmarTerm. OK?",ebYesNo)
 if nMsg = ebYes then
 Application.Quit
 End If
End Sub

See Also Circuit.Disconnect; Application and Session Features on page 7

Application.Sessions (collection)
Syntax See specific uses of this collection.

Description Returns an object representing the collection of sessions within SmarTerm (object). The Sessions
collection object supports access to all sessions running within the SmarTerm application. This
111

Application (object)
object’s methods and properties will be of primary use when accessing SmarTerm through an external
OLE Automation controller.

Example This code is meant to be run from an external OLE Automation controller in which the Application,
Session, Circuit, and Transfer objects are not predefined.

Dim Application As Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object
Dim SessionFileSpec As String
Set Application = CreateObject("SmarTerm.Application")
SessionFileSpec = Application.UserSessionsLocation & "\session1.stw"
Set Session = Application.Sessions.Open(SessionFileSpec)
Set Circuit = Session.Circuit
Set Transfer = Session.Transfer

This code is meant to be run from an external controller to attach to an existing SmarTerm process and
locate a session captioned "MyHost".

Dim TotalSessions, I as Integer
Dim TestSession as Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object
Dim FoundMatch as Boolean
Set Application = GetObject(, "SmarTerm.Application")
TotalSessions = Application.Sessions.Count
FoundMatch = False
If TotalSessions > 0 Then
 For I = 0 to (TotalSessions - 1)
 Set TestSession = Application.Sessions.Item(I)
 If TestSession.Caption = "Session1" Then
 FoundMatch = True
 Exit For
 End If
 Next I
End If
If FoundMatch Then
 Set Session = TestSession
 Set Circuit = Session.Circuit
 Set Transfer = Session.Transfer
End If

Similar to above, but for the case in which the automation controller supports a 'For Each' statement
that iterates through a collection.

Dim TestSession as Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object
Dim FoundMatch as Boolean
Set Application = GetObject(, "SmarTerm.Application")
TotalSessions = Application.Sessions.Count
FoundMatch = False
For Each TestSession In Application.Sessions
112

Application (object)
 If TestSession.Caption = "Session1" Then
 FoundMatch = True
 Exit For
 End If
Next
If FoundMatch Then
 Set Session = TestSession
 Set Circuit = Session.Circuit
 Set Transfer = Session.Transfer
End If

See Also Application and Session Features on page 7; Objects on page 10

Application.Sessions.Application
Syntax Application.Sessions.Application

Description Returns the SmarTerm application object.

Example Dim App as Object
Set App = Application.Sessions.Application

See Also Application and Session Features on page 7; Objects on page 10

Application.Sessions.Count
Syntax Application.Sessions.Count

Description Returns an integer containing the number of sessions maintained by the Sessions collection.

Example See the examples for Application.Sessions.

See Also Application and Session Features on page 7

Application.Sessions.Item
Syntax Application.Sessions.Item(sessionindex%)

where sessionindex% is an integer, index of the session to access.

Description Returns a session object of the specified session ID.

Example See the examples for Application.Sessions.

See Also Application and Session Features on page 7

Application.Sessions.Open
Syntax Application.Sessions.Open sessionfile$

where sessionfile$ is the name of the session file to open.
113

Application (object)
Description Returns a session object after opening the specified session. Returns Nothing if the method fails.

Example See the examples for Application.Sessions.

See Also Application and Session Features on page 7; Objects on page 10

Application.Sessions.Parent
Syntax Application.Sessions.Parent

Description Returns SmarTerm’s parent object.

Example Dim Parent as Object
Parent = Application.Sessions.Parent

See Also Application and Session Features on page 7; Objects on page 10

Application.StartupLanguage
Syntax Application.StartupLanguage

Description Returns the startup language that was selected during Setup (integer). Possible values are:

Example Report an error in the language chosen as the startup language

Sub Main
 Dim StartupLanguage as Integer
 StartupLanguage = Application.StartupLanugage
 Select Case StartupLanguage
 Case 1031 ' German
 Session.Echo "Ein Fehler ist aufgetreten."
 Case 1033 ' English
 Session.Echo "An error has occurred."
 Case 1036 ' French
 Session.Echo "Une erreur est survenue."
 Case 1034 ' Spanish
 Session.Echo "Ocurrió un error."
 End Select
End Sub

See Also Application.InstalledLanguages; Session.Language; Application and Session Features on page 7

Value Constant Meaning
1031 smlGERMAN German.
1033 smlENGLISH English.
1036 smlFRENCH French.
1034 smlSPANISH Spanish.
114

Application (object)
Application.SuppressRefocus
Syntax Application.SuppressRefocus= true|false

Description Returns or sets the state of the focus when control returns to SmarTerm (Boolean). If false (the
default), a macro that launches another application (such as Notepad) returns the focus to SmarTerm
as soon as the macro ends. This means that, if the other application typically displays a window
requiring user input, that window may be covered by SmarTerm’s session window. If
Application.SuppressRefocus is true, then the focus returns to SmarTerm at the end of the macro only
if no other applications have been launched. This allows the other application’s window to remain in
the foreground until dismissed by the user.

Note Application.SuppressRefocus is always reset to FALSE when the macro ends. You must reset it to
TRUE every time you wish to supress automatic refocus.

Example Sub Main
'! Launches NOTEPAD.EXE and lets it keep focus.
 Dim TaskID As Variant
 TaskID = Shell("notepad", ebNormalFocus)
 Application.SuppressReFocus TRUE
End Sub

See Also Application and Session Features on page 7; User Interaction on page 9

Application.UserHelpFile
Syntax Application.UserHelpFile

Description Returns or sets the name of the SmarTerm user help file (string).

Example Sub Main
 Dim HelpFile as String
 HelpFile = Application.UserHelpFile
 Session.Echo "Current help file was " & HelpFile
 Session.Echo "Changing help file to VAXMAIL"
 Application.UserHelpFile = "VAXMAIL.HLP"
End Sub

See Also Application.UserHelpMenu; Application.ViewUserHelp; Application and Session Features on page
7; User Interaction on page 9

Application.UserHelpMenu
Syntax Application.UserHelpMenu

Description Returns or sets the menu choice for SmarTerm’s user help.

Example Sub Main
 Dim HelpMenu as String
 HelpMenu = Application.UserHelpMenu
 Session.Echo "Current help file was " & HelpMenu
115

Application (object)
 Session.Echo "Changing help menu for VAX Mail"
 Application.UserHelpMenu = "How to use VAX Mail"
End Sub

See Also Application.SuppressRefocus; Application.ViewUserHelp; Application and Session Features on page
7; User Interaction on page 9

Application.UserHotSpotsLocation
Syntax Application.UserHotSpotsLocation

Description Returns or sets the file location for SmarTerm’s user HotSpots (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserHotSpotsLocation
 Application.UserHotSpotsLocation = "c:\hotspots"
End Sub

See Also Application and Session Features on page 7

Application.UserKeyMapsLocation
Syntax Application.UserKeyMapsLocation

Description Returns or sets the file location for SmarTerm’s user keyboard maps (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserKeyMapsLocation
 Application.UserKeyMapsLocation = "c:\keymaps"
End Sub

See Also Application and Session Features on page 7

Application.UserMacrosLocation
Syntax Application.UserMacrosLocation

Description Returns or sets the file location for SmarTerm’s user macros (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserMacrosLocation
 Application.UserMacrosLocation = "c:\macros"
End Sub

See Also Application and Session Features on page 7

Application.UserPhoneBookLocation
Syntax Application.UserPhoneBookLocation
116

Application (object)
Description Returns or sets the file location for SmarTerm’s user phonebook (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserPhoneBookLocation
 Application.UserPhoneBookLocation = "c:\phonebk"
End Sub

See Also Application and Session Features on page 7; Host Connections on page 5

Application.UserSessionsLocation
Syntax Application.UserSessionsLocation

Description Returns or sets the file location for SmarTerm’s user session files (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserSessionsLocation
 Application.UserSessionsLocation = "c:\sessions"
End Sub

See Also Application and Session Features on page 7

Application.UserButtonPicturesLocation
Syntax Application.UserButtonPicturesLocation

Description Returns or sets the file location for SmarTerm’s user Buttons graphic files (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserButtonPicturesLocation
 Application.UserButtonPicturesLocation = "c:\butnpix"
End Sub

See Also Application and Session Features on page 7

Application.UserSmarTermButtonsLocation
Syntax Application.UserSmarTermButtonsLocation

Description Returns or sets the file location for user SmarTerm Buttons files (string).

Example Sub Main
 Dim Location as String
 Location = Application.UserSmarTermButtonsLocation
 Application.UserSmarTermButtonsLocation = "c:\buttons"
End Sub

See Also Application and Session Features on page 7
117

Application (object)
Application.UserTransfersLocation
Syntax Application.UserTransfersLocation

Description Returns or sets the file location for SmarTerm file transfers.

Example Sub Main
 Dim Location as String
 Location = Application.UserTransfersLocation
 Application.UserTransfersLocation = "c:\transfer"
End Sub

See Also Application and Session Features on page 7

Application.Version
Syntax Application.Version

Description Returns a string identifying the version number of SmarTerm’s macro engine.

Example Sub Main
 Dim MacroVersion as String
 MacroVersion = Application.Version
 Session.Echo "SmarTerm's macro version number is " & MacroVersion
End Sub

See Also Application.Product; Application and Session Features on page 7

Application.ViewUserHelp
Syntax Application.ViewUserHelp

Description Launches the user defined help file in the help viewer.

Example Sub Main
 Application.ViewUserHelp
End Sub

See Also Application.SuppressRefocus; Application.UserHelpMenu; Application and Session Features on
page 7; User Interaction on page 9

Application.Visible
Syntax Application.Visible

Description Returns or sets the visible state of the SmarTerm application (boolean). This property can be used to
make SmarTerm invisible.

Example Sub Main
 Dim Visible as Boolean
 Visible = Application.Visible
 If Visible = True Then
 Session.Echo "Hiding SmarTerm"
118

AppList
 Application.Visible = False
 End If
End Sub

See Also Session.Visible

Application.WindowState
Syntax Application.WindowState

Description Returns or sets the state of the SmarTerm application window (integer). Possible values are:

Example Sub Main
 Dim WinState as Integer
 WinState = Application.WindowState
 If WinState = smlMINIMIZE Then
 Application.WindowState = smlMAXIMIZE
 End If
End Sub

See Also Session.WindowState; Application and Session Features on page 7

AppList
Syntax AppList AppNames$()

Description Fills an array with the names of all open applications. The AppNames$ parameter must specify either a
zero- or one-dimensional dynamic String array or a one-dimensional fixed String array. If the array
is dynamic, then it will be redimensioned to match the number of open applications. For fixed arrays,
AppList first erases each array element, then begins assigning application names to the elements in
the array. If there are fewer elements than will fit in the array, then the remaining elements are unused.
The compiler returns a runtime error if the array is too small to hold the new elements.

After calling this function, you can use LBound and UBound to determine the new size of the array.

Example Sub Main
 AppList apps
 'Check to see whether any applications were found.
 If ArrayDims(apps) = 0 Then Exit Sub
 For i = LBound(apps) To UBound(apps)
 AppMinimize apps(i)
 Next i
End Sub

See Also Operating System Control on page 9

Value Constant Meaning
0 smlMINIMIZE The window is minimized.
1 smlRESTORE The window is restored.
2 smlMAXIMIZE The window is maximized.
119

AppMaximize
AppMaximize
Syntax AppMaximize [title | taskID]

Description Maximizes the named application.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppMaximize function maximizes the active application. Or, you can specify the ID of the task as
returned by the Shell function.

If the named application is maximized or hidden, the AppMaximize statement will have no effect.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMaximize generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example Sub Main
 AppMaximize "Untitled - Notepad"
 'Maximize Untitled - Notepad.
 If AppFind$("NotePad") <> "" Then
 AppActivate "NotePad"
 'Set the focus to NotePad.
 AppMaximize 'Maximize it.
 End If
End Sub

See Also Operating System Control on page 9

AppMinimize
Syntax AppMinimize [title | taskID]

Description Minimizes the named application.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppMinimize function minimizes the active application. Or, you can specify the ID of the task as
returned by the Shell function.

If the named application is minimized or hidden, the AppMinimize statement will have no effect.
120

AppMove
The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMinimize generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example Sub Main
 AppMinimize "Untitled - Notepad"
 'Maximize Untitled - Notepad.
 If AppFind$("NotePad") <> "" Then
 AppActivate "NotePad"
 'Set the focus to NotePad.
 AppMinimize 'Maximize it.
 End If
End Sub

See Also Operating System Control on page 9

AppMove
Syntax AppMove x,y [,title | taskID]

Description Sets the upper left corner of the named application to a given location. The AppMove statement takes
the following parameters:

If the named application is maximized or hidden, the AppMove statement will have no effect.

The x and y parameters are specified in twips.

AppMove will accept x and y parameters that are off the screen.

Parameter Description
x, y Integer coordinates specifying the upper left corner of the new location of the

application, relative to the upper left corner of the display.
title String containing the name of the application to move. If this parameter is omit-

ted, then the active application is moved.
taskID A number specifying the task ID of the application to be activated. Acceptable

task IDs are returned by the Shell function.
121

AppRestore
The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMove generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog.

Example Sub Main
 Dim x%,y%
 AppActivate "Untitled - Notepad" 'Activate Program Mgr.
 AppGetPosition x%,y%,0,0 'Retrieve its position.
 x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
 AppMove x% + 10,y% 'Nudge it 10 pixels
End Sub

See Also Operating System Control on page 9

AppRestore
Syntax AppRestore [title | taskID]

Description Restores the named application.

The title parameter is a String containing the name of the application to restore. If this parameter
is omitted, then the active application is restored. Or, you can specify the ID of the task as returned by
the Shell function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppRestore will have an effect only if the main window of the named application is either maximized
or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog.
122

AppSetState
Example Sub Main
 If AppFind$("Untitled - Notepad") = "" Then Exit Sub
 AppActivate "Untitled - Notepad"
 AppMinimize "Untitled - Notepad"
 Session.Echo "Untitled - Notepad is now minimized. Press OK to restore it."
 AppRestore "Untitled - Notepad"
End Sub

See Also Operating System Control on page 9

AppSetState
Syntax AppSetState newstate [,title | taskID]

Description Maximizes, minimizes, or restores the named application, depending on the value of newstate. The
AppSetState statement takes the following parameters:

The newstate parameter can be any of the following values:

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example See AppGetState (function).

See Also Operating System Control on page 9

AppShow
Syntax AppShow [title | taskID]

Description Makes the named application visible.

Parameter Description
newstate An integer specifying the new state of the window.
title A string containing the name of the application to change. If omitted, then the

active application is used.
taskID A number specifying the task ID of the application to be activated. Acceptable

task IDs are returned by the Shell function.

Value Constant Description
1 ebMinimized The named application is minimized.
2 ebMaximized The named application is maximized.
3 ebRestored The named application is restored.
123

AppSize
The title parameter is a String containing the name of the application to show. If this parameter is
omitted, then the active application is shown. Or, you can specify the ID of the task as returned by the
Shell function.

If the named application is already visible, AppShow will have no effect.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppShow generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example See AppHide (statement).

See Also Operating System Control on page 9

AppSize
Syntax AppSize width,height [,title | taskID]

Description Sets the width and height of the named application. The AppSize statement takes the following
parameters:

The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized or maximized).

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is

Parameter Description
width, height Integer coordinates specifying the new size of the application.
title String containing the name of the application to resize. If this parameter is

omitted, then the active application is use.
taskID A number specifying the task ID of the application to be activated. Accept-

able task IDs are returned by the Shell function.
124

AppType
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog when an AppSize statement is executed.

Example Sub Main
 Dim w%,h%
 AppGetPosition 0,0,w%,h% 'Get current width/height.
 x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
 y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.
 AppSize w%,h% 'Change to new size.
End Sub

See Also Operating System Control on page 9

AppType
Syntax AppType [(title | taskID)]

Description Returns an Integer indicating the executable file type of the named application:

The title parameter is a String containing the name of the application. If this parameter is omitted,
then the active application is used. Or, you can specify the ID of the task as returned by the Shell
function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example This example creates an array of strings containing the names of all the running Windows applications.
It uses the AppType command to determine whether an application is a Windows app or a DOS app.

Sub Main
 Dim apps$(),wapps$()
 AppList apps 'Retrieve a list of all Windows and DOS apps.
 If ArrayDims(apps) = 0 Then

Returns If the file type is
ebDos DOS executable
ebWindows Windows executable
125

ArrayDims
 Session.Echo "There are no running applications."
 Exit Sub
 End If
 'Create an array to hold only the Windows apps.
 ReDim wapps$(UBound(apps))
 n = 0 'Copy the Windows apps from one array to the target array.
 For i = LBound(apps) to UBound(apps)
 If AppType(apps(i)) = ebWindows Then
 wapps(n) = apps(i)
 n = n + 1
 End If
 Next i
 If n = 0 Then 'Make sure at least one Windows app was found.
 Session.Echo "There are no running Windows applications."
 Exit Sub
 End If
 ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
 'Let the user pick one.
 index% = SelectBox("Windows Applications","Select a Windows application:",wapps)
End Sub

See Also Operating System Control on page 9

ArrayDims
Syntax ArrayDims(arrayvariable)

Description Returns an Integer indicating the number of dimensions in the array. A return value of 0 indicates
that the array has not yet been dimensioned. This function can be used to determine whether a given
array contains any elements or if the array is initially created with no dimensions and then
redimensioned by another function, such as the FileList function, as shown in the following
example.

Example This example allocates an empty (null-dimensioned) array, fills the array with a list of filenames,
which resizes the array, then tests the array dimension.

Sub dimensions

Dim f$()
Dim message$
Dims% = Arraydims(f$)
Message$ = "The array size is "

If Dims% = 0 Then
 Session.Echo "The array is empty"
Else
 For i% = 1 To Dims%
 If i < Dims Then
 Message$ = Message$ & (Ubound(f$,i) - Lbound(f$,i)+1) & " X "
 Else
 Message$ = Message$ & (Ubound(f$,i) - Lbound(f$,i)+1)
 End If
 Next i%
 Session.Echo Message$
126

Arrays (topic)
End If

End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Arrays (topic)
Declaring array variables
Arrays are declared using any of the following statements:

Dim
Public
Private

For example:

Dim a(10) As Integer
Public LastNames(1 to 5,-2 to 7) As Variant
Private

Arrays of any data type can be created, including Integer, Long, Single, Double, Boolean, Date,
Variant, Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed arrays
The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a fixed array will
always require the same amount of storage. Fixed arrays can be declared with the Dim, Private, or
Public statement by supplying explicit dimensions. The following example declares a fixed array of
ten strings:

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a
structure containing fixed-length arrays:

Type Foo
 rect(4) As Integer
 colors(10) As Integer
End Type
127

Arrays (topic)
Only fixed arrays can appear within structures.

Dynamic arrays
Dynamic arrays are declared without explicit dimensions, as shown below:

Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:

Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times.
When redimensioning an array, the old array is first erased unless you use the Preserve keyword, as
shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing arrays
Arrays are always passed by reference. When you pass an array, you can specify the array name by
itself, or with parentheses as shown below:

Dim a(10) As String
FileList a 'Both of these are OK
FileList a()

Querying arrays
Use these functions to retrieve information about arrays:

Operations on arrays
The following table indicates the functions that operate on arrays:

Use this function To
LBound Retrieve the lower bound of an array. A runtime error is generated if

the array has no dimensions.
UBound Retrieve the upper bound of an array. A runtime error is generated if

the array has no dimensions.
ArrayDims Retrieve the number of dimensions of an array. This function returns 0

if the array has no dimensions.
128

ArraySort
ArraySort
Syntax ArraySort array()

Description Sorts a single-dimensioned array in ascending order. If a string array is specified, then the routine sorts
alphabetically in ascending order using case-sensitive string comparisons. If a numeric array is
specified, the ArraySort statement sorts smaller numbers to the lowest array index locations. There is
a runtime error if you specify an array with more than one dimension.

When sorting an array of variants, the following rules apply:

• A runtime error is generated if any element of the array is an object.

• String is greater than any numeric type.

• Null is less than String and all numeric types.

• Empty is treated as a number with the value 0.

• String comparison is case-sensitive (this function is not affected by the Option Compare setting).

Example Sub Main
 Dim f$()
 FileList f$,"c:*.*"
 ArraySort f$
 Session.Echo "Files: <CR><LF>"
 For i= 0 to UBound(f$)
 Session.Echo f$(i) & "<CR><LF>"
 Next i
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4.

Command Action
ArraySort Sort an array of integers, longs, singles, doubles, currency, booleans,

dates, or variants.
FileList Fill an array with a list of files in a given directory.
DiskDrives Fill an array with a list of valid drive letters.
AppList Fill an array with a list of running applications.
SelectBox Display the contents of an array in a listbox.
PopupMenu Display the contents of an array in a popup menu.
ReadIniSection Fill an array with the item names from a section in an INI file.
FileDirs Fill an array with a list of folders.
Erase Erase all the elements of an array.
ReDim Establish the bounds and dimensions of an array.
Dim Declare an array.
129

Asc, AscB, AscW
Asc, AscB, AscW
Syntax Asc(string)

AscB(string)
AscW(string)

Description Returns an Integer containing the numeric code for the first character of string. On single-byte
systems, this function returns a number between 0 and 255, whereas on MBCS systems, this function
returns a number between -32768 and 32767. On wide platforms, this function returns the MBCS
character code after converting the wide character to MBCS.

To return the value of the first byte of a string, use the AscB function. This function is used when you
need the value of the first byte of a string known to contain byte data rather than character data. On
single-byte systems, the AscB function is identical to the Asc function.

The AscW function returns the character value native to that platform. For example, on Win32
platforms, this function returns the UNICODE character code.

The following table summarizes the values returned by these functions:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 s$ = InputBox("Please enter a string.","Enter String")
 If s$ = "" Then End 'Exit if no string entered.
 For i = 1 To Len(s$)
 mesg = mesg & Asc(Mid$(s$,i,1)) & crlf
 Next i
 Session.Echo "The Asc values of the string are:" & mesg
End Sub

See Also Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$; Character and String Manipulation on page 2

Function String Format Return Value
Asc SBCS First byte of string (between 0 and 255)

MBCS First character of string (between -32769 and 32767)
Wide First character of string after conversion to MBCS.

AscB SBCS First byte of string.
MBCS First byte of string.
Wide First byte of string.

AscW SBCS Same as Asc.
MBCS Same as Asc.
Wide Wide character native to operating system.
130

AskBox, AskBox$
AskBox, AskBox$
Syntax AskBox[$](prompt$ [,[default$] [,[title$][,helpfile,context]]])

Description Displays a dialog requesting input from the user and returns that input as a String. The AskBox/
AskBox$ functions take the following parameters:

The AskBox$ function returns a String containing the input typed by the user in the text box. A zero-
length string is returned if the user selects Cancel.

The AskBox function returns a String variant containing the input typed by the user in the text box.
An Empty variant is returned if the user selects Cancel.

When the dialog is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by AskBox$.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Example Sub Main
 s$ = AskBox$("Type in the filename:")
 Session.Echo "The filename was: " & s$
End Sub

See Also User Interaction on page 9

Parameter Description
prompt$ String containing the text to be displayed above the text box. The dialog is

sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is null.

default$ String containing the initial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if
default$ is null.

title$ String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's help.
If this parameter is specified, then helpfile must also be specified.
131

AskPassword, AskPassword$
AskPassword, AskPassword$
Syntax AskPassword[$](prompt$ [,[title] [,helpfile,context]])

Description Returns a String containing the text that the user typed. Unlike the AskBox/AskBox$ functions, the
user sees asterisks in place of the characters that are actually typed. This allows the hidden input of
passwords. The AskPassword/AskPassword$ functions take the following parameters:

When the dialog is first displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

The AskPassword$ function returns the text typed into the text box, up to a maximum of 255
characters. A zero-length string is returned if the user selects Cancel.

The AskPassword function returns a String variant. An Empty variant is returned if the user selects
Cancel.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Example Sub Main
 s$ = AskPassword$("Type in the password:")
 Session.Echo "The password entered is: " & s$
End Sub

See Also User Interaction on page 9

Atn
Syntax Atn(number)

Description Returns the angle (in radians) whose tangent is number. Some helpful conversions:

Parameter Description
prompt$ String containing the text to be displayed above the text box. The dialog is

sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is null.

title$ String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's help.
If this parameter is specified, then helpfile must also be specified.
132

Atn
• Pi (3.1415926536) radians = 180 degrees.

• 1 radian = 57.2957795131 degrees.

• 1 degree = .0174532925 radians.

Example Sub Main
 a# = Atn(1.00)
 Session.Echo "1.00 is the tangent of " & a# & " radians (45 degrees)."
End Sub

See Also Numeric, Math, and Accounting Functions on page 5
133

B

Beep
Syntax Beep

Description Makes a single system beep.

Example Sub Main
 For i = 1 To 5
 Beep
 Sleep(200)
 Next i
 Session.Echo "You have an upcoming appointment!"
End Sub

See Also Operating System Control on page 9

Begin Dialog
Syntax Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$]

[,style]]]
 Dialog Statements
End Dialog

Description Defines a dialog template for use with the Dialog statement and function. A dialog template is
constructed by placing any of the following statements between the Begin Dialog and End Dialog
statements (no other statements besides comments can appear within a dialog template).

Note It is easiest to construct a dialog using the dialog editor.
135

Begin Dialog
The Begin Dialog statement requires the following parameters:

There is an error if the dialog template contains no controls.

A dialog template must have at least one PushButton, OKButton, or CancelButton statement.
Otherwise, there will be no way to close the dialog.

Dialog units are defined as 1/4 the width of the font in the horizontal direction and 1/8 the height of
the font in the vertical direction.

Any number of user dialoges can be created, but each one must be created using a different name as
the DialogName. Only one user dialog may be invoked at any time.

Picture PictureButton OptionButton

OptionGroup CancelButton Text

TextBox GroupBox DropListBox

ListBox ComboBox CheckBox

PushButton OKButton

Parameter Description
x, y Integer coordinates specifying the position of the upper left corner of the

dialog relative to the parent window. These coordinates are in dialog units.
If either coordinate is unspecified, then the dialog will be centered in that
direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog (in dialog
units).

DialogName Name of the dialog template. Once a dialog template has been created, a
variable can be dimensioned using this name.

title$ String containing the name to appear in the title bar of the dialog.
.DlgProc Name of the dialog function. The routine specified by .DlgProc will be

called when certain actions occur during processing of the dialog. (See
DlgProc [prototype] for additional information about dialog functions.)If
this parameter is omitted, then the compiler processes the dialog using the
default dialog processing behavior.

PicName$ String specifying the name of a DLL containing pictures. This DLL is used
as the origin for pictures when the picture type is 10. If this parameter is
omitted, then no picture library will be used.

style Specifies extra styles for the dialog. It can be any of the following values:
0 Dialog does not contain a title or close box.
1 Dialog contains a title and no close box.
2 (or omitted) Dialog contains both the title and close box.
136

Boolean (data type)
Expression Evaluation within the dialog Template
The Begin Dialog statement creates the template for the dialog. Any expression or variable name that
appears within any of the statements in the dialog template is not evaluated until a variable is
dimensioned of type DialogName. The following example shows this behavior:

MyTitle$ = "Hello, World"
Begin Dialog MyTemplate 16,32,116,64,MyTitle$
 OKButton 12,40,40,14
End Dialog
MyTitle$ = "Sample Dialog"
Dim Dummy As MyTemplate
rc% = Dialog(Dummy)

The above example creates a dialog with the title "Sample Dialog".

Expressions within dialog templates cannot reference external subroutines or functions.

All controls within a dialog use the same font. The fonts used for the text and text box controls can be
changed explicitly by setting the font parameters in the Text and TextBox statements. A maximum of
128 fonts can be used within a single dialog, although the practical limitation may be less.

Example Sub Main
 Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
 Text 4,8,108,8,"Are you sure you want to exit?"
 CheckBox 32,24,63,8,"Save Changes",.SaveChanges
 OKButton 12,40,40,14
 CancelButton 60,40,40,14
 End Dialog
 Dim QuitDialog As QuitDialogTemplate
 rc% = Dialog(QuitDialog)
End Sub

See Also User Interaction on page 9

Boolean (data type)
Syntax Boolean

Description A data type capable of representing the logical values True and False. Boolean variables are used to
hold a binary value—either True or False. There is no type-declaration character for Boolean
variables. Variables can be declared as Boolean using the Dim, Public, or Private statement.
Internally, a Boolean variable is a 2-byte value holding –1 (for True) or 0 (for False). When appearing
as a structure member, Boolean members require 2 bytes of storage; When used within binary or
random files, 2 bytes of storage are required.

Any type of data can be assigned to Boolean variables. Boolean variables that have not yet been
assigned are given an initial value of False.When assigning, non-0 values are converted to True, and
0 values are converted to False. Variants can hold Boolean values when assigned the results of
comparisons or the constants True or False. When passed to external routines, Boolean values are
137

sign-extended to the size of an integer on that platform (either 16 or 32 bits) before pushing onto the
stack.

See Also Keywords, Data Types, Operators, and Expressions on page 4

ByRef
Syntax ...,ByRef parameter,...

Description Used within the Sub...End Sub, Function...End Function, or Declare statement to specify that a given
parameter can be modified by the called routine.

Note Passing a parameter by reference means that the caller can modify that variable's value.

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a parameter. The absence
of the ByVal keyword is sufficient to force a parameter to be passed by reference:

MySub ByVal i 'Pass i by value.
MySub ByRef i 'Illegal (will not compile).
MySub i 'Pass i by reference.

Example Sub Test(ByRef a As Variant)
 a = 14
End Sub

Sub Main
 b = 12
 Test b
 Session.Echo "The ByRef value is: " & b 'Displays 14.
End Sub

See Also () (precedence), ByVal; Keywords, Data Types, Operators, and Expressions on page 4; Macro Control
and Compilation on page 6

ByVal
Syntax ...ByVal parameter...

Description Forces a parameter to be passed by value rather than by reference. The ByVal keyword can appear
before any parameter passed to any function, statement, or method to force that parameter to be passed
by value. Passing a parameter by value means that the caller cannot modify that variable's value.
Enclosing a variable within parentheses has the same effect as the ByVal keyword:

Foo ByVal i 'Forces i to be passed by value.
Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (i.e., routines defined using the Declare statement),
the ByVal keyword forces the parameter to be passed by value regardless of the declaration of that

ByVal
parameter in the Declare statement. The following example shows the effect of the ByVal keyword
used to passed an Integer to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)
i% = 6
Foo ByVal i% 'Pass a 2-byte Integer.
Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer, the first call to Foo will have
unpredictable results.

Example Sub Foo(a As Integer)
 a = a + 1
End Sub

Sub Main
 Dim i As Integer
 i = 10
 Foo i
 Session.Echo "The ByVal value is: " & i 'Displays 11
 '(Foo changed the value).
 Foo ByVal i
 Session.Echo "The ByVal value is still: " & i 'Displays 11 Foo did not _
change the value).
End Sub

See Also () (precedence), ByRef; Keywords, Data Types, Operators, and Expressions on page 4; Macro Control
and Compilation on page 6
139

C

Call
Syntax Call subroutine_name [(arguments)]

Description Transfers control to the given subroutine, optionally passing the specified arguments. Using this
statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute subroutines;
functions cannot be executed with this statement. The subroutine to which control is transferred by the
Call statement must be declared outside of the calling procedure, as shown in the following example.

Examples This example uses the Call statement to pass control to another function.

Sub Example_Call(s$)
 'This subroutine is declared externally to Main and displays
 'the text passed in the parameter s$.
 Session.Echo "Call: " & s$
End Sub

Sub Main
'This example assigns a string variable to display, then calls
'subroutine Example_Call, passing parameter s$ to be displayed within
'the subroutine.

 s$ = "DAVE"
 Example_Call s$
 Call Example_Call("SUSAN")
End Sub

See Also Macro Control and Compilation on page 6
141

CancelButton
CancelButton
Syntax CancelButton x, y, width, height [,.Identifier]

Description Defines a Cancel button that appears within a dialog template. This statement can only appear within
a dialog template (i.e., between the Begin Dialog and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog, causing the Dialog function
to return 0. (Note: A dialog function can redefine this behavior.) Pressing the Esc key or double-
clicking the close box will have no effect if a dialog does not contain a CancelButton statement.

The CancelButton statement requires the following parameters:

A dialog must contain at least one OKButton, CancelButton, or PushButton statement; otherwise, the
dialog cannot be dismissed.

Example Sub Main
 Begin Dialog SampleDialogTemplate 37,32,48,52,"Sample"
 OKButton 4,12,40,14,.OK
 CancelButton 4,32,40,14,.Cancel
 End Dialog
 Dim SampleDialog As SampleDialogTemplate
 r% = Dialog(SampleDialog)
 If r% = 0 Then Session.Echo "Cancel was pressed!"
End Sub

See Also User Interaction on page 9

CBool
Syntax CBool(expression)

Description Converts expression to True or False, returning a Boolean value. The expression parameter is any
expression that can be converted to a Boolean. A runtime error is generated if expression is Null.

All numeric data types are convertible to Boolean. If expression is zero, then the CBool returns
False; otherwise, CBool returns True. Empty is treated as False.

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
.Identifier Optional parameter specifying the name by which this control can be refer-

enced by statements in a dialog function (such as DlgFocus and DlgEnable).
If this parameter is omitted, then the word "Cancel" is used.
142

CCur
If expression is a String, then CBool first attempts to convert it to a number, then converts the
number to a Boolean. A runtime error is generated if expression cannot be converted to a number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example Sub Main
 Dim IsNumericOrDate As Boolean
 s$ = "34224.54"
 IsNumericOrDate = CBool(IsNumeric(s$) Or IsDate(s$))
 If IsNumericOrDate = True Then
 Session.Echo s$ & " is either a valid date or number!"
 Else
 Session.Echo s$ & " is not a valid date or number!"
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

CCur
Syntax CCur(expression)

Description Converts any expression to a Currency. This function accepts any expression convertible to a
Currency, including strings. A runtime error is generated if expression is Null or a String not
convertible to a number. Empty is treated as 0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Currency.

When used with variants, this function guarantees that the variant will be assigned a Currency
(VarType 6).

Example Sub Main
 i$ = "100.44"
 Session.Echo "The currency value is: " & CCur(i$)
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
143

CDate, CVDate
CDate, CVDate
Syntax CDate(expression)

CVDate(expression)

Description Converts expression to a date, returning a Date value. The expression parameter is any expression
that can be converted to a Date. A runtime error is generated if expression is Null.

If expression is a String, an attempt is made to convert it to a Date using the current country settings.
If expression does not represent a valid date, then an attempt is made to convert expression to a
number. A runtime error is generated if expression cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.

Note The CDate and CVDate functions are identical.

Example Sub Main
 Dim date1 As Date
 Dim date2 As Date
 Dim diff As Date
 date1 = CDate(#1/1/1994#)
 date2 = CDate("February 1, 1994")
 diff = DateDiff("d",date1,date2)
 Session.Echo "The date difference is " & CInt(diff) & " days."
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Time and Date Access on page 10

CDbl
Syntax CDbl(expression)

Description Converts any expression to a Double. This function accepts any expression convertible to a Double,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Double.

When used with variants, this function guarantees that the variant will be assigned a Double (VarType
5).

Example Sub Main
 i% = 100
 j! = 123.44
 Session.Echo "The double value is: " & CDbl(i% * j!)
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
144

ChDir
ChDir
Syntax ChDir path

Description Changes the current directory of the specified drive to path. This routine will not change the current
drive. (See ChDrive [statement].)

Example Const crlf = $(13) + Chr$(10)

Sub Main
 save$ = CurDir$
 ChDir ("C:\")
 Session.Echo "Old: " & save$ & crlf & "New: " & CurDir$
 ChDir (save$)
 Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also Drive, Folder, and File Access on page 3

ChDrive
Syntax ChDrive drive

Description Changes the default drive to the specified drive. Only the first character of drive is used. Also, drive
is not case-sensitive. If drive is empty, then the current drive is not changed.

Example Const crlf$ = Chr$(13) + Chr$(10)

Sub Main
 cd$ = CurDir$
 save$ = Mid$(CurDir$,1,1)
 If save$ = "D" Then
 ChDrive("C")
 Else
 ChDrive("D")
 End If
 Session.Echo "Old: " & save$ & crlf & "New: " & CurDir$
 ChDrive (save$)
 Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also Drive, Folder, and File Access on page 3

CheckBox
Syntax CheckBox x, y, width, height, title$, .Identifier

Description Defines a checkbox within a dialog template. Checkbox controls are either on or off, depending on the
value of .Identifier. This statement can only appear within a dialog template (i.e., between the
Begin Dialog and End Dialog statements). The CheckBox statement requires the following parameters:
145

Choose
When the dialog is first created, the value referenced by .Identifier is used to set the initial state of
the checkbox. When the dialog is dismissed, the final state of the checkbox is placed into this variable.
By default, the .Identifier variable contains 0, meaning that the checkbox is unchecked.

Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example Sub Main
 Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"
 GroupBox 4,4,84,40,"GroupBox"
 CheckBox 12,16,67,8,"Include heading",.IncludeHeading
 CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
 OKButton 104,8,40,14,.OK
 CancelButton 104,28,40,14,.Cancel
 End Dialog
 Dim SaveOptions As SaveOptionsTemplate
 SaveOptions.IncludeHeading = 1 'Checkbox initially on.
 SaveOptions.ExpandKeywords = 0 'Checkbox initially off.
 r% = Dialog(SaveOptions)
 If r% = -1 Then
 Session.Echo "OK was pressed."
 End If
End Sub

See Also User Interaction on page 9

Choose
Syntax Choose(index,expression1,expression2,...,expression13)

Description Returns the expression at the specified index position. The index parameter specifies which
expression is to be returned. If index is 1, then expression1 is returned; if index is 2, then
expression2 is returned, and so on. If index is less than 1 or greater than the number of supplied
expressions, then Null is returned.

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control (in dialog

units).
title$ String containing the text that appears within the checkbox. This text may

contain an ampersand character to denote an accelerator letter, such as
"&Font" for Font (indicating that the Font control may be selected by press-
ing the F accelerator key).

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the state of the checkbox (1 =
checked; 0 = unchecked). This variable can be accessed using the syntax:
DialogVariable.Identifier.
146

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$
The index parameter is rounded down to the nearest whole number.

The Choose function returns the expression without converting its type. Each expression is evaluated
before returning the selected one.

Example Sub Main
 Dim a As Variant
 Dim c As Integer
 c% = 2
 a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)
 ’Display the date passed as a parameter:
 Session.Echo "Item " & c% & " is '" & a & "'"
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$
Syntax Chr[$](charcode)

ChrB[$](charcode)
ChrW[$](charcode)

Description Returns the character the value of which is charcoode. The Chr$, ChrB$, and ChrW$ functions return a
String, whereas the Chr, ChrB, and ChrW functions return a String variant. These functions behave
differently depending on the string format:

The Chr$ function can be used within constant declarations, as in the following example:

Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:

Function String Format Value between Returns
Chr[$] SBCS 0 and 255 1-byte character string.

MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 2-byte character string.
ChrB[$] SBCS 0 and 255 1-byte character string.

MBCS 0 and 255 1-byte character string.
Wide 0 and 255 2-byte character string.

ChrW[$] SBCS 0 and 255 1-byte character string (same as Chr and Chr$
functions)

MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 2-byte character string.
147

CInt
Examples Concatenates carriage return (13) and line feed (10) in crlf$, then displays a multiple-line message
using crlf$ to separate lines.

Sub Main
 crlf$ = Chr$(13) + Chr$(10)
 Session.Echo "First line." & crlf$ & "Second line."
 'Fills an array with the ASCII characters for ABC and
 'displays their corresponding characters.
 Dim a%(2)
 For i = 0 To 2
 a%(i) = (65 + i)
 Next I
 Session.Echo "The first three elements of the array are: " & Chr$(a%(0)) &
Chr$(a%(1)) & Chr$(a%(2))
End Sub

See Also Character and String Manipulation on page 2

CInt
Syntax CInt(expression)

Description Converts expression to an Integer. This function accepts any expression convertible to an Integer,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0. The passed
numeric expression must be within the valid range for integers:

-32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a numeric
expression to an Integer. Note that integer variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to an Integer
variant (VarType 2).

Example Sub Main
 '(1) Assigns i# to 100.55 and displays its integer representation (101).
 i# = 100.55
 Session.Echo "The value of CInt(i) = " & CInt(i#)
 '(2) Sets j# to 100.22 and displays the CInt
 'representation (100).
 j# = 100.22

Function Use
Chr$(9) Tab
Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)
Chr$(26) End-of-file
Chr$(0) Null
148

Circuit (object)
 Session.Echo "The value of CInt(j) = " & CInt(j#)
 '(3) Assigns k% (integer) to the CInt sum of j# and k% and
 'displays k% (201).
 k% = CInt(i# + j#)
 Session.Echo "The integer sum of 100.55 and 100.22 is: " & k%
 '(4) Reassigns i# to 50.35 and recalculates k%, then
 'displays the result (note rounding).
 i# = 50.35
 k% = CInt(i# + j#)
 Session.Echo "The integer sum of 50.35 and 100.22 is: " & k%
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Circuit (object)
Circuit methods and properties indicate the scope of their action by their name by incorporating the
appropriate communication method in the name (such as Circuit.LATHostName). Properties and
methods common to all communication methods do not incorporate a communication method name
(such as Circuit.AssertBreak). As of this version of SmarTerm, the supported communication methods
are LAT, modem, serial, SNA, and Telnet.

Circuit.AssertBreak
Syntax Circuit.AssertBreak

Description Asserts a communications break and returns a boolean representing the completion status. This
method asserts a communications Break condition appropriate for the communications method being
used.

Example Sub Main
 Dim BreakStatus as Boolean
 BreakStatus = Circuit.AssertBreak()
 If BreakStatus = FALSE Then
 Session.Echo "An error occurred"
 End If
End Sub

See Also Host Connections on page 5; Objects on page 10

Circuit.AutoConnect
Syntax Circuit.AutoConnect

Description Returns or sets the communication method's autoconnect state (boolean).

Example Sub Main
 Dim StAuto as Boolean
 StAuto = Circuit.AutoConnect
 If StAuto = False Then
 Session.Echo "Turning autoconnect on"
149

Circuit (object)
 Circuit.AutoConnect = True
 End If
End Sub

See Also Host Connections on page 5

Circuit.Connect
Syntax Circuit.Connect

Description Establishes a connection to a host and always returns a value of True. Use Circuit.Connected if you
want to check connection status.

Example Sub Main
 If Circuit.Connected Then
 If Circuit.Disconnect = FALSE Then
 Session.Echo "Disconnect error"
 End If
 End If
 Circuit.TelnetPortNumber = 21
 Circuit.TelnetHostName = "SomeHost.com"
 If Circuit.Connect = FALSE Then
 Session.Echo "Connect error"
 End If
End Sub

See Also Host Connections on page 5

Circuit.Connected
Syntax Circuit.Connected

Description Returns a boolean representing the session's connection state.

Example Sub Main
 If Circuit.Connected Then
 Circuit.Disconnect
 End If
End Sub

See Also Host Connections on page 5

Circuit.Disconnect
Syntax Circuit.Disconnect

Description Disconnects from the host and returns a boolean representing the completion status.

Example Sub Main
 If Circuit.Connected Then
 Circuit.Disconnect
 End If
End Sub
150

Circuit (object)
See Also Host Connections on page 5

Circuit.LATHostName
Syntax Circuit.LATHostName

Description Returns or sets the host name for the LAT communications driver (string).

Example Sub Main
 Dim HostName as String
 HostName = Circuit.LATHostName
 If HostName <> "LATHost1" Then
 Session.Echo "Setting the host to LATHost1 to read your email"
 Circuit.LATHostName = "LATHost1"
 End If
End Sub

See Also Host Connections on page 5

Circuit.LATPassword
Syntax Circuit.LATPassword

Description Returns or sets the password for the LAT communications driver (string).

Example Sub Main
 Dim Password, NewPass as String
 Password = Circuit.LATPassword
 If Password = "" Then
 NewPass = AskPassword$("Type in your LAT password.")
 Circuit.LATPassword = NewPass
End Sub

See Also Host Connections on page 5

Circuit.LATSavePassword
Syntax Circuit.LATSavePassword

Description Returns or sets if a password will be saved for the LAT communications driver.

Example Sub Main
 Dim SavePassState as Boolean
 SavePassState = Circuit.LATSavePassword
 If SavePassState = True Then
 Session.Echo "For security reasons, you cannot save your password"
 Circuit.LATSavePassword = False
 End If
End Sub

See Also Host Connections on page 5
151

Circuit (object)
Circuit.ModemAlt1Number
Syntax Circuit.ModemAlt1Number

Description Returns or sets the first alternate phone number to be used when making a modem connection (string).

Example Sub Main
 Dim PhoneNumberAlt1 as String
 PhoneNumberAlt1 = Circuit.ModemAlt1Number
 If PhoneNumberAlt1 = "" Then
 Circuit.ModemAlt1Number = "555-1234"
 End If
End Sub

See Also Host Connections on page 5

Circuit.ModemAlt2Number
Syntax Circuit.ModemAlt2Number

Description Returns or sets the second alternate phone number to be used when making a modem connection
(string).

Example Sub Main
 Dim PhoneNumberAlt2 as String
 PhoneNumberAlt2 = Circuit.ModemAlt2Number
 If PhoneNumberAlt2 = "" Then
 Circuit.ModemAlt2Number = "555-1212"
 End If
End Sub

See Also Host Connections on page 5

Circuit.ModemAlt3Number
Syntax Circuit.ModemAlt3Number

Description Returns or sets the third alternate phone number to be used when making a modem connection (string).

Example Sub Main
 Dim PhoneNumberAlt3 as String
 PhoneNumberAlt3 = Circuit.ModemAlt3Number
 If PhoneNumberAlt3 = "" Then
 Circuit.ModemAlt3Number = "555-1212"
 End If
End Sub

See Also Host Connections on page 5

Circuit.ModemAreaCode
Syntax Circuit.ModemAreaCode

Description Returns or sets the area code to be used when making a modem connection (string).
152

Circuit (object)
Example Sub Main
 Dim AreaCode as String
 AreaCode = Circuit.ModemAreaCode
 If AreaCode = "" Then
 Circuit.ModemAreaCode = "800"
 End If
End Sub

See Also Host Connections on page 5

Circuit.ModemCountryCode
Syntax Circuit.ModemCountryCode

Description Returns or sets the current country code.

Example See example for Circuit.ModemGetCountryCodeString.

See Also Host Connections on page 5

Circuit.ModemGetCountryCodeString
Syntax Circuit.ModemGetCountryCodeString index

where index is a 1-based index into the set of country code strings.

Description Returns a string representing the indexed country code.

Example Option base 1
Sub Main
 Dim TotalStrings as Integer
 Dim CountryCodes(TotalStrings) as String
 Dim i as Integer
 'Fill the CountryCodes array
 TotalStrings = Circuit.ModemTotalCountryCodes
 For i = 1 to TotalStrings
 CountryCodes(i) = Circuit.ModemGetCountryCodeString(i)
 Next i
 Session.Echo "Current country code: " & Circuit.ModemCountryCode
 'Choose a new country code
 Circuit.ModemCountryCode = CountryCodes(4)
 Session.Echo "New country code: " & Circuit.ModemCountryCode
End Sub

See Also Host Connections on page 5

Circuit.ModemPhoneNumber
Syntax Circuit.ModemPhoneNumber

Description Returns or sets the primary phone number to be used when making a modem connection (string).
153

Circuit (object)
Example Sub Main
 Dim PhoneNumber as String
 PhoneNumber = Circuit.ModemPhoneNumber
 Session.Echo "The current phone number is " & PhoneNumber
 Circuit.ModemPhoneNumber = "555-1212"
End Sub

See Also Host Connections on page 5

Circuit.ModemTotalCountryCodes
Syntax Circuit.ModemTotalCountryCodes

Description Returns an integer representing the total number of country code strings available through the
Circuit.ModemGetCountryCodeString method.

Example See example for Circuit.ModemGetCountryCodeString.

See Also Host Connections on page 5

Circuit.ModemUseCodes
Syntax Circuit.ModemUseCodes

Description Returns or sets whether or not the country code and area code values should be used when dialing
(boolean).

Example Sub Main
 Dim CurrentUseCodes as Boolean
 CurrentUseCodes = Circuit.ModemUseCodes
 If CurrentUseCodes = FALSE Then
 Session.Echo "The country code and area code will be used"
Circuit.ModemUseCodes = True
 End If
End Sub

See Also Host Connections on page 5

Circuit.SendRawToHost
Syntax Circuit.SendRawToHost (data, datalength)

Description Sends data to host without character translation and without 8 bit to 7 bit control mapping. Returns the
operation’s completion status (boolean). Parameters are:

Parameter Description
data Variant, the data to send.
Datalength Integer, size of the data (in bytes)
154

Circuit (object)
Example Sub Main
 Dim fSuccess as Boolean
 fSuccess = Circuit.SendRawToHost("12345", 5)
 If fSuccess = FALSE Then
 Session.Echo "An error occurred."
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialBaudRate
Syntax Circuit.SerialBaudRate

Description Returns or sets the serial driver's current baud rate (long integer)

Circuit.SerialBaudRate accepts or returns one of the following values: 1200, 2400, 4800, 9600,
14400, 19200, 38400, 57600, or 115200.

Example Sub Main
 Dim BaudRate as Long
 BaudRate = Circuit.SerialBaudRate
 If BaudRate < 9600 Then
 Session.Echo "This connection needs a baud rate of at least 9600 baud"
 Circuit.SerialBaudRate = 9600
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialBreakDuration
Syntax Circuit.SerialBreakDuration

Description Returns or sets an integer containing the serial driver's current break duration value (integer).
Circuit.SerialBreakDuration accepts or returns one of the following values:

Example Sub Main
 Dim BreakTime as Integer
 BreakTime = Circuit.SerialBreakDuration
 Circuit.SerialBreakDuration = 375
End Sub

See Also Host Connections on page 5

Circuit.SerialDataBits
Syntax Circuit.SerialDataBits

Value Definition
375 Break duration of 375ms
2000 Break duration of 2000ms
155

Circuit (object)
Description Returns or sets the serial driver's current data bits value (integer). Circuit.SerialDataBits accepts
or returns one of the following values:

Example Sub Main
 Dim DataBits as Integer
 DataBits = Circuit.SerialDataBits
 If DataBits = 7 Then
 Session.Echo "This connection requires an 8-bit connection"
 Circuit.SerialDataBits = 8
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialFlowControl
Syntax Circuit.SerialFlowControl

Description Returns or sets the serial driver's current flow control setting (integer). Possible values are:

Example Sub Main
 Dim FlowControl as Integer
 FlowControl = Circuit.SerialFlowControl
 If FlowControl = smlRTSCTS Then
 Circuit.SerialFlowControl = smlXONXOFF
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialParity
Syntax Circuit.SerialParity

Description Returns or sets the serial driver's current parity setting (integer). Possible values are:

Value Definition
7 Configure for 7 data bits.
8 Configure for 8 data bits.

Value Constant Meaning
0 smlNOFLOWCONTROL No flow control.
1 smlXONXOFF XON/XOFF flow control.
2 smlRTSCTS RTS/CTS flow control.
3 smlDTRDSR DTR/DSR flow control.
156

Circuit (object)
Example Sub Main
 Dim Parity as Integer
 Parity = Circuit.SerialParity
 Circuit.SerialParity = smlODDPARITY
End Sub

See Also Host Connections on page 5

Circuit.SerialPort
Syntax Circuit.SerialPort

Description Returns or sets the serial driver's current port number (integer). Circuit.SerialPort accepts or
returns a value within the range: 1 - 255.

Example Sub Main
 Dim ComPort as Integer
 ComPort = Circuit.SerialPort
 If ComPort > 2 Then
 Session.Echo "Setting communications port to COM1"
 Circuit.SerialPort = 1
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialReceiveBufferSize
Syntax Circuit.SerialReceiveBufferSize

Description Returns or sets the serial driver's current receive buffer size (integer). Accepts or returns one of the
following values: 512, 1024, 2048, 4096, or 8192.

Example Sub Main
 Dim ReceiveBufferSize as Integer
 ReceiveBufferSize = Circuit.SerialReceiveBufferSize
 If ReceiveBufferSize < 8192 Then
 Session.Echo "Changing your Buffer size to 8192"
 Circuit.SerialReceiveBufferSize = 8192
 End If
End Sub

See Also Circuit.Connect (method)

Value Constant Meaning
0 smlNOPARITY No parity.
1 smlODDPARITY Odd parity.
2 smlEVENPARITY Even parity.
3 smlMARKPARITY Mark parity.
4 smlSPACEPARITY Space parity.
157

Circuit (object)
Circuit.SerialStopBits
Syntax Circuit.SerialStopBits

Description Returns or sets the serial driver's current stop bits value (integer). This property accepts or returns one
of the following values:

Example Sub Main
 Dim StopBits as Integer
 StopBits = Circuit.SerialStopBits
 If StopBits <> 1 Then
 Session.Echo "This connection requires 1 stop bit"
 Circuit.SerialStopBits = 1
 End If
End Sub

See Also Host Connections on page 5

Circuit.SerialTransmitBufferSize
Syntax Circuit.SerialTransmitBufferSize

Description Returns or sets the serial driver's current transmit buffer size (integer).
Circuit.SerialTransmitBufferSize accepts or returns one of the following values: 512, 1024,
2048, 4096, or 8192.

Example Sub Main
 Dim TransmitBufferSize as Integer
 TransmitBufferSize = Circuit.SerialTransmitBufferSize
 If TransmitBufferSize < 8192 Then
 Session.Echo "Changing your Buffer size to 8192"
 Circuit.SerialTransmitBufferSize = 8192
 End If
End Sub

See Also Host Connections on page 5

Circuit.Setup
Syntax Circuit.Setup setupstring$

where setupstring$ is the string containing the setup specifications (string).

Description Sets SmarTerm communications parameters. This method is provided primarily for the support of PSL
scripts.

Value Definition
1 1 stop bit
2 2 stop bits
158

Circuit (object)
The syntax of the string expression is identical between communication methods, although meaning
varies somewhat. Specify setup options one at a time with their own Circuit.Setup statements, or
more than one at a time, if you keep all options and settings within the quotation marks, separating the
setup statements with commas:

Circuit.Setup "baudrate = 2400, parity = NONE, stopbits = 1"

Serial COM1-COM4
Serial Port
portname= COM1 | COM2 | COM3 | COM4
Circuit.Setup "portname = COM1"
Baud Rate
baudrate= 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600
Circuit.Setup "baudrate = 2400"
Data Bits
bytesize= 7 | 8
Circuit.Setup "bytesize = 7"
Stop Bits
stopbits= 1 | 2
Circuit.Setup "stopbits = 1"
Parity
parity= NONE | ODD | EVEN | MARK | SPACE
Circuit.Setup "parity = even"
Break Duration
breaktime= 375 | 2000
Circuit.Setup "breaktime = 2000"
Flow Control
flowcontrol= XON/XOFF | RTS/CTS | DTR/DSR | NONE
Circuit.Setup "flowcontrol = dtr/dsr"
Receive Buffer Size
receivequeuesize= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "receivequeuesize = 512"
Transmit Buffer Size
transmitqueuesize= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "transmitqueuesize = 512"
Autoconnect on configuration open
autoconnect= TRUE | FALSE
Circuit.Setup "autoconnect = true"

Telnet
Host name or IP Address
hostname= ASCII string of no more than 60 characters
Circuit.Setup "hostname = unixbox"
Port Number
portnumber= Decimal number between 1 and 32767 inclusive
Circuit.Setup "portnumber = 391"
Break Mode
breakmode= INTERRUPT | BREAK
Circuit.Setup "breakmode = interrupt"
Character Mode
charmode= ASCII | BINARY
Circuit.Setup "charmode = ascii"
Auto-connect on configuration open
159

Circuit (object)
autoconnect= TRUE | FALSE
Circuit.Setup "autoconnect = true"

See Also Host Connections on page 5

Circuit.SNALogicalUnit
3270 sessions only

Syntax Circuit.SNALogicalUnit

Description Returns or sets the LU (logical unit) to which the SmarTerm session connects. Triggers an application-
based menu action in SmarTerm. The LU is the access point into the SNA network, allowing
SmarTerm to reach a particular host service (for example, a mainframe application LU). The pool
name is a name you assign to a set of LUs with the same capabilities. When the session connects, it is
automatically given the first available LU in the pool.

Example Sub Main
 Circuit.SNALogicalUnit "LU2"
End Sub

See Also Host Connections on page 5

Circuit.SNAProtocol
3270 sessions only

Syntax Circuit.SNAProtocol

Description Returns or sets the transfer protocol for the SmarTerm session. Possible values are:

Example 'This example
Sub Main
 Circuit.SNAProtocol "TCP/IP"
End Sub

See Also Host Connections on page 5

Value Description
IPX/SPX Internetwork Packet Exchange/Sequenced Packet Exchange. Novell's protocol used by

Novell NetWare. A router with IPX routing can interconnect local area networks so that
Novell NetWare clients and servers can communicate.

TCP/IP Transmission Control Protocol over Internet Protocol. The most common transport layer
protocol used on Ethernet and the Internet. This property is supported in NetWare for
SAA connections only.
160

Circuit (object)
Circuit.SNAServerName
3270 and 5250 sessions only

Syntax Circuit.SNAServerName

Description NetWare for SAA connections only.

Returns or sets the name of the server to which the session connects.

Example 'This example
Sub Main
 Circuit.SNAServerName " "
End Sub

See Also Host Connections on page 5

Circuit.SuppressConnectErrorDialog
Syntax Circuit.SuppressConnectErrorDialog

Description Returns or sets the display of SmarTerm connection error dialogs (boolean). If TRUE (the default),
then SmartTerm connection error dialogs are not displayed (however, other connection dialogs like
Telnet dialogs are displayed). If FALSE, then all connection error dialogs are displayed (SmarTerm
dialogs and Telnet dialogs for example).

Common to all communications methods.

Example 'This example attempts to connect to one of two hosts.
'using Telnet. If the macro cannot connect to one host,
'it attempts toconnect to the other without informing
'the user of the error

Sub Main

Dim fConnected As Boolean
fConnected = FALSE

'First, turn off connection error dialogs.
Circuit.SuppressConnectErrorDialog = TRUE

'Now, try to connect to the first host
Circuit.TelnetHostName = "MyHost1"
Circuit.Connect

'Give the host 5 seconds to connect. If it connects,
'then go to the next block.
For Seconds = 1 to 5'
 Sleep (1000)
 If Circuit.Connected = TRUE then
 fConnected = TRUE
 Exit For
 End If
Next Seconds
161

Circuit (object)
'Now, turn connection error dialogs back on
Circuit.SuppressConnectErrorDialog = FALSE

'Now determine if we connected to the first host.
'If not, try connecting to the second.
If fConnected = FALSE Then
 Circuit.TelnetHostName = "MyHost2"
 Circuit.Connect
End If

End Sub

See Also Host Connections on page 5

Circuit.TelnetBreakMode
Syntax Circuit.TelnetBreakMode

Description Returns or sets the Telnet driver's current break mode setting (integer). Possible values are:

Example Sub Main
 Dim BrkMode as Integer
 BrkMode = Circuit.TelnetBreakMode
 If BrkMode = smlBREAK Then
 Session.Echo "Using Interrupt break mode for this connection"
 Circuit.TelnetBreakMode = smlINTERRUPT
 End If
End Sub

See Also Host Connections on page 5

Circuit.TelnetCharacterMode
Syntax Circuit.TelnetCharacterMode

Description Returns or sets the Telnet driver's current character mode setting (integer). Possible values are:

Example Sub Main
 Dim CharMode as Integer
 CharMode = Circuit.TelnetCharacterMode
 If CharMode = smlASCII Then
 Session.Echo "Changing character mode setting to Binary"

Value Constant Meaning
0 smlBREAK Set the break mode to break.
1 smlINTERRUPT Set the break mode to interrupt.

Value Constant Meaning
0 smlASCII Set the character mode to ASCII.
1 smlBINARY Set the character mode to binary.
162

Clipboard (object)
 Circuit.TelnetCharacterMode = smlBinary
 End If
End Sub

See Also Host Connections on page 5

Circuit.TelnetHostName
Syntax Circuit.TelnetHostName

Description Returns or sets the Telnet driver's current host name (string).

Example Sub Main
 Dim HostName as String
 HostName = Circuit.TelnetHostName
 If HostName = "BrokenHost.com" Then
 Session.Echo "BrokenHost is currently down. Try WorkingHost.com"
Circuit.TelnetHostName = "WorkingHost.com"
 End If
End Sub

See Also Host Connections on page 5

Circuit.TelnetPortNumber
Syntax Circuit.TelnetPortNumber

Description Returns or sets the Telnet driver's current port number (string).

Example Sub Main
 Dim Port as String
 Port = Circuit.TelnetPortNumber
 If Port <> 23 Then
 Session.Echo "Setting the port to 23 for a Telnet connection"
 Circuit.TelnetPortNumber = 23
 End If
End Sub

See Also Host Connections on page 5

Clipboard (object)

Clipboard$ (function)
Syntax Clipboard$[()]

Description Returns a String containing the contents of the Clipboard. If the Clipboard doesn't contain text or the
Clipboard is empty, then a zero-length string is returned.

Example Const crlf = Chr$(13) + Chr$(10)
163

Clipboard (object)
Sub Main
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
 Clipboard.Clear
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
End Sub

See Also Clipboard$ (statement); Operating System Control on page 9

Clipboard$ (statement)
Syntax Clipboard$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Clipboard$ "Hello out there!"
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
 Clipboard.Clear
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
End Sub

See Also Clipboard$ (function); Operating System Control on page 9

Clipboard.Clear
Syntax Clipboard.Clear

Description Clears the Clipboard by removing any content.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Clipboard$ "Hello out there!"
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
 Clipboard.Clear
 Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
End Sub

See Also Clipboard$ (function); Operating System Control on page 9

Clipboard.GetFormat
Syntax WhichFormat = Clipboard.GetFormat(format)

Description Returns True if data of the specified format is available in the Clipboard; returns False otherwise. This
method is used to determine whether the data in the Clipboard is of a particular format. The format
parameter is an Integer representing the format to be queried:
164

Clipboard (object)
Example Sub Main
 Clipboard$ "Hello out there!"
 If Clipboard.GetFormat(ebCFText) Then
 Session.Echo Clipboard$
 Else
 Session.Echo "There is no text in the Clipboard."
 End If
End Sub

See Also Clipboard$ (function); Operating System Control on page 9

Clipboard.GetText
Syntax text$ = Clipboard.GetText([format])

Description Returns the text contained in the Clipboard. The format parameter, if specified, must be ebCFText (1).
The format parameter must be either ebCFText or ebCFUnicodeText. If the format parameter is
omitted, then the compiler first looks for text of the specified type depending on the platform:

Example Option Compare Text
Sub Main
 If Clipboard.GetFormat(1) Then
 If Instr(Clipboard.GetText(1),"total",1) = 0 Then
 Session.Echo "The Clipboard doesn't contain the word ""total."""
 Else
 Session.Echo "The Clipboard contains the word ""total""."
 End If
 Else
 Session.Echo "The Clipboard does not contain text."
 End If
End Sub

See Also Clipboard$ (function); Operating System Control on page 9

Clipboard.SetText
Syntax Clipboard.SetText data$ [,format]

Format Value Description
ebCFText 1 Text
ebCFBitmap 2 Bitmap
ebCFMetafile 3 Metafile
ebCFDIB 8 Device-independent bitmap (DIB)
ebCFPalette 9 Color palette
ebCFUnicodeText 13 Unicode text

Platform Clipboard Format
Windows NT UNICODE
Windows 98/Me MBCS
165

CLng
Description Copies the specified text string to the Clipboard. The data$ parameter specifies the text to be copied
to the Clipboard. The format parameter, if specified, must be ebCFText (1). The format parameter
must be either ebCFText or ebCFUnicodeText. If the format parameter is omitted, then the compiler
places the text into the clipboard in the following format depending on the platform:

Example Sub Main
 If Not Clipboard.GetFormat(1) Then Exit Sub
 Clipboard.SetText UCase$(Clipboard.GetText(1)),1
End Sub

See Also Clipboard$ (function); Operating System Control on page 9

CLng
Syntax CLng(expression)

Description Converts expression to a Long. This function accepts any expression convertible to a Long, including
strings. A runtime error is generated if expression is Null. Empty is treated as 0. The passed
expression must be within the following range:

-2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Long. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to a long variant
(VarType 3).

Example This example displays the results for various conversions of i and j (note rounding).

Sub Main
 i% = 100
 j& = 123.666
 Session.Echo "The result is: " & CLng(i% * j&) 'Displays 12367.
 Session.Echo "The variant type is: " & Vartype(CLng(i%))
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Platform Clipboard Format
Windows NT UNICODE
Windows 98/Me MBCS
166

Close
Close
Syntax Close [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files. If no arguments are specified, then all files are closed.

Example Sub Main
 Open "test1" For Output As #1
 Open "test2" For Output As #2
 Open "test3" For Random As #3
 Open "test4" For Binary As #4
 Session.Echo "The next available file number is :" & FreeFile()
 Close #1 'Closes file 1 only.
 Close #2, #3 'Closes files 2 and 3.
 Close 'Closes all remaining files(4).
 Session.Echo "The next available file number is :" & FreeFile()
End Sub

See Also Drive, Folder, and File Access on page 3

ComboBox
Syntax ComboBox x,y,width,height,ArrayVariable,.Identifier

Description Defines a combo box within a dialog template. When the dialog is invoked, the combo box will be
filled with the elements from the specified array variable. This statement can only appear within a
dialog template (i.e., between the Begin Dialog and End Dialog statements). The ComboBox statement
requires the following parameters:

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units)

relative to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
ArrayVariable Single-dimensioned array used to initialize the elements of the combo box.

If this array has no dimensions, then the combo box will be initialized with
no elements. A runtime error results if the specified array contains more
than one dimension. ArrayVariable can specify an array of any fundamen-
tal data type (structures are not allowed). Null and empty values are treated
as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the edit field of the
combo box. This variable can be accessed using the syntax: DialogVari-
able.Identifier.
167

Comments (topic)
When the dialog is invoked, the elements from ArrayVariable are placed into the combo box. The
.Identifier variable defines the initial content of the edit field of the combo box. When the dialog
is dismissed, the .Identifier variable is updated to contain the current value of the edit field.

Example Sub Main
 Dim days$(6)
 days$(0) = "Monday"
 days$(1) = "Tuesday"
 days$(2) = "Wednesday"
 days$(3) = "Thursday"
 days$(4) = "Friday"
 days$(5) = "Saturday"
 days$(6) = "Sunday"
 Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"
 OKButton 76,8,40,14,.OK
 Text 8,10,39,8,"&Weekdays:"
 ComboBox 8,20,60,72,days$,.Days
 End Dialog
 Dim DaysDialog As DaysDialogTemplate
 DaysDialog.Days = "Tuesday"
 r% = Dialog(DaysDialog)
 Session.Echo "You selected: " & DaysDialog.Days
End Sub

See Also User Interaction on page 9

Comments (topic)
Comments can be added to macro code in the following manner:

• All text between a single quotation mark and the end of the line is ignored:

Session.Echo "Hello" 'Displays a message box.

• The REM statement causes the compiler to ignore the entire line:

REM This is a comment.

• You can also use C-style multiline comment blocks /*...*/, as follows:

Session.Echo "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
Session.Echo "After comment"

Note C-style comments can be nested.

See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6
168

Comparison Operators (topic)
Comparison Operators (topic)
Syntax expression1 [< | > | <= | >= | <> | =] expression2

Description Returns True or False depending on the operator. The comparison operators are listed in the following
table:

This operator behaves differently depending on the types of the expressions, as shown in the following
table:

String comparisons
If the two expressions are strings, then the operator performs a text comparison between the two string
expressions, returning True if expression1 is less than expression2. The text comparison is case-
sensitive if Option Compare is Binary; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase characters in a string sort greater than
uppercase characters, so a comparison of "a" and "A" would indicate that "a" is greater than "A".

Numeric comparisons
When comparing two numeric expressions, the less precise expression is converted to be the same type
as the more precise expression.

Operator Returns True If
> expression1 is greater than expression2
< expression1 is less than expression2
<= expression1 is less than or equal to expression2
>= expression1 is greater than or equal to expression2
<> expression1 is not equal to expression2
= expression1 is equal to expression2

Expression One Expression Two Result
Numeric Numeric Numeric comparison (see below).
String String String comparison (see below).
Numeric String Compile error.
Variant String String comparison (see below).
Variant Numeric Variant comparison (see below).
Null variant Any data type Null.
Variant Variant Variant comparison (see below).
169

Const
Dates are compared as doubles. This may produce unexpected results as it is possible to have two dates
that, when viewed as text, display as the same date when, in fact, they are different. This can be seen
in the following example:

Sub Main
 Dim date1 As Date
 Dim date2 As Date
 date1 = Now
 date2 = date1 + 0.000001 'Adds a fraction of a second.
 Session.Echo date2 = date1 'Prints False (the dates are different).
 Session.Echo date1 & "," & date2 'Prints two dates that arethe same.
End Sub

Variant comparisons
When comparing variants, the actual operation performed is determined at execution time according
to the following table:

Examples Sub Main
 'Tests two literals and displays the result.
 If 5 < 2 Then
 Session.Echo "5 is less than 2."
 Else
 Session.Echo "5 is not less than 2."
 End If
 'Tests two strings and displays the result.
 If "This" < "That" Then
 Session.Echo "'This' is less than 'That'."
 Else
 Session.Echo "'That' is less than 'This'."
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Const
Syntax Const name [As type] = expression [,name [As type] = expression]...

Description Declares a constant for use within the current macro. The name is only valid within the current macro.
Constant names must follow these rules:

Variant One Variant Two Result
Numeric Numeric Numeric comparison.
String String String comparison.
Numeric String Number less than string.
Null Any other data type Null.
Numeric Empty Compares number to 0.
String Empty Compares string to a zero-length string.
170

Const
• Must begin with a letter.

• May contain only letters, digits, and the underscore character.

• Must not exceed 80 characters in length.

• Cannot be a reserved word.

Constant names are not case-sensitive. The expression must be assembled from literals or other
constants. Calls to functions are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration character, as
shown below:

Const a% = 5 'Constant Integer whose value is 5
Const b# = 5 'Constant Double whose value is 5.0
Const c$ = "5" 'Constant String whose value is "5"
Const d! = 5 'Constant Single whose value is 5.0
Const e& = 5 'Constant Long whose value is 5

The type can also be given by specifying the As type clause:

Const a As Integer = 5 'Constant Integer whose value is 5
Const b As Double = 5 'Constant Double whose value is 5.0
Const c As String = "5" 'Constant String whose value is "5"
Const d As Single = 5 'Constant Single whose value is 5.0
Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:

Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then the compiler chooses the most imprecise type that completely
represents the data, as shown below:

Const a = 5 'Integer constant
Const b = 5.5 'Single constant
Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or function. Constants defined
outside of all subroutines and functions can be used anywhere within that macro. The following
example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1
 Const DefFile = "foobar.txt"
 Session.Echo DefFile 'Displays "foobar.txt".
End Sub
171

Constants (topic)
Sub Test2
 Session.Echo DefFile 'Displays "default.txt".
End Sub

Example Const crlf = Chr$(13) + Chr$(10)

Const s$ As String = "This is a constant."
Sub Main
 Session.Echo s$ & crlf & "The constants are shown above."
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Constants (topic)
Constants are variables that cannot change value during macro execution. You can define your own
constants using the Const statement; preprocessor constants are defined using #Const. The following
constants are predefined by the compiler.

Application State Constants

Application.WindowState, Session.WindowState

Character Constants

Constant Value Description
ebMinimized 1 The application is minimized.
ebMaximized 2 The application is maximized.
ebRestored 3 The application is restored.

Constant Value Description
smlMINIMIZE 0 The window is minimized.
smlRESTORE 1 The window is restored.
smlMAXIMIZE 2 The window is maximized.

Constant Value Description
ebBack Chr$(8) String containing a backspace.
ebCr Chr$(13) String containing a carriage return.
ebCrLf Chr$(13) & Chr$(10) String containing a carriage-return linefeed pair.
ebFormFeed Chr$(11) String containing a form feed.
ebLf Chr$(10) String containing a line feed.
ebNullChar Chr$(0) String containing a single null character.
172

Constants (topic)
Circuit.SerialFlowControl

Circuit.SerialParity

Circuit.TelnetBreakMode

Circuit.TelnetCharacterMode

ebNullString 0 Special string value used to pass null pointers to
external routines.

ebTab Chr$(9) String containing a tab.
ebVerticalTab Chr$(12) String containing a vertical tab.

Constant Value Description

Constant Value Description
smlNOFLOWCONTROL 0 No flow control.
smlXONXOFF 1 XON/XOFF flow control.
smlRTSCTS 2 RTS/CTS flow control.
smlDTRDSR 3 DTR/DSR flow control.

Constant Value Description
smlNOPARITY 0 No parity.
smlODDPARITY 1 Odd parity.
smlEVENPARITY 2 Even parity.
smlMARKPARITY 3 Mark parity.
smlSPACEPARITY 4 Space parity.

Constant Value Description
smlBREAK 0 Set the breakmode to break.
SmlINTERRUPT 1 Set the breakmode to interrupt.

Constant Value Description
smlASCII 0 Set the character mode to ASCII.
smlBINARY 1 Set the character mode to binary.
173

Constants (topic)
Clipboard Constants

Compiler Constants

Date Constants

Constant Value Description
ebCFText 1 Text.
ebCFBitmap 2 Bitmap.
ebCFMetafile 3 Metafile.
ebCFDIB 8 Device-independent bitmap.
ebCFPalette 9 Palette.
ebCFUnicode 13 Unicode text.

Constant Value
Win32 True
Empty Empty
False False
Null Null
True True

Constant Value Description
ebUseSunday 0 Use the date setting as specified by the current locale.
ebSunday 1 Sunday.
ebMonday 2 Monday.
ebTuesday 3 Tuesday.
ebWednesday 4 Wednesday.
ebThursday 5 Thursday.
ebFriday 6 Friday.
ebSaturday 7 Saturday.
ebFirstJan1 1 Start with week in which January 1 occurs.
ebFirstFourDays 2 Start with first week with at least four days in the new year.
ebFirstFullWeek 3 Start with first full week of the year.
174

Constants (topic)
File Constants

File Type Constants

Font Constants

IMEStat Constants

Constant Value Description
ebNormal 0 Read-only, archive, subdir, and none.
ebReadOnly 1 Read-only files.
ebHidden 2 Hidden files.
ebSystem 4 System files.
ebVolume 8 Volume labels.
ebDirectory 16 Subdirectory.
ebArchive 32 Files that have changed since the last backup.
ebNone 64 Files with no attributes.

Constant Value Description
ebDOS 1 A DOS executable file.
ebWindows 2 A Windows executable file.

Constant Value Description
ebRegular 1 Normal font (i.e., neither bold nor italic).
ebItalic 2 Italic font.
ebBold 4 Bold font.
ebBoldItalic 6 Bold-italic font.

Constant Value Description
ebIMENoOp 0 IME not installed.
ebIMEOn 1 IME on.
ebIMEOff 2 IME off.
ebIMEDisabled 3 IME disabled.
ebIMEHiragana 4 Hiragana double-byte character.
ebIMEKatakanaDbl 5 Katakana double-byte characters.
ebIMEKatakanaSng 6 Katakana single-byte characters.
ebIMEAlphaDbl 7 Alphanumeric double-byte characters.
ebIMEAlphaSng 8 Alphanumeric single-byte characters.
175

Constants (topic)
Math Constants

Session.EventWait

MsgBox Constants

Constant Value Description
PI 3.1415... Value of PI.

Constant Value Description
smlWAITSUCCESS 1 Successful match.
smlWAITTIMEOUT -1 Timeout.
smlWAITMAXEVENTS -2 Maximum events seen.
smlWAITERROR -15 Miscellaneous error.

Constant Value Description
ebOKOnly 0 Displays only the OK button.
ebOKCancel 1 Displays OK and Cancel buttons.
ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.
ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.
ebYesNo 4 Displays Yes and No buttons.
ebRetryCancel 5 Displays Cancel and Retry buttons.
ebCritical 16 Displays the stop icon.
EbQuestion 32 Displays the question icon.
EbExclamation 48 Displays the exclamation icon.
EbInformation 64 Displays the information icon.
EbApplicationModal 0 The current application is suspended until the dialog is closed.
EbDefaultButton1 0 First button is the default button.
EbDefaultButton2 256 Second button is the default button.
EbDefaultButton3 512 Third button is the default button.
EbSystemModal 4096 All applications are suspended until the dialog is closed.
EbOK 1 Returned from MsgBox indicating that OK was pressed.
EbCancel 2 Returned from MsgBox indicating that Cancel was pressed.
EbAbort 3 Returned from MsgBox indicating that Abort was pressed.
EbRetry 4 Returned from MsgBox indicating that Retry was pressed.
EbIgnore 5 Returned from MsgBox indicating that Ignore was pressed.
ebYes 6 Returned from MsgBox indicating that Yes was pressed.
ebNo 7 Returned from MsgBox indicating that No was pressed.
176

Constants (topic)
Session.Capture File Handling

Session.KeyWait, Session.Collect

Session.StringWait

Session.ConfigInfo

Session.EmulationInfo

Constant Value Description
smlOVERWRITE 0 Overwrite an existing file.
smlAPPEND 1 Append to an existing file.
smlPROMPTOVAPP 2 Prompt whether to overwrite or append.

Constant Value Description
smlWAITSUCCESS 1 Successful match.
smlWAITTIMEOUT -1 Timeout.
smlWAITMAXCHARS -2 Maximum chars seen.
smlWAITERROR -15 Miscellaneous error.

Constant Value Description
smlWAITSUCCESS >=1 Successful match.
smlWAITTIMEOUT -1 Timeout.
smlWAITMAXCHARS -2 Maximum chars seen.
smlWAITERROR -15 Miscellaneous error.

Constant Value Description
smlSESSIONPATH 0 Full path of the SmarTerm session (STW) file.
smlINSTALLPATH 2 Full path to where SmarTerm is installed.

Constant Value Description
smlEMUFAMILY 0 The emulation family.
smlEMULEVEL 1 The emulation level.
177

Constants (topic)
Session.KeyWait

Session.Language, Application.InstalledLanguages,
Application.StartupLanguage

Shell Constants

Macro Language Constants

Constant Value Description
smlKEYWEXACT 1 Non-case folded character/ASCII code
smlKEYWNONEXACT 2 Non-case folded character/ASCII code
smlKEYWSCAN 3 PC scan code
smlKEYWVIRTUAL 4 Virtual key code (Windows specific)
smlKEYWDECKEY 5 Emulation specific key code (DECKEY in PSL)
smlKEYWBUTTON 6 Locator button
smlKEYWCOUNT 7 Any key, (Use the count)

Constant Value Description
smlGERMAN 1031 German.
smlENGLISH 1033 English.
smlFRENCH 1036 French.
smlSPANISH 1034 Spanish.

Constant Value Description
ebHide 0 Application is initially hidden.
ebNormalFocus 1 Application is displayed at the default position and has the

focus.
ebMinimizedFocus 2 Application is initially minimized and has the focus.
ebMaximizedFocus 3 Application is maximized and has the focus.
ebNormalNoFocus 4 Application is displayed at the default position and does

not have the focus.
ebMinimizedNoFocus 6 Application is minimized and does not have the focus.

Constant Value Description
True -1 Boolean value True.
False 0 Boolean value False.
178

Constants (topic)
String Conversion Constants

Variant Constants

Empty Empty Variant of type 0, indicating that the variant is uninitialized.
Nothing 0 Value indicating that an object variable no longer references a valid

object.
Null Null Variant of type 1, indicating that the variant contains no data.

Constant Value Description

Constant Value Description
ebUpperCase 1 Converts string to uppercase.
ebLowerCase 2 Converts string to lowercase.
ebProperCase 3 Capitalizes the first letter of each word.
ebWide 4 Converts narrow characters to wide characters.
ebNarrow 8 Converts wide characters to narrow characters.
ebKatakana 16 Converts Hiragana characters to Katakana characters.
ebHiragana 32 Converts Katakana characters to Hiragana characters.
ebUnicode 64 Converts string from MBCS to UNICODE.
ebFromUnicode 128 Converts string from UNICODE to MBCS.

Description Constant Value
ebEmpty 0 Variant has not been initialized.
ebNull 1 Variant contains no valid data.
ebInteger 2 Variant contains an integer.
ebLong 3 Variant contains a long.
ebSingle 4 Variant contains a single.
ebDouble 5 Variant contains a double.
ebCurrency 6 Variant contains a currency.
ebDate 7 Variant contains a date.
ebString 8 Variant contains a string.
ebObject 9 Variant contains an Object.
ebError 10 Variant contains an Error.
ebBoolean 11 Variant contains a boolean.
ebVariant 12 Variant contains an array of variants.
ebDataObject 13 Variant contains a data object.
ebArray 8192 Added to any of the other types to indicate an array of that type.
179

Cos
Cos
Syntax Cos(number)

Description Returns a Double representing the cosine of number. The number parameter is a Double specifying an
angle in radians.

Example Sub Main
 c# = Cos(3.14159 / 4)
 Session.Echo "The cosine of 45 degrees is: " & c#
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

CreateObject
Syntax CreateObject(class)

Description Creates an OLE Automation object and returns a reference to that object. The class parameter
specifies the application used to create the object and the type of object being created. It uses the
following syntax:

"application.class",

where application is the application used to create the object and class is the type of the object to
create.

At runtime, CreateObject looks for the given application and runs that application if found. Once the
object is created, its properties and methods can be accessed using the dot syntax (e.g.,
object.property = value).

There may be a slight delay when an automation server is loaded (this depends on the speed with
which a server can be loaded from disk). This delay is reduced if an instance of the automation server
is already loaded.

Examples This example uses CreateObject to instantiate a Visio object. It then uses the resulting object to create
a new document.

Sub Main
 Dim Visio As Object
 Dim doc As Object
 Dim page As Object
 Dim shape As Object
 Set Visio = CreateObject("visio.application")
 'Create Visio object.
 Set doc = Visio.Documents.Add("") 'Create a new doc.
 Set page = doc.Pages(1) 'Get first page.
 Set shape = page.DrawRectangle(1,1,4,4)
 shape.text = "Hello, world." 'Set text within shape.
End Sub
180

CSng
See Also Objects on page 10; DDE Access on page 11

CSng
Syntax CSng(expression)

Description Converts expression to a Single. This function accepts any expression convertible to a Single,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0.0. A
runtime error results if the passed expression is not within the valid range for Single.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Single.

When used with variants, this function guarantees that the expression is converted to a Single variant
(VarType 4).

Example Sub Main
 s$ = "100"
 Session.Echo "The single value is: " & CSng(s$)
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

CStr
Syntax CStr(expression)

Description Converts expression to a String. Unlike Str$ or Str, the string returned by CStr will not contain a
leading space if the expression is positive. Further, the CStr function correctly recognizes thousands
and decimal separators for your locale. Different data types are converted to String in accordance
with the following rules:

Example Sub Main
 s# = 123.456
 Session.Echo "The string value is: " & CStr(s#)
End Sub

Data Type CStr Returns
Any numeric type A string containing the number without the leading space for positive

values
Date A string converted to a date using the short date format
Boolean A string containing either "True" or "False"
Null variant A runtime error
Empty variant A zero-length string
181

CurDir, CurDir$
See Also Character and String Manipulation on page 2; Keywords, Data Types, Operators, and Expressions on
page 4

CurDir, CurDir$
Syntax CurDir[$][(drive)]

Description Returns the current directory on the specified drive. If no drive is specified or drive is zero-length,
then the current directory on the current drive is returned. CurDir$ returns a String, whereas CurDir
returns a String variant. There is a runtime error if drive is invalid.

Example Const crlf = Chr$(13) + Chr$(10)
Sub Main
 save$ = CurDir$
 ChDir ("..")
 Session.Echo "Old directory: " & save$ & crlf & "New directory: " & CurDir$
 ChDir (save$)
 Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also Drive, Folder, and File Access on page 3

Currency (data type)
Syntax Currency

Description Use to declare variables capable of holding fixed-point numbers with 15 digits to the left of the
decimal point and 4 digits to the right. Currency variables are used to hold numbers within the
following range:

-922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving money.

The type-declaration character for Currency is @.

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing within a
structure, currency values require 8 bytes of storage. When used with binary or random files, 8 bytes
of storage are required.

See Also Keywords, Data Types, Operators, and Expressions on page 4

CVar
Syntax CVar(expression)

Description Converts expression to a Variant.
182

CVErr
Note Use of this function is not required because assignment to variant variables automatically performs the
necessary conversion:

Sub Main()
 Dim v As Variant
 v = 4 & "th" 'Assigns "4th" to v.
 Session.Echo "You came in: " & v
 v = CVar(4 & "th") 'Assigns "4th" to v.
 Session.Echo "You came in: " & v
End Sub

Example Sub Main
 Dim s As String
 Dim a As Variant
 s = CStr("The quick brown fox ")
 mesg = CVar(s & "jumped over the lazy dog.")
 Session.Echo mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

CVErr
Syntax CVErr(expression)

Description This function converts an expression into a user-defined error number. A runtime error is generated
under the following conditions:

• If expression is Null.

• If expression is a number outside the legal range for errors, which is as follows:

0 <= expression <= 65535

• If expression is boolean.

• If expression is a String that can't be converted to a number within the legal range.

Empty is treated as 0.

Example Sub Main
 Session.Echo "The error is: " & CStr(CVErr(2046))
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
183

D

Date (data type)
Syntax Date

Description Is capable of holding date and time values. Date variables are used to hold dates within the following
range:

January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

-6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the number of days
since midnight, December 30, 1899, and the fractional part holds the number of seconds as a fraction
of the day. For example, the number 32874.5 represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when used with binary
or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e., December 30, 1899).

Date literals
Literal dates are specified using pound signs:

Dim d As Date
d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs at runtime,
using the current country settings. This is a problem when interpreting dates such as 1/2/1990. If the
date format is M/D/Y, then this date is January 2, 1990. If the date format is D/M/Y, then this date is
February 1, 1990. To remove any ambiguity when interpreting dates, use the universal date format:
185

Date (data type)
date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965, using the universal date format:

Dim d As Date
d = #1965/6/3 10:23:45#

Dates and Year 2000 Calculations
The Date object in Persoft's macro language always stores the year with 4 digits, regardless of how the
date was entered. However, if a year is specified with only two digits, and that year is less than 30,
then the macro language assumes a twenty-first century date. Otherwise, it assumes a twentieth-
century date. In pseudocode, the decision looks like this:

If 0 < two-digit year < 30 Then
 year = 2000 + two-digit year
Else
 year = 1900 + two-digit year
End If

For example, if you specify the date 1/1/29, the macro language stores it as 1/1/2029 and all
calculations will assume the year to be 2029: However, if you specify the date 1/1/30, then the macro
language stores it as 1/1/1930.

Compensating for dates specifying two-digit years
Because the macro language calculates years correctly given four-digit dates, our recommendation is
that at all times dates in your macros specify the year with four digits. Ensuring that this is the case
may require you to revise your macros if one or more date sources specify two-digit years. There are
three possible sources for dates specifying two-digit years:

• Date literals (such as #1/1/24#)

• Macro input routines that allow users to specify two-digit years

• Legacy data in a source that contains dates specifying two-digit years

Date literals
If you have date literals specifying two-digit years, the solution is simple: revise the macros to specify
all four digits of years in the date literals. Since date literals are marked off on either end with the
pound (#) character, it's easy to use the Macro Editor or any ASCII text editor to search macros for
date literals.

For example, the following macro incorrectly sets the default startup date to 2029 by specifying the
date literal with a two-digit year:

Sub testdate1
'!Example of the incorrect definition of a date literal
 Dim StartupDate#, DefaultStartupDate#
 DefaultStartupDate= #7/12/29# 'This is the problem definition
186

Date (data type)
 ' Make sure that StartupDate is defined:
 ' Note that 12/30/1899 is the zero-point for dates.
 If StartupDate# = 0 Then
 MsgBox "StartupDate= " & Format(StartupDate#, "long date")
 StartupDate#= DefaultStartupDate#
 End If

 MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

This macro has a routine that makes sure that StartupDate# is at least set to a default value before
later performing operations on it. Unfortunately, the default value (DefaultStartupDate#) is not
clearly specified with a four-digit year. You might not catch this error unless the StartupDate# variable
was undefined for some reason, and so became set to 7/12/2029. To correct this error, search through
your macros and make sure that date literals specify all four digits for the year:

Sub testdate2
'!Example of the correct definition of a date literal
 Dim StartupDate#, DefaultStartupDate#
 DefaultStartupDate= #7/12/1929# 'This is the corrected definition

 ' Make sure that StartupDate is defined:
 ' Note that 12/30/1899 is the zero-point for dates.
 If StartupDate# = 0 Then
 MsgBox "StartupDate= " & Format(StartupDate#, "long date")
 StartupDate#= DefaultStartupDate#
 End If

 MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

Date input
If you have macro input routines that allow users to specify two-digit years, the solution is to revise
the macros to check for four-digit years, forcing the user to re-specify the date if they fail to comply.
The following code fragment provides a simple check (although it does not check for other input
errors).

Sub testdate3
'! Example showing how to check for a 4-digit year in user input.
 Dim strDate$, strMonth$, strDay$, strYear$, EnteredDate#

 Do While len(strYear$) < 4 'Loop until the year has 4 digits:
 StrDate$= InputBox("Enter date (MM/DD/YYYY): ", "Date Converted")

 If StrDate$ = "" Then 'Clicked OK without entering a date,
 Exit Sub 'so we quit the macro
 End If

 'Parse each item in the date
 strMonth$ = Item$(strDate$, 1, 1, "/")
 strDay$ = Item$(strDate$, 2, 2, "/")
 strYear$ = Item$(strDate$, 3, 3, "/")
 Loop

 'OK, the year finally has 4 digits. Confirm the date:
187

Date (data type)
 EnteredDate# = CDate(strDate$)
 MsgBox "Date entered: " & strDate$

End Sub

When you run this macro, an input box appears asking for the date and indicating the correct format.
If you click OK without entering anything, the macro ends. Otherwise, it loops as long as the year has
fewer than four digits, redisplaying the input box for a correct date. When the macro detects that the
year has been correctly entered, then it displays a message box confirming the date.

Legacy data
If you have legacy data in a source that specifies dates using only two digits for the year, which cannot
be changed to specify four digits for the year, and you anticipate adding new data to that source, your
macros will have to compensate. How you compensate will depend upon what kind of date
information is being stored, and what operations you need to perform on the dates.

For example, if you need to calculate the span of years between a date stored in the database and today,
and you know that a negative timespan would be an error, you can test for a negative timespan and
then correct it if it occurs. The following code fragment provides a simple example.

Sub testdate4
'!Example showing how to correct for 2-digit dates in legacy data

 Dim date1 As Date
 Dim date2 As Date
 Dim diff As Date
 date1 = #1/1/24# 'This date would come from the database
 date2 = Date 'This is the current date

'Now calculate the elapsed years: date2 - date1
 diff = DateDiff("yyyy",date1,date2)
 MsgBox "The raw date difference is: " & CDbl(diff) & " years."

'Now run the correction routine. If the elapsed timeperiod is negative, then
'subtract a century from date1 and recalculate. Otherwise, everything is fine.
 If CInt(diff)<0 Then
 date1= DateAdd("yyyy", -100, date1)
 MsgBox "The corrected date1 year is: " & DatePart("yyyy", date1)
 diff = DateDiff("yyyy",date1, date2)
 MsgBox "The corrected date difference is " & CDbl(diff) & " years."
 Else
 MsgBox "The date difference, " & CDbl(diff) & " years, was correct."
 End if

End Sub

This macro first calcuates the number of years between date1# and date2#. If the result is negative,
then the macro subtracts a century from date1# and recalculates the difference. To verify that the
macro does not subtract a century from valid dates, replace the line defining date1# as #1/1/24# to
define the year with four digits: #1/1/1924#.

See Also Keywords, Data Types, Operators, and Expressions on page 4; Time and Date Access on page 10
188

Date, Date$ (functions)
Date, Date$ (functions)
Syntax Date[$][()]

Description Returns the current system date. The Date$ function returns the date using the short date format. The
Date function returns the date as a Date variant.

Use the Date/Date$ statements to set the system date.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 TheDate$ = Date$()
 Date$ = "01/01/95"
 Session.Echo "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date$()
 Date$ = TheDate$
 Session.Echo "Restored date to: " & TheDate$
End Sub

See Also Time and Date Access on page 10

Date, Date$ (statements)
Syntax Date[$] = newdate

Description Sets the system date to the specified date. The Date$ statement requires a string variable using one of
the following formats:

MM-DD-YYYY
MM-DD-YY
MM/DD/YYYY
MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is a two-digit day between 1 and 31, and YYYY is
a four-digit year between 1/1/100 and 12/31/9999.

The Date statement converts any expression to a date, including string and numeric values. Unlike the
Date$ statement, Date recognizes many different date formats, including abbreviated and full month
names and a variety of ordering options. If newdate contains a time component, it is accepted, but the
time is not changed. An error occurs if newdate cannot be interpreted as a valid date.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 TheDate$ = Date$()
 Date$ = "01/01/95"
 Session.Echo "Saved date: " & TheDate$ & crlf & "Changed date: " & _
Date$()
 Date$ = TheDate$
 Session.Echo "Restored date to: " & TheDate$
End Sub
189

DateAdd
See Also Time and Date Access on page 10

DateAdd
Syntax DateAdd(interval, number, date)

Description Returns a Date variant representing the sum of date and a specified number (number) of time intervals
(interval). This function adds a specified number (number) of time intervals (interval) to the
specified date (date). The following table describes the named parameters to the DateAdd function:

The interval parameter specifies what unit of time is to be added to the given date. It can be any of
the following:

To add days to a date, you may use either day, day of the year, or weekday, as they are all equivalent
("d", "y", "w").

The DateAdd function will never return an invalid date/time expression. The following example adds
two months to December 31, 1992:

s# = DateAdd("m", 2, "December 31, 1992")

Parameter Description
interval String expression indicating the time interval used in the addition.
number Integer indicating the number of time intervals you wish to add. Positive values result

in dates in the future; negative values result in dates in the past.
date Any expression convertible to a date string expression. An example of a valid date/

time string would be "January 1, 1993".

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday
190

DateDiff
In this example, s$ is returned as the double-precision number equal to "February 28, 1993", not
"February 31, 1993".

There is a runtime error if you try subtracting a time interval that is larger than the time value of the
date.

Example Sub Main
 Dim sdate$
 sdate$ = Date$
 NewDate# = DateAdd("yyyy", 4, sdate$)
 NewDate# = DateAdd("m", 3, NewDate#)
 NewDate# = DateAdd("ww", 2, NewDate#)
 NewDate# = DateAdd("d", 1, NewDate#)
 s$ = "Four years, three months, two weeks, and one day from now: "
 s$ = s$ & Format(NewDate#, "long date")
 Session.Echo s$
End Sub

See Also Time and Date Access on page 10

DateDiff
Syntax DateDiff(interval, date1, date2 [, [firstdayofweek] [,firstweekofyear]])

Description Returns a Date variant representing the number of given time intervals between date1 and date2.
The following describes the named parameters:

The following lists the valid time interval strings and the meanings of each. The Format$ function
uses the same expressions

Parameter Description
interval String expression indicating the specific time interval you wish to find the dif-

ference between. An error is generated if interval is null.
date1 Any expression convertible to a date. An example of a valid date/time string

would be "January 1, 1994".
date2 Any expression convertible to a date. An example of a valid date/time string

would be "January 1, 1994".
firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed (i.e.,

the constant ebSunday described below).
firstweekofyear Indicates the first week of the year. If omitted, then the first week of the year

is considered to be that containing January 1 (i.e., the constant ebFirstJan1 as
described below).
191

DateDiff
To find the number of days between two dates, you may use either day or day of the year, as they are
both equivalent ("d", "y").

The time interval weekday ("w") will return the number of weekdays occurring between date1 and
date2, counting the first occurrence but not the last. However, if the time interval is week ("ww"), the
function will return the number of calendar weeks between date1 and date2, counting the number
of Sundays. If date1 falls on a Sunday, then that day is counted, but if date2 falls on a Sunday, it is
not counted.

The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofweek.
ebSunday 1 Sunday (the default)
ebMonday 2 Monday
ebTuesday 3 Tuesday
ebWednesday 4 Wednesday
ebThursday 5 Thursday
ebFriday 6 Friday
ebSaturday 7 Saturday
192

DatePart
The DateDiff function will return a negative date/time value if date1 is a date later in time than date2.
If date1 or date2 are Null, then Null is returned.

Example Sub Main
 today$ = Format(Date$,"Short Date")
 NextWeek = Format(DateAdd("d", 14, today$),"Short Date")
 DifDays# = DateDiff("d", today$, NextWeek)
 DifWeek# = DateDiff("w", today$, NextWeek)
 s$ = "The difference between " & today$ & " and " & NextWeek
 s$ = s$ & " is: " & DifDays# & " days or " & DifWeek# & " weeks"
 Session.Echo s$
End Sub

See Also Time and Date Access on page 10

DatePart
Syntax DatePart(interval, date [, [firstdayofweek] [,firstweekofyear]])

Description Returns an Integer representing a specific part of a date/time expression. The DatePart function
decomposes the specified date and returns a given date/time element. The following table describes
the named parameters:

The following table lists the valid time interval strings and the meanings of each. The Format$
function uses the same expressions.

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofyear.
ebfirstjan1 1 The first week of the year is that in which January 1 occurs (the

default).
ebfirstfourdays 2 The first week of the year is that containing at least four days in the

year.
ebfirstfullweek 3 The first week of the year is the first full week of the year.

Parameter Description
interval String expression that indicates the specific time interval you wish to identify

within the given date.
date Any expression convertible to a date. An example of a valid date/time string

would be "January 1, 1995".
firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed (i.e.,

the constant ebSunday described below).
firstweekofyear Indicates the first week of the year. If omitted, then the first week of the year

is considered to be that containing January 1 (i.e., the constant ebFirstJan1
as described bellow).
193

DatePart
The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 today$ = Date$
 qtr = DatePart("q",today$)

Time Interval
"y" Day of the year
"yyyy" Year
"d" Day
"m" Month
"q" Quarter
"ww" Week
"h" Hour
"n" Minute
"s" Second
"w" Weekday

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofweek.
ebsunday 1 Sunday (the default)
ebMonday 2 Monday
ebTuesday 3 Tuesday
ebWednesday 4 Wednesday
ebThursday 5 Thursday
ebFriday 6 Friday
ebSaturday 7 Saturday

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofyear.
ebfirstjan1 1 The first week of the year is that in which January 1 occurs (the

default).
ebfirstfourdays 2 The first week of the year is that containing at least four days in the

year.
ebfirstfullweek 3 The first week of the year is the first full week of the year.
194

DateSerial
 yr = DatePart("yyyy",today$)
 mo = DatePart("m",today$)
 wk = DatePart("ww",today$)
 da = DatePart("d",today$)
 s$ = "Quarter: " & qtr & crlf
 s$ = s$ & "Year : " & yr & crlf
 s$ = s$ & "Month : " & mo & crlf
 s$ = s$ & "Week : " & wk & crlf
 s$ = s$ & "Day : " & da & crlf
 Session.Echo s$
End Sub

See Also Time and Date Access on page 10

DateSerial
Syntax DateSerial(year, month, day)

Description Returns a Date variant representing the specified date. The DateSerial function takes the following
named parameters:

Example Sub Main
 tdate# = DateSerial(1993,08,22)
 Session.Echo "The DateSerial value for August 22, 1993, is: " & tdate#
End Sub

See Also Time and Date Access on page 10

DateValue
Syntax DateValue(date)

Description Returns a Date variant representing the date contained in the specified string argument.

Example Sub Main
 tdate$ = Date$
 tday = DateValue(tdate$)
 Session.Echo tdate & " date value is: " & tday$
End Sub

See Also Time and Date Access on page 10

Day
Syntax Day(date)

Named Parameter Description
year Integer between 100 and 9999
month Integer between 1 and 12
day Integer between 1 and 31
195

DDB
Description Returns the day of the month specified by date. The value returned is an Integer between 0 and 31
inclusive. The date parameter is any expression that converts to a Date.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 CurDate = Now()
 Session.Echo "Today is day " & Day(CurDate) & " of the month." & _
crlf & _ "Tomorrow is day " & Day(CurDate + 1)
End Sub

See Also Time and Date Access on page 10

DDB
Syntax DDB(cost, salvage, life, period [,factor])

Description Calculates the depreciation of an asset for a specified period of time using the double-declining
balance method. The double-declining balance method calculates the depreciation of an asset at an
accelerated rate. The depreciation is at its highest in the first period and becomes progressively lower
in each additional period. DDB uses the following formula to calculate the depreciation:

DDB =((Cost-Total_depreciation_from_all_other_periods) * 2)/Life

The DDB function uses the following named parameters:

The life and period parameters must be expressed using the same units. For example, if life is
expressed in months, then period must also be expressed in months.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 s$ = "Depreciation Table" & crlf & crlf
 For yy = 1 To 4
 CurDep# = DDB(10000.0,2000.0,10,yy)
 s$ = s$ & "Year " & yy & " : " & CurDep# & crlf
 Next yy
 Session.Echo s$
End Sub

Parameter Description
cost Double representing the initial cost of the asset
salvage Double representing the estimated value of the asset at the end of its predicted useful

life
life Double representing the predicted length of the asset's useful life
period Double representing the period for which you wish to calculate the depreciation
factor Depreciation factor determining the rate the balance declines. If this parameter is

missing, then 2 is assumed (double-declining method).
196

DDEExecute
See Also Numeric, Math, and Accounting Functions on page 5

DDEExecute
Syntax DDEExecute channel, command$

Description Executes a command in another application. The DDEExecute statement takes the following
parameters:

If the receiving application does not execute the instructions, there is a runtime error.

Example This example selects a cell in an Excel spreadsheet.

Sub Main
 q$ = Chr(34)
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
 DDEExecute ch%,cmd$
 DDETerminate ch%
End Sub

See Also DDE Access on page 11

DDEInitiate
Syntax DDEInitiate(application$, topic$)

Description Initializes a DDE link to another application and returns a unique number subsequently used to refer
to the open DDE channel. The DDEInitiate statement takes the following parameters:

This function returns 0 if the compiler cannot establish the link. This will occur under any of the fol-
lowing circumstances:

• The specified application is not running.

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate. An error

will result if channel is invalid.
command$ String containing the command to be executed. The format of command$ depends on

the receiving application.

Parameter Description
application$ String containing the name of the application (the server) with which a DDE con-

versation will be established.
topic$ String containing the name of the topic for the conversation. The possible values

for this parameter are described in the documentation for the server application.
197

DDEPoke
• The topic was invalid for that application.

• Memory or system resources are insufficient to establish the DDE link.

Example This example selects a range of cells in an Excel spreadsheet.

Sub Main
 q$ = Chr(34)
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
 DDEExecute ch%,cmd$
 DDETerminate ch%
End Sub

See Also DDE Access on page 11

DDEPoke
Syntax DDEPoke channel, DataItem, value

Description Sets the value of a data item in the receiving application associated with an open DDE link. The
DDEPoke statement takes the following parameters:

Example This example pokes a value into an Excel spreadsheet.

Sub Main
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 DDEPoke ch%,"R1C1","980"
 DDETerminate ch%
End Sub

See Also DDE Access on page 11

DDERequest, DDERequest$
Syntax DDERequest[$](channel,DataItem$)

Description Returns the value of the given data item in the receiving application associated with the open DDE
channel. DDERequest$ returns a String, whereas DDERequest returns a String variant. The
DDERequest/DDERequest$ functions take the following parameters:

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate. An error

will result if channel is invalid.
DataItem Data item to be set. This parameter can be any expression convertible to a string.

The format depends on the server.
Value The new value for the data item. This parameter can be any expression convertible

to a string. The format depends on the server. A runtime error is generated if value is
null.
198

DDESend
The format for the returned value depends on the server.

Example This example gets a value from an Excel spreadsheet.

Sub Main
 ch% = DDEInitiate("Excel","c:\excel\test.xls")
 s$ = DDERequest$(ch%,"R1C1")
 DDETerminate ch%
 Session.Echo s$
End Sub

See Also DDE Access on page 11

DDESend
Syntax DDESend application$, topic$, DataItem, value

Description Initiates a DDE conversation with the server as specified by application$ and topic$ and sends that
server a new value for the specified item. The DDESend statement takes the following parameters:

The DDESend statement performs the equivalent of the following statements:

ch% = DDEInitiate(application$, topic$)
DDEPoke ch%, item, data
DDETerminate ch%

Example This code sets the content of the first cell in an Excel spreadsheet.

Parameter Description
channel Integer containing the DDE channel number returned from DDEInitiate. An error

results if channel is invalid.
DataItem$ String containing the name of the data item to request. The format for this parameter

depends on the server.

Parameter Description
application$ String containing the name of the application (the server) with which a DDE con-

versation will be established.
topic$ String containing the name of the topic for the conversation. The possible values for

this parameter are described in the documentation for the server application.
DataItem Data item to be set. This parameter can be any expression convertible to a string.

The format depends on the server.
Value New value for the data item. This parameter can be any expression convertible to a

string. The format depends on the server. A runtime error is generated if value is
null.
199

DDETerminate
Sub Main
 On Error Goto Trap1
 DDESend "Excel","c:\excel\test.xls","R1C1","Hello, world."
 On Error Goto 0
 'Add more lines here.
Exit Sub
Trap1:
 MsgBox "Error sending data to Excel."
End Sub

See Also DDE Access on page 11

DDETerminate
Syntax DDETerminate channel

Description Closes the specified DDE channel. The channel parameter is an Integer containing the DDE channel
number returned from DDEInitiate. An error will result if channel is invalid. All open DDE channels
are automatically terminated when the macro ends.

Example This code sets the content of the first cell in an Excel spreadsheet.

Sub Main
 q$ = Chr(34)
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
 DDEExecute ch%,cmd$
 DDETerminate ch%
End Sub

See Also DDE Access on page 11

DDETerminateAll
Syntax DDETerminateAll

Description Closes all open DDE channels. All open DDE channels are automatically terminated when the macro
ends.

Example This code selects the contents of the first cell in an Excel spreadsheet.

Sub Main
 q$ = Chr(34)
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
 DDEExecute ch%,cmd$
 DDETerminateAll
End Sub

See Also DDE Access on page 11
200

DDETimeout
DDETimeout
Syntax DDETimeout milliseconds

Description Sets the number of milliseconds that must elapse before any DDE command times out. The
milliseconds parameter is a Long and must be within the following range:

0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example Sub Main
 q$ = Chr(34)
 ch% = DDEInitiate("Excel","c:\sheets\test.xls")
 DDETimeout(20000)
 cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
 DDEExecute ch%,cmd$
 DDETerminate ch%
End Sub

See Also DDE Access on page 11

Declare
Syntax Declare {Sub | Function} name[TypeChar] [{[ParameterList]}] [As type]

Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System |
StdCall] [Lib "LibName$" [Alias "AliasName$"]] [([ParameterList])] [As type]

The first syntax is for prototyping subroutines and functions for later portions of the macro or for other
members of the macro collective, while the second syntax is for declaring compiled routines stored in
external .DLL files. In both cases, ParameterList is a comma-separated list of the following (up to
30 parameters are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description Declare statements must appear outside of any Sub or Function declaration. Declare statements are
only valid during the life of the macro in which they appear. The Declare statement uses the following
parameters:
201

Declare
Parameter Description
name Any valid name. When you declare functions, you can include a type-declaration char-

acter to indicate the return type. This name is specified as a normal keyword— i.e., it
does not appear within quotes.

TypeChar An optional type-declaration character used when defining the type of data returned
from functions. It can be any of the following characters: #, !, $, @, %, or &. For
external functions, the @ character is not allowed. Type-declaration characters can
only appear with function declarations, and take the place of the As type clause. Cur-
rency data cannot be returned from external functions. Therefore, the @ type-declara-
tion character cannot be used when declaring external functions.

Decl Optional keyword indicating that the external subroutine or function uses the C calling
convention. With C routines, arguments are pushed right to left on the stack and the
caller performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or function uses the Pascal
calling convention. With Pascal routines, arguments are pushed left to right on the
stack and the called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or function uses the System
calling convention. With System routines, arguments are pushed right to left on the
stack, the caller performs stack cleanup, and the number of arguments is specified in
the AL register.

StdCall Optional keyword indicating that the external subroutine or function uses the StdCall
calling convention. With StdCall routines, arguments are pushed right to left on the
stack and the called function performs stack cleanup.

LibName$ Must be specified if the routine is stored in an external .DLL file. This parameter spec-
ifies the name of the library or code resource containing the external routine and must
appear within quotes. The LibName$ parameter can include an optional path specifying
the exact location of the library or code resource. Alias name that must be given to
provide the name of the routine if the name parameter is not the routine's real name.
For example, the following two statements declare the same routine:

Declare Function GetCurrentTime Lib "user" () As Integer

Declare Function GetTime Lib "user" Alias "GetCurrentTime" _As Integer

Use an alias when the name of an external routine conflicts with the name of an inter-
nal routine or when the external routine name contains invalid characters. The Alias-
Name$ parameter must appear within quotes.

type Indicates the return type for functions. For external functions, the valid return types
are: integer, long, string, single, double, date, boolean, and data objects. Currency,
variant, fixed-length strings, arrays, OLE Automation objects, and user-defined types
cannot be returned by external functions.
202

Declare
Prototying macro subroutines and functions
Functions that need to be accessible to other members of the macro collective must be prototyped with
the Declare statement. This prototyping is optional for subroutines unless you have also required
explicit type-checking with the Option Explicit statement.

The following sample shows how to prototype subroutines and functions, and how to call those
subroutines and functions from other macros in the collective. See “Modules and collectives” on
page 24 for more information on which modules can provide subroutines and functions, and which
modules can access them.

Optional Keyword indicating that the parameter is optional. All optional parameters must be of
type variant. Furthermore, all parameters that follow the first optional parameter must
also be optional. If this keyword is omitted, then the parameter being defined is
required when calling this subroutine or function.

ByVal Optional keyword indicating that the caller will pass the parameter by value. Parame-
ters passed by value cannot be changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the parameter by reference.
Parameters passed by reference can be changed by the called routine. If neither ByVal
or ByRef are specified, then ByRef is assumed.

Parameter-
Name

Name of the parameter, which must follow naming conventions:
Must start with a letter; may contain letters, digits, and the underscore character (_).
Punctuation and type-declaration characters are not allowed. The exclamation point (!)
can appear within the name as long as it is not the last character, in which case it is
interpreted as a type-declaration character.
Must not exceed 80 characters in length. Also, ParameterName can end with an
optional type-declaration character specifying the type of that parameter (i.e., any of
the following characters: %, &, !, #, @).

() Indicates that the parameter is an array.
Parameter-
Type

Specifies the type of the parameter (e.g., integer, string, variant, and so on). The As
ParameterType clause should only be included if ParameterName does not contain a
type-declaration character. In addition to the default data types, ParameterType can
specify any user-defined structure, OLE Automation object, or data object . If the data
type of the parameter is not known in advance, then the Any keyword can be used.
This forces the compiler to relax type checking, allowing any data type to be passed in
place of the given argument. For example:
Declare Sub Convert Lib "mylib" (a As Any)
The Any data type can only be used when passing parameters to external routines.

Parameter Description
203

Declare
Adding and subtracting via prototypes
In this example, we create a small palette of SmarTerm Buttons that ask for two numbers and either
add them or multiply them. Follow these steps:

1. Use the Tools>Macros command to add a subroutine called Add to the user macro file. The macro
should look like this:

Sub Add(x As Double, y As Double)
 '! Add two numbers.
 Msgbox x & " plus " & y & " equals " & x + y
End Sub

2. While you have the user macro file open, add the following function after the Add subroutine.

Function Multiply(x As Double, y As Double) As Double
 'Multiply two numbers together.
 Multiply = x * y
End Function

Then save and close the user macro file.

3. Now create a new palette of SmarTerm Buttons called Math. It should have two buttons, an Add
button and a Multiply button.

4. Edit the Add button to attach an embedded macro called GetSum. GetSum should look like this:

Sub GetSum
 '! Add to numbers by calling Add() in the user macro file.
 Dim x As Double
 Dim y As Double
 x = InputBox("Enter the first number.", "Addition Example")
 y = InputBox("Enter the first number.", "Addition Example")

 Add x,y ’Using the Add subroutine in the user macro file

End Sub

Save the macro and close the macro editor.

5. Now edit the Multiply button to attach an embedded macro called GetProduct. GetProduct should
look like this:

Sub GetProduct
 'Multiply two numbers using the Multiply function in the user macro file
 Dim Product
 Dim x As Double
 Dim y As Double
 x = InputBox("Enter the first number.", "Multiplication Example")
 y = InputBox("Enter the first number.", "Multiplication Example")

 Product = Multiply(x,y) ’Using the Multiply function in the user macro file

 Msgbox x & " times " & CStr(y) & " equals " & Product, ebOKOnly, "Muliplication"
End Sub
204

Declare
6. Don’t save and close the macro file just yet. While you have this macro open, scroll to the top of the
editor and insert the following lines to the very beginning of the file:

Option Explicit
Declare Sub Add(x As Double, y As Double)
Declare Function Multiply(x As Double, y as Double) As Double

The first line sets the compiler to require type-checking. You must add this line to be able to access
external functions. The next line prototypes the Add subroutine, and the third line prototypes the
Multiply function.

7. Now save and close the macro file, save the palette and close the palette editor, and try out your new
Buttons. You can confirm that subroutines are available without Option Explicit by commenting out
the Option Explicit statement in the Buttons macro and then trying out the Buttons again. The Add
Button will work, while the Multiply Button will halt with an error message.

Declaring routines in external .DLL files
The following sections describe some of the issues involved in calling routines stored in external .DLL
files. This is a very powerful feature of the macro language, as it gives you access to any routine in
any accessible .DLL file on the computer. However, because of differences in calling conventions and
data representation, it can be tricky to implement.

Passing parameters
By default, the compiler passes arguments by reference. Many external routines require a value rather
than a reference to a value. The ByVal keyword does this. For example, this C routine:
void MessageBeep(int);

would be declared as follows:

Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

As an example of passing parameters by reference, consider the following C routine which requires a
pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

This routine would be declared as follows (notice the ByRef keyword in the third parameter):

Declare Function SystemParametersInfo Lib "user" (ByVal action As Integer, _
ByVal uParam As Integer,ByRef pInfo As Integer, ByVal updateINI As Integer) _
As Integer

Strings can be passed by reference or by value. When they are passed by reference, a pointer to a
pointer to a null-terminated string is passed. When they are passed by value, the compiler passes a
pointer to a null-terminated string (i.e., a C string).

When passing a string by reference, the external routine can change the pointer or modify the contents
205

Declare
of the existing. If an external routine modifies a passed string variable (regardless of whether the string
was passed by reference or by value), then there must be sufficient space within the string to hold the
returned characters. This can be accomplished using the Space function, as shown in the following ex-
ample:
Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal length%)

Sub Main
 Dim s As String
 s = Space(128)
 GetWindowsDirectory s,128
End Sub

Another alternative to ensure that a string has sufficient space is to declare the string with a fixed
length:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal length%)

Sub Main
 Dim s As String * 128
 GetWindowsDirectory s,len(s)
End Sub

Calling conventions with external routines
For external routines, the argument list must exactly match that of the referenced routine. When
calling an external subroutine or function, the compiler needs to be told how that routine expects to
receive its parameters and who is responsible for cleanup of the stack. The following table describes
the macro language’s calling conventions and how these translate to those supported by C.

Passing null pointers
For external routines defined to receive strings by value, the compiler passes uninitialized strings as
null pointers (a pointer whose value is 0). The constant ebNullString can be used to force a null
pointer to be passed as shown below:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main
 Foo ebNullString 'pass a null pointer
End Sub

Macro Call C Call Characteristics
StdCall _stdcall Arguments are pushed right to left. The called function performs stack

cleanup. This is the default.
Pascal pascal Arguments are pushed left to right. The called function performs stack

cleanup
Cdecl cdec1 Arguments are pushed right to left. The caller performs stack cleanup.
206

Declare
Another way to pass a null pointer is to declare the parameter that is to receive the null pointer as type
Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main
 Foo ByVal 0& 'Pass a null pointer.
End Sub

Passing data to external routines
The following table shows how the different data types are passed to external routines:

Data Type Passed As
ByRef Boolean Pointer to a 2-byte value containing –1 or 0.
ByVal Boolean 2-byte value containing –1 or 0.
ByVal Integer Pointer to a 2-byte short integer.
ByRef Integer 2-byte short integer.
ByVal Long Pointer to a 4-byte long integer.
ByRef Long 4-byte long integer.
ByRef Single Pointer to a 4-byte IEEE floating-point value (a float).
ByVal Single 4-byte IEEE floating-point value (a float).
ByRef Double Pointer to an 8-byte IEEE floating-point value (a double).
ByVal Double 8-byte IEEE floating-point value (a double).
ByVal String A pointer to a null-terminated string. With strings containing embedded nulls

(Chr$(0)), it is not possible to determine which null represents the end of the
string; therefore, the first null is considered the string terminator. An external
routine can freely change the content of a string. It cannot, however, write
beyond the end of the null terminator.

ByRef String A pointer to a pointer to a null-terminated string. With strings containing
embedded nulls (Chr$(0)), it is not possible to determine which null represents
the end of the string; therefore, the first null is considered the string terminator.
An external routine can freely change the content of a string. It cannot, however,
write beyond the end of the null terminator.

ByRef Variant A pointer to a 16-byte variant structure. This structure contains a 2-byte type
(the same as that returned by the VarType function), followed by 6-bytes of slop
(for alignment), followed by 8-bytes containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte type (the same as
that returned by the VarType function), followed by 6-bytes of slop (for align-
ment), followed by 8-bytes containing the value.
207

Declare
Only variable-length strings can be passed to external routines; fixed-length strings are automatically
converted to variable-length strings.

The compiler passes data to external functions consistent with that routine's prototype as defined by
the Declare statement. There is one exception to this rule: you can override ByRef parameters using
the ByVal keyword when passing individual parameters. The following example shows a number of
different ways to pass an Integer to an external routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main
 Dim i As Integer
 i = 6
 Foo 6 'Passes a temporary integer (value 6) by
 'reference
 Foo i 'Passes variable "i" by reference
 Foo (i) 'Passes a temporary integer (value 6) by
 'reference
 Foo i + 1 'Passes temporary integer (value 7) by
 'reference
 Foo ByVal i 'Passes i by value
End Sub

The above example shows that the only way to override passing a value by reference is to use the
ByVal keyword.

ByVal Object For data objects, a 4-byte unsigned long integer. This value can only be used by
external routines written specifically for the macro language. For OLE Automa-
tion objects, a 32-bit pointer to an LPDISPATCH handle is passed.

ByRef Object For data objects, a pointer to a 4-byte unsigned long integer that references the
object. This value can only be used by external routines written specifically for
the macro language. For OLE Automation objects, a pointer to an LPDIS-
PATCH value is passed.

ByVal User-
defined type

The entire structure is passed to the external routine. It is important to remember
that structures in the macro language are packed on 2-byte boundaries, meaning
that the individual structure members may not be aligned consistently with sim-
ilar structures declared in C.

ByRef User-
defined type

A pointer to the structure. It is important to remember that structures in the
macro language are packed on 2-byte boundaries, meaning that the individual
structure members may not be aligned consistently with similar structures
declared in C.

Arrays A pointer to a packed array of elements of the given type. Arrays can only be
passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Data Type Passed As
208

Declare
Note Use caution when using the ByVal keyword in this way. The external routine Foo expects to receive
a pointer to an Integer—a 32-bit value; using ByVal causes the compiler to pass the Integer by
value—a 16-bit value. Passing data of the wrong size to any external routine will have unpredictable
results.

Returning values from external routines
The compiler supports the following values returned from external routines: Integer, Long, Single,
Double, String, Boolean, and all object types. When returning a String, the compiler assumes that
the first null-terminator is the end of the string.

Calling external routines
The compiler makes a copy of all data passed to external routines. This allows other simultaneously
executing macros to continue executing before the external routine returns.

Care must be exercised when passing the same by-reference variable twice to external routines. When
returning from such calls, the compiler must update the real data from the copies made prior to calling
the external function. Since the same variable was passed twice, you will be unable to determine which
variable will be updated.

External routines are contained in DLLs. The libraries containing the routines are loaded when the
routine is called for the first time (i.e., not when the macro is loaded). This allows a macro to reference
external DLLs that potentially do not exist.

Note You cannot execute routines contained in 16-bit Windows DLLs.

All the Windows API routines are contained in DLLs, such as "user32", "kernel32", and "gdi32". The
file extension ".exe" is implied if another extension is not given.

The Pascal and StdCall calling conventions are identical. Furthermore, the arguments are passed
using C ordering regardless of the calling convention—right to left on the stack.

If the LibName$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

1. The directory containing the compiler

2. The current directory

3. The Windows system directory

4. The Windows directory

5. All directories listed in the path environment variable
209

DefType
If the first character of AliasName$ is #, then the remainder of the characters specify the ordinal
number of the routine to be called. For example, the following two statements are equivalent (under
Win32, GetCurrentTime is defined as GetTickCount, ordinal 300, in kernel32.dll):

Declare Function GetTime Lib "kernel32.dll" Alias "GetTickCount" () As Long

Declare Function GetTime Lib "kernel32.dll" Alias "#300" () As Long

Both name and AliasName$ are case-sensitive.

All strings passed by value are converted to MBCS strings. Similarly, any string returned from an
external routine is assumed to be a null-terminated MBCS string.

The compiler does not perform an increment on OLE automation objects before passing them to
external routines. When returned from an external function, it assumes that the properties and methods
of the OLE automation object are UNICODE and that the object uses the default system locale.

Example Declare Function GetModuleHandle& Lib "kernel32" Alias "GetModuleHandleA" (ByVal_
name2 As_ String)

Declare Function GetProfileString& Lib "Kernel32" Alias "GetProfileStringA" (ByVal_
SName As_ String, ByVal KName As String, ByVal Def As String, ByVal Ret As String,_
ByVal Size As Long)

Sub Main
 SName$ = "Intl" 'Win.ini section name.
 KName$ = "sCountry" 'Win.ini country setting.
 ret$ = String$(255, 0) 'Initialize return string.
 If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then
 Session.Echo "Your country setting is: " & ret$
 Else
 Session.Echo "There is no country setting in your win.ini file."
 End If
 If GetModuleHandle("Progman") Then
 Session.Echo "Progman is loaded."
 Else
 Session.Echo "Progman is not loaded."
 End If
End Sub

See Also Macro Control and Compilation on page 6

DefType
Syntax {DefInt | DefLng | DefStr | DefSng | DefDbl | DefCur | DefObj | DefVar | DefBool |

DefDate} letterrange

Description Establishes the default type assigned to undeclared or untyped variables. The DefType statement
controls automatic type declaration of variables. Normally, if a variable is encountered that hasn't yet
been declared with the Dim, Public, or Private statement or does not appear with an explicit type-
declaration character, then that variable is declared implicitly as a variant (DefVar A–Z). This can be
changed using the DefType statement to specify starting letter ranges for Type other than integer. The
210

DefType
letterrange parameter is used to specify starting letters. Thus, any variable that begins with a
specified character will be declared using the specified Type.

The syntax for letterrange is:

letter [-letter] [,letter [-letter]]...

DefType variable types are superseded by an explicit type declaration using either a type-declaration
character or the Dim, Public, or Private statement.

The DefType statement only affects how macros are compiled and has no effect at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

The following table describes the data types referenced by the different variations of the DefType
statement:

Example DefStr a-l
DefLng m-r
DefSng s-u
DefDbl v-w
DefInt x-z
Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a = 100.52
 m = 100.52
 s = 100.52
 v = 100.52
 x = 100.52
 mesg = "The values are:"
 mesg = mesg & "(String) a: " & a
 mesg = mesg & "(Long) m: " & m
 mesg = mesg & "(Single) s: " & s
 mesg = mesg & "(Double) v: " & v

Statement Data Type
DefInt Integer
DefLng Long
DefStr String
DefSng Single
DefDbl Double
DefCur Currency
DefObj Object
DefVar Variant
DefBool Boolean
DefDate Date
211

Dialog (function)
 mesg = mesg & "(Integer) x: " & x
 Session.Echo mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Dialog (function)
Syntax Dialog(DialogVariable [,[DefaultButton] [,Timeout]])

Description Displays the dialog associated with DialogVariable, returning an Integer indicating which button
was clicked. The Dialog function returns any of the following values:

The Dialog function accepts the following parameters:

Value Function
–1 The OK button was clicked.
0 The Cancel button was clicked.
>0 A push button was clicked. The returned number represents which button was clicked

based on its order in the dialog template (1 is the first push button, 2 is the second push
button, and so on).
212

Dialog (function)
A runtime error is generated if the dialog template specified by DialogVariable does not contain at
least one of the following statements:

PushButton CancelButton
OKButton PictureButton

Example Sub Main
 Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
 Text 8,8,100,8,"The disk drive door is open."
 PushButton 8,24,40,14,"Abort",.Abort
 PushButton 56,24,40,14,"Retry",.Retry
 PushButton 104,24,40,14,"Ignore",.Ignore
 End Dialog
 Dim DiskError As DiskErrorTemplate
 r% = Dialog(DiskError,3,0)
 Session.Echo "You selected button: " & r%
End Sub

See Also User Interaction on page 9

Parameter Description
DialogVariable Name of a variable that has previously been dimensioned as a user dialog. This

is accomplished using the Dim statement: Dim MyDialog As MyTemplate. All
dialog variables are local to the Sub or Function in which they are defined. Pri-
vate and public dialog variables are not allowed.

DefaultButton An Integer specifying which button is to act as the default button in the dialog.
The value of DefaultButton can be any of the following:

• –1 This value indicates that the OK button, if present, should be used as the
default.

• 0 This value indicates that the Cancel button, if present, should be used as
the default.

• >0 This value indicates that the Nth button should be used as the default.
This number is the index of a push button within the dialog template.

If DefaultButton is not specified, then –1 is used. If the number specified by
DefaultButton does not correspond to an existing button, then there will be no
default button. The default button appears with a thick border and is selected
when the user presses Enter on a control other than a push button.

Timeout An integer specifying the number of milliseconds to display the dialog before
automatically dismissing it. If Timeout is not specified or is equal to 0, then the
dialog will be displayed until dismissed by the user. If a dialog has been dis-
missed due to a timeout, the Dialog function returns 0.
213

Dialog (statement)
Dialog (statement)
Syntax Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description Same as the Dialog function, except that the Dialog statement does not return a value. (See Dialog
[function].)

Example Sub Main
 Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
 Text 8,8,100,8,"The disk drive door is open."
 PushButton 8,24,40,14,"Abort",.Abort
 PushButton 56,24,40,14,"Retry",.Retry
 PushButton 104,24,40,14,"Ignore",.Ignore
 End Dialog
 Dim DiskError As DiskErrorTemplate
 Dialog DiskError,3,0
End Sub

See Also User Interaction on page 9

Dialogs (topic)
The compiler displays all runtime dialogs in the following fonts:

• 8-point MS Sans Serif font for non-MBCS systems

• The default system font for MBCS systems

The default help key is F1.

See Also User Interaction on page 9

Dim
Syntax Dim name [(<submacros>)] [As [New] type] [,name [(<submacros>)] [As [New] type]]...

Description Declares a list of local variables and their corresponding types and sizes. If a type-declaration
character is used when specifying name (such as %, @, &, $, or !), the optional [As type] expression
is not allowed. For example, the following are allowed:

Dim Temperature As Integer
Dim Temperature%

The submacros parameter allows the declaration of dynamic and fixed arrays. The submacros
parameter uses the following syntax:

[lower to] upper [,[lower to] upper]...
214

Dim
The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option
Base statement has been encountered). You can have a maximum of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K. Dynamic arrays are
declared by not specifying any bounds:

Dim a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type,
or any user-defined data type. When specifying explicit object types, you can use the following syntax
for type:

module.class

where module is the name of the module in which the object is defined and class is the type of object.
For example, to specify the OLE automation variable for Excel’s Application object, you could use
the following code:

Dim a As Excel.Application

Note Explicit object types can only be specified for data objects and early bound OLE automation objects—
i.e., objects whose type libraries have been registered with the compiler.

A Dim statement within a subroutine or function declares variables local to that subroutine or function.
If the Dim statement appears outside of any subroutine or function declaration, then that variable has
the same scope as variables declared with the Private statement.

Fixed-length strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Dim name As String * length

where length is a literal number specifying the string's length.

Implicit variable declaration
If the compiler encounters a variable that has not been explicitly declared with Dim, then the variable
will be implicitly declared using the specified type-declaration character (#, %, @, $, or &). If the
variable appears without a type-declaration character, then the first letter is matched against any
pending DefType statements, using the specified type if found. If no DefType statement has been
encountered corresponding to the first letter of the variable name, then Variant is used.
215

Dim
Declaring explicit OLE automation objects
The Dim statement can be used to declare variables of an explicit object type for objects known to the
compiler through type libraries. This is accomplished using the following syntax:

Dim name As application.class

The application parameter specifies the application used to register the OLE automation object and
class specifies the specific object type as defined in the type library. Objects declared in this manner
are early bound, meaning that the compiler is able to resolve method and property information at
compile time, improving the performance when invoking methods and properties of that object
variable.

Creating new objects
The optional New keyword is used to declare a new instance of the specified data object. This keyword
cannot be used when declaring arrays or OLE automation objects.

At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which is immediately assigned to the variable being
declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the variable is
declared ends), the application is notified. The application then performs some appropriate action,
such as destroying the physical object.

Initial values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value
Integer 0
Long 0
Double 0.0
Single 0.0
Date December 30, 1899 00:00:00
Currency 0.0
Boolean False
Object Nothing
Variant Empty
216

Dir, Dir$
Naming conventions
Variable names must follow these naming rules:

• Must start with a letter.

• May contain letters, digits, and the underscore character (_); punctuation is not allowed. The ex-
clamation point (!) can appear within the name as long as it is not the last character, in which case
it is interpreted as a type-declaration character.

• The last character of the name can be any of the following type-declaration characters: #, @, %, !,
&, and $.

• Must not exceed 80 characters in length.

• Cannot be a reserved word.

Examples The following examples use the Dim statement to declare various variable types.

Sub Main
 Dim i As Integer
 Dim l& 'Long
 Dim s As Single
 Dim d# 'Double
 Dim c$ 'String
 Dim MyArray(10) As Integer '10 element integer array
 Dim MyStrings$(2,10) '2-10 element string arrays
 Dim Filenames$(5 to 10) '6 element string array
 Dim Values(1 to 10, 100 to 200) '111 element variant array
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Dir, Dir$
Syntax Dir[$] [(pathname [,attributes])]

Description Returns a String containing the first or next file matching pathname. If pathname is specified, then
the first file matching that pathname is returned. If pathname is not specified, then the next file
matching the initial pathname is returned.

Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following named parameters:

String "" (zero-length string)
User-defined type Each element of the structure gets an initial value as described above.
Arrays Each element of the array gets an initial value as described above.

Data Type Initial Value
217

Dir, Dir$
An error is generated if Dir$ is called without first calling it with a valid pathname.

If there is no matching pathname, then a zero-length string is returned.

Wildcards
The pathname argument can include wildcards, such as * and ?. The * character matches any
sequence of zero or more characters, whereas the ? character matches any single character. Multiple
*s and ?s can appear within the expression to form complete searching patterns. The following table
shows some examples:

Attributes
You can control which files are included in the search by specifying the optional attributes parameter.
The Dir, Dir$ functions always return all normal, read-only, and archive files (ebNormal Or
ebReadOnly Or ebArchive). To include additional files, you can specify any combination of the
following attributes (combined with the Or operator):

Example Const crlf = Chr$(13) + Chr$(10)

Parameter Description
pathname String containing a file specification. If this parameter is specified, then Dir$ returns

the first file matching this file specification. If this parameter is omitted, then the next
file matching the initial file specification is returned. If no path is specified in path-
name, then all files are returned from the current directory.

attributes Integer specifying attributes of files you want included in the list, as described below.
If this parameter is omitted, then only the normal, read-only, and archive files are
returned.

This Pattern Matches These Files Not TheseFiles
S.TXT SAMPLE.TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT
C*T.TXT CAT.TXT CAP.TXT, ACATS.TXT
C*T CAT, CAP.TXT CAT.DOC
C?T CAT, CUT CAT.TXT, CAPITCT
* (All files)

Constant Value Includes
ebNormal 0 Read-only, archive, subdir, and none
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 Subdirectories
218

DiskDrives
Sub Main
 Dim a$(10)
 a(1) = Dir$("*.*")
 i% = 1
 While (a(i%) <> "") And (i% < 10)
 i% = i% + 1
 a(i%) = Dir$
 Wend
 Session.Echo a(1) & crlf & a(2) & crlf & a(3) & crlf & a(4)
End Sub

See Also Drive, Folder, and File Access on page 3

DiskDrives
Syntax DiskDrives array()

Description Fills the specified String or Variant array with a list of valid drive letters. The array() parameter
specifies either a zero- or a one-dimensioned array of strings or variants. The array can be either
dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of elements. If
there are no elements, then the array will be redimensioned to contain no dimensions. You can use the
LBound, UBound, and ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements are placed into the array.
If there are fewer elements than will fit in the array, then the remaining elements are initialized to zero-
length strings (for String arrays) or Empty (for Variant arrays). A runtime error results if the array is
too small to hold the new elements.

Example Sub Main
 Dim drive$()
 DiskDrives drive$
 Session.Echo "Available Disk Drives:<CR><LF>"
 For i= 0 to UBound(drive$)
 Session.Echo drive$ & "<CR><LF>"
 Next i
End Sub

See Also Drive, Folder, and File Access on page 3

DiskFree
Syntax DiskFree&([drive$])

Description Returns a Long containing the free space (in bytes) available on the specified drive. If drive$ is zero-
length or not specified, then the current drive is assumed. Only the first character of the drive$ string
is used.
219

DlgCaption (function)
Example Sub Main
 s$ = "c"
 i# = DiskFree(s$)
 Session.Echo "Free disk space on drive '" & s$ & "' is: " & i#
End Sub

See Also Drive, Folder, and File Access on page 3

DlgCaption (function)
Syntax DlgCaption[()]

Description Returns a string containing the caption of the active user-defined dialog. This function returns a zero-
length string if the active dialog has no caption.

See Also User Interaction on page 9

DlgCaption (statement)
Syntax DlgCaption text

Description Changes the caption of the current dialog to text.

Example Function DlgProc(c As String,a As Integer,v As Integer)
 If a = 1 Then
 DlgCaption choose(DlgValue("OptionGroup1") + 1, _
 "Blue","Green")
 ElseIf a = 2 Then
 DlgCaption choose(DlgValue("OptionGroup1") + 1, _
 "Blue","Green")
 End If
End Function

Sub Main
 Begin Dialog UserDialog ,,149,45,"Untitled",.DlgProc
 OKButton 96,8,40,14
 OptionGroup .OptionGroup1
 OptionButton 12,12,56,8,"Blue",.OptionButton1
 OptionButton 12,28,56,8,"Green",.OptionButton2
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also User Interaction on page 9

DlgControlId
Syntax DlgControlId(ControlName$)

Description Returns an Integer containing the index of the specified control as it appears in the dialog template.
The first control in the dialog template is at index 0, the second is at index 1, and so on. The
220

DlgEnable (function)
ControlName$ parameter contains the name of the .Identifier parameter associated with that
control in the dialog template.

The macro statements and functions that dynamically manipulate dialog controls identify individual
controls using either the .Identifier name of the control or the control's index. Using the index to
refer to a control is slightly faster but results in code that is more difficult to maintain.

Example Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 'If a control is clicked, disable the next three controls.

 If Action% = 2 Then
 'Enable the next three controls.
 start% = DlgControlId(ControlName$)
 For i = start% + 1 To start% + 3
 DlgEnable i,True
 Next i
 DlgProc = 1 'Don't close the dialog.
 End If
End Function

See Also User Interaction on page 9

DlgEnable (function)
Syntax DlgEnable(ControlName$ | ControlIndex)

Description Returns True if the specified control is enabled; returns False otherwise. Disabled controls are
dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

If you attempt to disable the control with the focus, the compiler will automatically set the focus to the
next control in the tab order.

Example If DlgEnable("SaveOptions") Then
 Session.Echo "The Save Options are enabled."
End If
If DlgEnable(10) And DlgVisible(12) Then code = 1 Else code = 2

See Also User Interaction on page 9
221

DlgEnable (statement)
DlgEnable (statement)
Syntax DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description Enables or disables the specified control. Disabled controls are dimmed and cannot receive keyboard
or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog template (0 is the first control in the template, 1 is the
second, and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example DlgEnable "SaveOptions", False 'Disable the Save Options control.
DlgEnable "EditingOptions"'Toggle a group of option buttons.
For i = 0 To 5
 DlgEnable i,True 'Enable six controls.
Next i

See Also User Interaction on page 9

DlgFocus (function)
Syntax DlgFocus$[()]

Description Returns a String containing the name of the control with the focus. The name of the control is the
.Identifier parameter associated with the control in the dialog template.

Example If DlgFocus$ = "Files" Then 'Does it have the focus?
 DlgFocus "OK" 'Change the focus to another control.
End If
DlgEnable "Files", False 'Now we can disable the control.

See Also User Interaction on page 9

Value Description
0 The control is disabled.
1 The control is enabled.
Omitted Toggles the control between enabled and disabled.
222

DlgFocus (statement)
DlgFocus (statement)
Syntax DlgFocus ControlName$ | ControlIndex

Description Sets focus to the specified control. A runtime error results if the specified control is hidden, disabled,
or nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example If DlgFocus$ = "Files" Then 'Does it have the focus?
 DlgFocus "OK" 'Change the focus to another control.
End If
DlgEnable "Files", False 'Now we can disable the control.

See Also User Interaction on page 9

DlgListBoxArray (function)
Syntax DlgListBoxArray({ControlName$ | ControlIndex}, ArrayVariable)

Description Fills a listbox, combo box, or drop listbox with the elements of an array, returning an Integer
containing the number of elements that were actually set into the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

Example Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 And ControlName$ = "Files" Then
 Dim NewFiles$() 'Create a new dynamic array.
 FileList NewFiles$,"*.txt" 'Fill the array with files.
 r% = DlgListBoxArray "Files",NewFiles$
223

DlgListBoxArray (statement)
 'Set items in the listbox.
 DlgValue "Files",0 'Set the selection to first item.
 DlgProc = 1 'Don't close the dialog.
 End If
 Session.Echo r% & " items were added to the listbox."
End Function

See Also User Interaction on page 9

DlgListBoxArray (statement)
Syntax DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable

Description Fills a listbox, combo box, or drop listbox with the elements of an array.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

Example Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 And ControlName$ = "Files" Then
 Dim NewFiles$() 'Create a new
 'dynamic array.
 FileList NewFiles$,"*.txt" 'Fill the array with files.
 DlgListBoxArray "Files",NewFiles$ 'Set items in the listbox.
 DlgValue "Files",0 'Set the selection
 'to the first item.
 End If
End Function

See Also User Interaction on page 9

DlgProc
Syntax Function DlgProc(ControlName$, Action, SuppValue) As Integer

Description Describes the syntax, parameters, and return value for dialog functions. Dialog functions are called by
the compiler during the processing of a custom dialog. The name of a dialog function (DlgProc)
appears in the Begin Dialog statement as the .DlgProc parameter. Dialog functions require the
following parameters:
224

DlgProc
When the compiler displays a custom dialog, the user may click buttons, type text into edit fields,
select items from lists, and perform other actions. When these actions occur, the compiler calls the
dialog function, passing it the action, the name of the control on which the action occurred, and any
other relevant information associated with the action.

The following table describes the different actions sent to dialog functions:

Parameter Description
ControlName$ String containing the name of the control associated with Action.
Action Integer containing the action that called the dialog function.
SuppValue Integer of extra information associated with Action. For some actions, this

parameter is not used.

Action Description
1 This action is sent immediately before the dialog is shown for the first time. This gives

the dialog function a chance to prepare the dialog for use. When this action is sent, Con-
trolName$ contains a zero-length string, and SuppValue is 0.The return value from the
dialog function is ignored in this case.

Before Showing the dialog: After action 1 is sent, the compiler performs additional pro-
cessing before the dialog is shown. Specifically, it cycles though the dialog controls
checking for visible picture or picture button controls. For each visible picture or picture
button control, the compiler attempts to load the associated picture. In addition to check-
ing picture or picture button controls, the compiler automatically hides any control out-
side the confines of the visible portion of the dialog. This prevents the user from tabbing
to controls that cannot be seen. However, it does not prevent you from showing these
controls with the DlgVisible statement in the dialog function.

2 This action is sent when:

A button is clicked, such as OK, Cancel, or a push button. In this case, ControlName$
contains the name of the button. SuppValue contains 1 if an OK button was clicked and 2
if a Cancel button was clicked; SuppValue is undefined otherwise. If the dialog function
returns 0 in response to this action, then the dialog will be closed. Any other value causes
the compiler to continue dialog processing.
A checkbox's state has been modified. In this case, ControlName$ contains the name of
the checkbox, and SuppValue contains the new state of the checkbox (1 if on, 0 if off).
An option button is selected. In this case, ControlName$ contains the name of the option
button that was clicked, and SuppValue contains the index of the option button within the
option button group (0-based).
The current selection is changed in a listbox, drop listbox, or combo box. In this case,
ControlName$ contains the name of the listbox, combo box, or drop listbox, and Sup-
pValue contains the index of the new item (0 is the first item, 1 is the second, and so on).
225

DlgProc
User-defined dialoges cannot be nested. In other words, the dialog function of one dialog cannot create
another user-defined dialog. You can, however, invoke any built-in dialog, such as Session.Echo or
InputBox$.

Within dialog functions, you can use the following additional statements and functions. These
statements allow you to manipulate the dialog controls dynamically.

The dialog function can optionally be declared to return a Variant. When returning a variable, the
compiler will attempt to convert the variant to an Integer. If the returned variant cannot be converted
to an Integer, then 0 is assumed to be returned from the dialog function.

Example Function SampleDlgProc(ControlName$, Action%, SuppValue%)
 If Action% = 2 And ControlName$ = "Printing" Then
 DlgEnable "PrintOptions",SuppValue%
 SampleDlgProc = 1 'Don't close the dialog.
 End If
End Function

Sub Main
 Begin Dialog SampleDialogTemplate 34, 39, 106, 45, "Sample", _
.SampleDlgProc
 OKButton 4,4,40,14
 CancelButton 4,24,40,14
 CheckBox 56,8,38,8,"Printing",.Printing

3 This action is sent when the content of a text box or combo box has been changed. This
action is only sent when the control loses focus. When this action is sent, ControlName$
contains the name of the text box or combo box, and SuppValue contains the length of
the new content. The dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent, Control-
Name$ contains the name of the control gaining the focus, and SuppValue contains the
index of the control that lost the focus (0-based).The dialog function's return value is
ignored with this action.

5 This action is sent continuously when the dialog is idle. If the dialog function returns 1 in
response to this action, then the idle action will continue to be sent. If the dialog function
returns 0, then the compiler will not send any additional idle actions. When the idle
action is sent, ControlName$ contains a zero-length string, and SuppValue contains the
number of times the idle action has been sent so far.

6 This action is sent when the dialog is moved. The ControlName$ parameter contains a
zero-length string, and SuppValue is 0.The dialog function's return value is ignored with
this action.

Action Description

DlgVisible DlgText$ DlgText

DlgSetPicture DlgListBoxArray DlgFocus

DlgEnable DlgControlId
226

DlgSetPicture
 OptionGroup .PrintOptions
 OptionButton 56,20,51,8,"Landscape",.Landscape
 OptionButton 56,32,40,8,"Portrait",.Portrait
 End Dialog
 Dim SampleDialog As SampleDialogTemplate
 SampleDialog.Printing = 1
 r% = Dialog(SampleDialog)
End Sub

See Also User Interaction on page 9

DlgSetPicture
Syntax DlgSetPicture {ControlName$ | ControlIndex},PictureName$,PictureType

Description Changes the content of the specified picture or picture button control. The DlgSetPicture statement
accepts the following parameters:

Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs.

Parameter Description
ControlName$ String containing the name of the .Identifier parameter associated with a con-

trol in the dialog template. A case-insensitive comparison is used to locate the
specified control within the template. Alternatively, by specifying the ControlIn-
dex parameter, a control can be referred to using its index in the dialog template
(0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a con-
trol.

PictureName$ String containing the name of the picture. If PictureType is 0, then this parameter
specifies the name of the file containing the image. If PictureType is 10, then
PictureName$ specifies the name of the image within the resource of the picture
library. If PictureName$ is empty, then the current picture associated with the
specified control will be deleted. Thus, a technique for conserving memory and
resources would involve setting the picture to empty before hiding a picture con-
trol.

PictureType Integer specifying the source for the image. The following sources are supported:
0 The image is contained in a file on disk.
10 The image is contained in the picture library specified by the Begin Dialog state-

ment. When this type is used, the PictureName$ parameter must be specified with
the Begin Dialog statement.
227

DlgText
Examples 'Set picture from a file.
DlgSetPicture "Picture1","\windows\checks.bmp",0
'Set control 10's image from a library.
DlgSetPicture 27,"FaxReport",10

See Also User Interaction on page 9

DlgText
Syntax DlgText {ControlName$ | ControlIndex}, NewText$

Description Changes the text content of the specified control. The effect of this statement depends on the type of
the specified control:

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example DlgText "GroupBox1","Save Options" 'Change text of group box 1.
If DlgText$(9) = "Save Options" Then
 DlgText 9,"Editing Options"'Change text to "Editing Options".
End If

Control Type Effect of DlgText
Picture Runtime error.
Option group Runtime error.
Drop listbox If an exact match cannot be found, the DlgText statement searches from the first

item looking for an item that starts with NewText$. If no match is found, then the
selection is removed.

OK button Sets the label of the control to NewText$.
Cancel button Sets the label of the control to NewText$.
Push button Sets the label of the control to NewText$.
Listbox Sets the current selection to the item matching NewText$. If an exact match cannot

be found, the DlgText statement searches from the first item looking for an item
that starts with NewText$. If no match is found, then the selection is removed.

Combo box Sets the content of the edit field of the combo box to NewText$.
Text Sets the label of the control to NewText$.
Text box Sets the content of the text box to NewText$.
Group box Sets the label of the control to NewText$.
Option button Sets the label of the control to NewText$.
228

DlgText$
See Also User Interaction on page 9

DlgText$
Syntax DlgText$(ControlName$ | ControlIndex)

Description Returns the text content of the specified control. The text returned depends on the type of the specified
control:

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example Session.Echo DlgText$(10) 'Display the text in the tenth control.
If DlgText$("SaveOptions") = "EditingOptions" Then
 Session.Echo "You are currently viewing the editing options."
End If

See Also User Interaction on page 9

Control Type Value Returned by DlgText$
Picture No value is returned. A runtime error occurs.
Option group No value is returned. A runtime error occurs.
Drop listbox Returns the currently selected item. A zero-length string is returned if no item is

currently selected.
OK button Returns the label of the control.
Cancel button Returns the label of the control.
Push button Returns the label of the control.
Listbox Returns the currently selected item. A zero-length string is returned if no item is

currently selected.
Combo box Returns the content of the edit field portion of the combo box.
Text Returns the label of the control.
Text box Returns the content of the control.
Group box Returns the label of the control.
Option button Returns the label of the control.
229

DlgValue (function)
DlgValue (function)
Syntax DlgValue(ControlName$ | ControlIndex)

Description Returns an Integer indicating the value of the specified control. The value of any given control
depends on its type, according to the following table:

A runtime error is generated if DlgValue is used with controls other than those listed in the above
table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the dialog template (0 is the first control in the template, 1 is the
second, and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example See DlgValue (statement).

See Also User Interaction on page 9

DlgValue (statement)
Syntax DlgValue {ControlName$ | ControlIndex},Value

Description Changes the value of the given control. The value of any given control is an Integer and depends on
its type, according to the following table:

Control Type DlgValue Returns
Option group The index of the selected option button within the group (0 is the first option but-

ton, 1 is the second, and so on).
Listbox The index of the selected item.
Drop listbox The index of the selected item.
Checkbox 1 if the checkbox is checked; 0 otherwise.

Control Type Description of Value
Option group The index of the new selected option button within the group (0 is the first option

button, 1 is the second, and so on).
Listbox The index of the new selected item.
Drop listbox The index of the new selected item.
Checkbox 1 if the checkbox is to be checked; 0 to remove the check.
230

DlgVisible (function)
A runtime error is generated if DlgValue is used with controls other than those listed in the
above table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Example If DlgValue("MyCheckBox") = 1 Then
 DlgValue "MyCheckBox",0
Else
 DlgValue "MyCheckBox",1
End If

See Also User Interaction on page 9

DlgVisible (function)
Syntax DlgVisible(ControlName$ | ControlIndex)

Description Returns True if the specified control is visible; returns False otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can
be referred to using its index in the template (0 is the first control in the template, 1 is the second, and
so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

A runtime error is generated if DlgVisible is called when no user dialog is active.

Example If DlgVisible("Portrait") Then Beep
If DlgVisible(10) And DlgVisible(12) Then
 Session.Echo "The 10th and 12th controls are visible."
End If

See Also User Interaction on page 9

DlgVisible (statement)
Syntax DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description Hides or shows the specified control. Hidden controls cannot be seen in the dialog and cannot receive
the focus using Tab.
231

DlgVisible (statement)
The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

Note When ControlIndex is specified, OptionGroup statements do not count as a control.

Picture Caching
When the dialog is first created and before it is shown, the compiler calls the dialog function with
action set to 1. At this time, no pictures have been loaded into the picture controls contained in the
dialog template. After control returns from the dialog function and before the dialog is shown, the
compiler will load the pictures of all visible picture controls. Thus, it is possible for the dialog function
to hide certain picture controls, which prevents the associated pictures from being loaded and causes
the dialog to load faster. When a picture control is made visible for the first time, the associated picture
will then be loaded.

Example Sub EnableGroup(start%, finish%)
 For i = 6 To 13 'Disable all options.
 DlgVisible i, False
 Next i
 For i = start% To finish% 'Enable only the right ones.
 DlgVisible i, True
 Next i
End Sub

Function DlgProc(ControlName$, Action%, SuppValue%)
 If Action% = 1 Then
 DlgValue "WhichOptions",0 'Set to save options.
 EnableGroup 6, 8 'Enable the save options.
 End If
 If Action% = 2 And ControlName$ = "SaveOptions" Then
 EnableGroup 6, 8 'Enable the save options.
 DlgProc = 1 'Don't close the dialog.
 End If
 If Action% = 2 And ControlName$ = "EditingOptions" Then
 EnableGroup 9, 13 'Enable the editing options.

Value Description
1 The control is shown.
 0 The control is hidden.
Omitted Toggles the visibility of the control.
232

Do...Loop
 DlgProc = 1 'Don't close the dialog.
 End If
End Function

Sub Main
 Begin Dialog OptionsTemplate 33, 33, 171, 134, "Options", .DlgProc
 'Background (controls 0-5)
 GroupBox 8, 40, 152, 84, ""
 OptionGroup .WhichOptions
 OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions
 OptionButton 8, 20, 65, 8, "Editing Options",.EditingOptions
 OKButton 116, 7, 44, 14
 CancelButton 116, 24, 44, 14
 'Save options (controls 6-8)
 CheckBox 20, 56, 88, 8, "Always create backup",.CheckBox1
 CheckBox 20, 68, 65, 8, "Automatic save",.CheckBox2
 CheckBox 20, 80, 70, 8, "Allow overwriting",.CheckBox3
 'Editing options (controls 9-13)
 CheckBox 20, 56, 65, 8, "Overtype mode",.OvertypeMode
 CheckBox 20, 68, 69, 8, "Uppercase only",.UppercaseOnly
 CheckBox 20, 80, 105, 8, "Automatically check syntax",.AutoCheckSyntax
 CheckBox 20, 92, 73, 8, "Full line selection",.FullLineSelection
 CheckBox 20, 104, 102, 8, "Typing replaces selection",.TypingReplacesText
 End Dialog
 Dim OptionsDialog As OptionsTemplate
 Dialog OptionsDialog
End Sub

See Also User Interaction on page 9

Do...Loop
Syntax 1 Do {While | Until} condition statements Loop

Syntax 2 Do
 statements
Loop {While | Until} condition

Syntax 3 Do
 statements
Loop

Description Repeats a block of statements while a condition is True or until a condition is True. If the {While |
Until} conditional clause is not specified, then the loop repeats the statements forever (or until the
compiler encounters an Exit Do statement).

The condition parameter specifies any Boolean expression.

Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Examples This first example uses the Do...While statement, which performs the iteration, then checks the
condition, and repeats if the condition is True.
233

Do...Loop
Sub Main
 Dim a$(100)
 i% = -1
 Do
 i% = i% + 1
 If i% = 0 Then
 a(i%) = Dir$("*")
 Else
 a(i%) = Dir$
 End If
 Loop While (a(i%) <> "" And i% <= 99)
 Session.Echo str$(i%) & " files found" & "<CR><LF>

This second example uses the Do While...Loop, which checks the condition and then repeats if the
condition is True.

 Dim a$(100)
 i% = 0
 a(i%) = Dir$("*")
 Do While a(i%) <> "" And i% <= 99
 i% = i% + 1
 a(i%) = Dir$
 Loop
 Session.Echo str$(i%) & " files found" & "<CR><LF>

This third example uses the Do Until...Loop, which does the iteration and then checks the condition
and repeats if the condition is True.

 Dim a$(100)
 i% = 0
 a(i%) = Dir$("*")
 Do Until a(i%) = "" Or i% = 100
 i% = i% + 1
 a(i%) = Dir$
 Loop
 Session.Echo str$(i%) & " files found" & "<CR><LF>

This last example uses the Do...Until Loop, which performs the iteration first, checks the condition,
and repeats if the condition is True.

 Dim a$(100)
 i% = -1
 Do
 i% = i% + 1
 If i% = 0 Then
 a(i%) = Dir$("*")
 Else
 a(i%) = Dir$
 End If
 Loop Until (a(i%) = "" Or i% = 100)
 Session.Echo str$(i%) & " files found" & "<CR><LF>
End Sub

See Also Macro Control and Compilation on page 6
234

DoEvents (function)
DoEvents (function)
Syntax DoEvents[()]

Description Yields control to other applications, returning an Integer 0. This statement yields control to the
operating system, allowing other applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Example See DoEvents (statement).

See Also Operating System Control on page 9

DoEvents (statement)
Syntax DoEvents

Description Yields control to other applications. This statement yields control to the operating system, allowing
other applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Examples This first example shows a macro that takes a long time and hogs the system. The subroutine explicitly
yields to allow other applications to execute.

Sub Main
 Open "test.txt" For Output As #1
 For i = 1 To 10000
 Print #1,"This is a test of the system and stuff."
 DoEvents
 Next i
 Close #1
End Sub

In this second example, the DoEvents statement is used to wait until the queue has been completely
flushed.

Sub Main
 AppActivate "Notepad" 'Activate Notepad.
 SendKeys "This is a test.",False 'Send some keys.
 DoEvents 'Wait for the keys to play back.
End Sub

See Also Operating System Control on page 9
235

Double (data type)
Double (data type)
Syntax Double

Description Used to declare variables capable of holding real numbers with 15–16 digits of precision. Double
variables are used to hold numbers within the following ranges:

The type-declaration character for Double is #.

Storage
Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a structure, doubles
require 8 bytes of storage. When used with binary or random files, 8 bytes of storage are required.

Each Double consists of the following

• A 1-bit sign

• An 11-bit exponent

• A 53-bit significant (mantissa)

See Also Keywords, Data Types, Operators, and Expressions on page 4

DropListBox
Syntax DropListBox x, y, width, height, ArrayVariable, .Identifier

Description Creates a drop listbox within a dialog template. When the dialog is invoked, the drop listbox will be
filled with the elements contained in ArrayVariable. Drop listboxes are similar to combo boxes, with
the following exceptions:

• The listbox portion of a drop listbox is not opened by default. The user must open it by clicking
the down arrow.

• The user cannot type into a drop listbox. Only items from the listbox may be selected. With combo
boxes, the user can type the name of an item from the list directly or type the name of an item that
is not contained within the combo box.

This statement can only appear within a dialog template (i.e., between the Begin Dialog and End
Dialog statements).

The DropListBox statement requires the following parameters:

Sign Range
Negative –1.797693134862315E308 <= double <= –4.94066E-324
Positive 4.94066E-324 <= double <= 1.797693134862315E308
236

DropListBox
Example Sub Main
 Dim FieldNames$(4)
 FieldNames$(0) = "Last Name"
 FieldNames$(1) = "First Name"
 FieldNames$(2) = "Zip Code"
 FieldNames$(3) = "State"
 FieldNames$(4) = "City"
 Begin Dialog FindTemplate 16,32,168,48,"Find"
 Text 8,8,37,8,"&Find what:"
 DropListBox 48,6,64,80,FieldNames,.WhichField
 OKButton 120,7,40,14
 CancelButton 120,27,40,14
 End Dialog
 Dim FindDialog As FindTemplate
 FindDialog.WhichField = 1
 Dialog FindDialog
End Sub

See Also User Interaction on page 9

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) rela-

tive to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
ArrayVariable Single-dimensioned array used to initialize the elements of the drop listbox. If

this array has no dimensions, then the drop listbox will be initialized with no
elements. A runtime error results if the specified array contains more than one
dimension. ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). null and empty values are treated as zero-length
strings.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates an integer vari-
able whose value corresponds to the index of the drop listbox's selection (0 is
the first item, 1 is the second, and so on). This variable can be accessed using
the following syntax: DialogVariable.Identifier
237

E

End
Syntax End

Description Terminates execution of the current macro, closing all open files.

Example Sub Main
 Session.Echo "The next line will terminate the macro."
 End
End Sub

See Also Macro Control and Compilation on page 6

Environ, Environ$
Syntax Environ[$](variable$ | VariableNumber)

Description Returns the value of the specified environment variable.

Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the environment. If the
variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the environment
(the first variable being number 1). If there is no such environment variable, then a zero-length string
is returned. Otherwise, the entire entry from the environment is returned in the following format:

variable = value

Example Sub Main
 Dim a$(1)
 a$(1) = Environ$("COMSPEC")
 Session.Echo "The DOS Comspec variable is set to: " & a$(1)
End Sub
239

EOF
See Also Operating System Control on page 9

EOF
Syntax EOF(filenumber)

Description Returns True if the end-of-file has been reached for the given file; returns False otherwise. The
filenumber parameter is an Integer used to refer to the open file—the number passed to the Open
statement.

With sequential files, EOF returns True when the end of the file has been reached (i.e., the next file read
command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been made to read beyond the end
of the file. Thus, EOF will only return True when Get was unable to read the entire record.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim s$
 Open "c:\autoexec.bat" For Input As #1
 Do While Not EOF(1)
 Input #1,s$
 Loop
 Close
 Session.Echo "The last line was:" & crlf & s$
End Sub

See Also Drive, Folder, and File Access on page 3

Eqv
Syntax result = expression1 Eqv expression2

Description Performs a logical or binary equivalence on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical equivalence is performed as follows:

If either expression is Null, then Null is returned.

Expression One Expression Two Result
True True True
True False False
False True False
False False True
240

Erase
Binary equivalence
If the two expressions are Integer, then a binary equivalence is performed, returning an Integer
result. All other numeric types (including Empty variants) are converted to Long and a binary
equivalence is then performed, returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions, according to the following table:

Example This example assigns False to a, performs some equivalent operations, and displays the result. Since
a is equivalent to False, and False is equivalent to 0, and by definition, a = 0, then the prompt will
display "A is False."

Sub Main
 a = False
 If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then
 Session.Echo "a is False."
 Else
 Session.Echo "a is True."
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Erase
Syntax Erase array1 [,array2]...

Description Erases the elements of the specified arrays. For dynamic arrays, the elements are erased, and the array
is redimensioned to have no dimensions (and therefore no elements). For fixed arrays, only the
elements are erased; the array dimensions are not changed.

After a dynamic array is erased, the array will contain no elements and no dimensions. Thus, before
the array can be used by your program, the dimensions must be reestablished using the Redim
statement.

Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being erased:

Bit in Expression One Bit in Expression Two Result
1 1 1
0 1 0
1 0 0
0 0 1
241

Err (object)
Example Sub Main
 Dim a$(10) 'Declare an array.
 a$(1) = Dir$("*") 'Fill element 1 with a filename
 Session.Echo "Array before Erase: " & a$(1) 'Display element
1.
 Erase a$ 'Erase all elements in array
 Session.Echo "Array after Erase: " & a$(1) 'again (should be erased).
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Err (object)
The Err object allows you to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. You can also construct macro code to raise errors as necessary. The
methods and properties of the Err object provide access to the calling OLE object or external DLL,
and the source if possible.

Erl
Syntax Erl[()]

Description Returns the line number of the most recent error. The first line of the macro is 1, the second line is 2,
and so on.

The internal value of Erl is reset to 0 with any of the following statements: Resume, Exit Sub, Exit
Function. Thus, if you want to use this value outside an error handler, you must assign it to a variable.

Example Sub Main
 Dim i As Integer
 On Error Goto Trap1
 i = 32767 'Generate an error--overflow.

Element Type Effect of Erase
Integer Sets element to 0.
Boolean Sets element to False.
Long Sets element to 0.
Double Sets element to 0.0.
Date Sets element to December 30, 1899.
Single Sets element to 0.0.
String (variable-length) Frees string, then sets element to a zero-length string.
String (fixed-length) Sets every character of each element to zero (Chr$(0)).
Object Decrements reference count and sets element to Nothing.
Variant Sets element to empty.
User-defined type Sets each structure element as a separate variable.
242

Err (object)
 i = i + 1
 Exit Sub
Trap1:
 Session.Echo "Error on line: " & Erl
 Exit Sub 'Reset the error handler.
End Sub

See Also Error Handling (topic).

Err.Clear
Syntax Err.Clear

Description Clears the properties of the Err object. After this method has been called, the properties of the Err
object will have the following values:

The properties of the Err object are automatically reset when any of the following statements are
executed: Resume, Exit Function, On Error, Exit Sub

Example Sub Main
 Dim x As Integer
 On Error Resume Next
 x = InputBox("Type in a number")
 If Err.Number <> 0 Then
 Err.Clear
 x = 0
 End If
 Session.Echo x
End Sub

See Also Macro Control and Compilation on page 6

Err.Description
Syntax Err.Description [= stringexpression]

Description Sets or retrieves the description of the error. For errors generated by the compiler, the
Err.Description property is automatically set. For user-defined errors, you should set this property
to be a description of your error. If you set the Err.Number property to one of the internal error
numbers and you don’t set the Err.Description property, then the Err.Description property is
automatically set when the error is generated (i.e., with Err.Raise).

Value Property
"" Err.Description

0 Err.HelpContext

"" Err.HelpFile

0 Err.LastDLLError

0 Err.Number

"" Err.Source
243

Err (object)
Example Sub Main
 Dim x As Integer
 On Error Resume Next
 x = InputBox("Type in a number")
 If Err.Number <> 0 Then
 Session.Echo "The following error occurred: " & Err.Description
 x = 0
 End If
 Session.Echo x
End Sub

See Also Macro Control and Compilation on page 6

Err.HelpContext
Syntax Err.HelpContext [= contextid]

Description Sets or retrieves the help context ID that identifies the help topic for information on the error. The
Err.HelpContext property, together with the Err.HelpFile property, contain sufficient information
to display help for the error. When the compiler generates an error, the Err.HelpContext property is
set to 0 and the and the Err.HelpFile property is set to ""; the value of the Err.Number property is
sufficient for displaying help in this case. The exception is with errors generated by an OLE
automation server; both the Err.HelpFile and Err.HelpContext properties are set by the server to
values appropriate for the generated error.

When generating your own user-define errors, you should set the Err.HelpContext property and the
Err.HelpFile property appropriately for your error. If these are not set, then the compiler displays its
own help at an appropriate place.

Example Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.HelpContext = "WIDGET.HLP"
 Err.HelpContext = 10
 Err.Description = "Integer value expected"
 InputInteger = Null
 Err.Raise 3000
 End If
 InputInteger = x
End Function

Sub Main
 Dim x As Integer
 Do
 On Error Resume Next
 x = InputInteger("Enter a number:")
 Loop Until Err.Number <> 3000
End Sub

See Also Macro Control and Compilation on page 6; User Interaction on page 9
244

Err (object)
Err.HelpFile
Syntax Err.HelpFile [= filename]

Description Sets or retrieves the name of the help file associated with the error. The Err.HelpFile property,
together with the Err.HelpContents property, contain sufficient information to display help for the
error. When the compiler generates an error, the Err.HelpContents property is set to 0 and the and
the Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient for
displaying help in this case. The exception is with errors generated by an OLE automation server; both
the Err.HelpFile and Err.HelpContext properties are set by the server to values appropriate for the
generated error.

When generating your own user-defined errors, set the Err.HelpContext property and the
Err.HelpFile property appropriately for your error. If these are not set, then the compiler displays its
own help at an appropriate place.

The Err.HelpFile property can be set to any valid Windows help file (i.e., a file with a .HLP
extension compatible with the WINHELP help engine).

Example Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.HelpContext = "WIDGET.HLP"
 Err.HelpContext = 10
 Err.Description = "Integer value expected"
 InputInteger = Null
 Err.Raise 3000
 End If
 InputInteger = x
End Function

Sub Main
 Dim x As Integer
 Do
 On Error Resume Next
 x = InputInteger("Enter a number:")
 Loop Until Err.Number <> 3000
End Sub

See Also Macro Control and Compilation on page 6; User Interaction on page 9

Err.LastDLLError
Syntax Err.LastDLLError

Description Returns the last error generated by an external call—i.e., a call to a routine declared with the Declare
statement that resides in an external module. The Err.LastDLLError property is automatically set
when calling a routine defined in an external module. If no error occurs within the external call, then
this property will automatically be set to 0. This property is set by DLL routines that set the last error
245

Err (object)
using the function SetLastError(). The compiler uses the function GetLastError() to retrieve the
value of this property. The value 0 is returned when calling DLL routines that do not set an error.

Example Declare Sub GetCurrentDirectoryA Lib "kernel32" (ByVal DestLen As Integer, _
ByVal lpDest As String)

Sub Main
 Dim dest As String * 256
 Err.Clear
 GetCurrentDirectoryA len(dest),dest
 If Err.LastDLLError <> 0 Then
 Session.Echo "Error " & Err.LastDLLError & " occurred."
 Else
 Session.Echo "Current directory is " & dest
 End If
End Sub

See Also Macro Control and Compilation on page 6

Err.Number
Syntax Err.Number [= errornumber]

Description Returns or sets the number of the error. The Err.Number property is set automatically when an error
occurs. This property can be used within an error trap to determine which error occurred. You can set
the Err.Number property to any Long value.

The Number property is the default property of the Err object. This allows you to use older style syntax
such as those shown below:

Err = 6
If Err = 6 Then Session.Echo "Overflow"

The Err function can only be used while within an error trap.

The internal value of the Err.Number property is reset to 0 with any of the following statements:
Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside an error handler, you
must assign it to a variable.

Setting Err.Number to –1 has the side effect of resetting the error state. This allows you to perform
error trapping within an error handler. The ability to reset the error handler while within an error trap
is not standard Basic. Normally, the error handler is reset only with the Resume, Exit Sub, Exit
Function, End Function, or End Sub statements.

Example Sub Main
 On Error Goto TestError
 Error 10
 Session.Echo "The returned error is: '" & Err() & " - " & _
 Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
246

Err (object)
 Session.Echo "Cannot copy an open file. Close it and try again."
 Else
 Session.Echo "Error '" & Err & "' has occurred!"
 Err = 999
 End If
 Resume Next
End Sub

See Also Macro Control and Compilation on page 6

Err
Syntax Err = value

Description Sets the value returned by the Err function to a specific Integer value. Only positive values less than
or equal to 32767 can be used. Setting value to –1 has the side effect of resetting the error state. This
allows you to perform error trapping within an error handler. The ability to reset the error handler
while within an error trap is not standard Basic. Normally, the error handler is reset only with the
Resume, Exit Sub, or Exit Function statement.

Example Sub Main
 On Error Goto TestError
 Error 10
 Session.Echo "The returned error is: '" & Err() & " - " & Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 Session.Echo "Cannot copy an open file. Close it and try again."
 Else
 Session.Echo "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

See Also Macro Control and Compilation on page 6

Err.Raise
Syntax Err.Raise number [,[source] [,[description] [,[helpfile] [,helpcontext]]]]

Description Generates a runtime error, setting the specified properties of the Err object. The Err.Raise method
has the following named parameters:
247

Err (object)
This method can be used in place of the Error statement for generating errors. Using the Err.Raise
method gives you the opportunity to set the desired properties of the Err object in one statement.

Example Sub Main
 Dim x As Variant
 On Error Goto TRAP
 x = InputBox("Enter a number:")
 If Not IsNumeric(x) Then
 Err.Raise 3000,,"Invalid number specified","WIDGET.HLP",30
 End If
 Session.Echo x
 Exit Sub
TRAP:
 Session.Echo Err.Description
End Sub

See Also Macro Control and Compilation on page 6

Err.Source
Syntax Err.Source [= stringexpression]

Description Sets or retrieves the source of a runtime error.

For OLE automation errors generated by the OLE server, the Err.Source property is set to the name
of the object that generated the error. For all other errors generated by the macro language, the
Err.Source property is automatically set to be the name of the macro that generated the error.

Parameter Description
number A Long value indicating the error number to be generated. This parameter is

required. Predefined errors are in the range 0 to 1000.
Source An optional String expression specifying the source of the error—i.e., the object or

module that generated the error. If omitted, then the compiler uses the name of the
currently executing macro.

description An optional String expression describing the error. If omitted and number maps to
a predefined error number, then the corresponding predefined description is used.
Otherwise, the error "Application-defined or object-define error" is used.

helpfile An optional String expression specifying the name of the help file containing con-
text-sensitive help for this error. If omitted and number maps to a predefined error
number, then the default help file is assumed.

Helpcontext An optional long value specifying the topic within helpfile containing context-
sensitive help for this error.
If some arguments are omitted, then the current property values of the Err object
are used.
248

Error Handling (topic)
For user-defined errors, the Err.Source property can be set to any valid string expression indicating
the source of the error. If the Err.Source property is not explicitly set for user-defined errors, the value
is the name of the macro in which the error was generated.

Example Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.Source = "InputInteger"
 Err.Description = "Integer value expected"
 Err.Raise 3000
 End If
 InputInteger = x
End Function

Sub Main
 On Error Resume Next
 x = InputInteger("Enter a number:")
 If Err.Number Then Session.Echo Err.Source & ":" & Err.Description
End Sub

See Also Macro Control and Compilation on page 6

Error Handling (topic)
The macro language supports nested error handlers. When an error occurs within a subroutine, the
compiler checks for an On Error handler within the currently executing subroutine or function. An
error handler is defined as follows:

Sub foo()
 On Error Goto catch
 'Do something here.
 Exit Sub
catch:
 'Handle error here.
End Sub

Error handlers have a life local to the procedure in which they are defined. The error is reset when any
of the following conditions occurs:

• An On Error or Resume statement is encountered.

• When Err.Number is set to -1.

• When the Err.Clear method is called.

• When an Exit Sub, Exit Function, End Function, End Sub is encountered.

Cascading Errors
If a runtime error occurs and no On Error handler is defined within the currently executing procedure,
then control returns to the calling procedure and the error handler there runs. This process repeats until
249

Error Handling (topic)
a procedure is found that contains an error handler or until there are no more procedures. If an error is
not trapped or if an error occurs within the error handler, then there is an error message, halting
execution of the macro.

Once an error handler has control, it should address the condition that caused the error and resume
execution with the Resume statement. This statement resets the error handler, transferring execution to
an appropriate place within the current procedure. The error is reset if the procedure exits without first
executing Resume.

Visual Basic Compatibility
Where possible, the macro language has the same error numbers and error messages as Visual Basic.
This is useful for porting macros between environments.

Handling errors involves querying the error number or error text using the Error$ function or
Err.Description property. Since this is the only way to handle errors, compatibility with Visual
Basic's error numbers and messages is essential.

Macro language errors fall into three categories:

• Visual Basic-compatible errors: These errors, numbered between 0 and 799, are numbered and
named according to the errors supported by Visual Basic.

• Macro language errors: These errors, numbered from 800 to 999, are unique to the macro lan-
guage.

• User-defined errors: These errors, equal to or greater than 1,000, are available for use by exten-
sions or by the macro itself.

You can intercept trappable errors using the On Error construct. Almost all errors are trappable except
for various system errors.

Error, Error$ (functions)
Syntax Error[$][(errornumber)]

Description Returns a String containing the text corresponding to the given error number or the most recent error.

Error$ returns a String, whereas Error returns a String variant.

The errornumber parameter is an Integer containing the number of the error message to retrieve. If
this parameter is omitted, then the function returns the text corresponding to the most recent runtime
error (i.e., the same as returned by the Err.Description property). If no runtime error has occurred,
then a zero-length string is returned.

If the Error statement was used to generate a user-defined runtime error, then this function will return
a zero-length string ("").
250

Error Handling (topic)
Example Sub Main
 On Error Goto TestError
 Error 10
 Session.Echo "The returned error is: '" & Err() & " - " & Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 Session.Echo "Cannot copy an open file. Close it and try again."
 Else
 Session.Echo "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

See Also Character and String Manipulation on page 2; Macro Control and Compilation on page 6

Error (statement)
Syntax Error errornumber

Description Simulates the occurrence of the given runtime error. The errornumber parameter is any Integer
containing either a built-in error number or a user-defined error number. The Err.Number property can
be used within the error trap handler to determine the value of the error.

The Error statement is provided for backward compatibility. Use the Err.Raise method instead.
When using the Error statement to generate an error, the Err object's properties are set to the
following default values:

Example Sub Main
 On Error Goto TestError
 Error 10
 Session.Echo "The returned error is: '" & Err & " - " & Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 Session.Echo "Cannot copy an open file. Close it and try again."
 Else
 Session.Echo "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

Property Default Value
Number errornumber as specified in the Error statement.
Source Name of currently executing macro.
Description Text of error. If errornumber is unknown, is set to an empty string.
HelpFile Name of help file.
HelpContext Context ID corresponding to errornumber.
251

Exit Do
See Also Macro Control and Compilation on page 6

Exit Do
Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause. This statement can only
appear within a Do...Loop statement.

Example Const crlf = Chr$(13) + Chr$(10)
Sub Main
 Dim a$(5)
 Do
 i% = i% + 1
 If i% = 1 Then
 a(i%) = Dir$("*")
 Else
 a(i%) = Dir$
 End If
 If i% >= 10 Then Exit Do
 Loop While (a(i%) <> "")
 If i% = 10 Then
 Session.Echo i% & " entries processed!"
 Else
 Session.Echo "Less than " & i% & " entries processed!"
 End If
End Sub

See Also Macro Control and Compilation on page 6

Exit For
Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the line following the Next
statement. This statement can only appear within a For...Next block.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim a$(100)
 For i = 1 To 100
 If i = 1 Then
 a$(i) = Dir$("*")
 Else
 a$(i) = Dir$
 End If
 If (a$(i) = "") Or (i >= 100) Then Exit For
 Next i
 mesg = "There are " & i & " files found." & crlf
 Session.Echo mesg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(10)
End Sub

See Also Macro Control and Compilation on page 6
252

Exit Function
Exit Function
Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the statement following the call
to this function. This statement can only appear within a function.

Example Function Test_Exit() As Integer
 Session.Echo "Testing function exit, returning to Main()."
 Test_Exit = 0
 Exit Function
 Session.Echo "This line should never execute."
End Function

Sub Main
 a% = Test_Exit()
 Session.Echo "This is the last line of Main()."
End Sub

See Also Macro Control and Compilation on page 6

Exit Sub
Syntax Exit Sub

Description Causes execution to exit the current subroutine, continuing execution on the statement following the
call to this subroutine. This statement can appear anywhere within a subroutine. It cannot appear
within a function.

Example Sub Main
 Session.Echo "Terminating Main()."
 Exit Sub
 Session.Echo "Still here in Main()."
End Sub

See Also Macro Control and Compilation on page 6

Exp
Syntax Exp(number)

Description Returns the value of e raised to the power of number. The number parameter is a Double within the
following range:

0 <= number <= 709.782712893.

A runtime error is generated if number is out of the range specified above.

The value of e is 2.71828.
253

Expression Evaluation (topic)
Example Sub Main
 a# = Exp(12.40)
 Session.Echo "e to the 12.4 power is: " & a#
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Expression Evaluation (topic)
Expressions may involve data of different types. When this occurs, the two arguments are converted
to be of the same type by promoting the less precise operand to the same type as the more precise
operand. For example, the compiler will promote the value of i% to a double in the following
expression:

result# = i% * d#

In some cases, the data type to which each operand is promoted is different than that of the most
precise operand. This is dependent on the operator and the data types of the two operands and is noted
in the description of each operator.

If an operation is performed between a numeric expression and a String expression, then the String
expression is usually converted to be of the same type as the numeric expression. For example, the
following expression converts the String expression to an Integer before performing the
multiplication:

result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule, as noted in the description of the individual operators.

Type Coercion
The compiler performs numeric type conversion automatically. Automatic conversions sometimes
result in overflow errors, as shown in the following example:

d# = 45354
i% = d#

In this example, an overflow error is generated because the value contained in d# is larger than the
maximum size of an Integer.

Rounding
When floating-point values (Single or Double) are converted to integer values (Integer or Long), the
fractional part of the floating-point number is lost, rounding to the nearest integer value. The macro
language uses Baker's rounding:

• If the fractional part is larger than .5, the number is rounded up.

• If the fractional part is smaller than .5, the number is rounded down.
254

Expression Evaluation (topic)
• If the fractional part is equal to .5, then the number is rounded up if it is odd and down if it is even.

The following table shows sample values before and after rounding:

Default Properties
When an OLE object variable or an Object variant is used with numerical operators such as addition
or subtraction, then the default property of that object is automatically retrieved. For example,
consider the following:

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")
Session.Echo "This application is " & Excel

The above example displays "This application is Microsoft Excel". When the variable Excel is used
within the expression, the default property is automatically retrieved, which, in this case, is the string
"Microsoft Excel." Considering that the default property of the Excel object is .Value, then the
following two statements are equivalent:

Session.Echo "This application is " & Excel
Session.Echo "This application is " & Excel.Value

Before Rounding After Rounding
2.1 2
4.6 5
2.5 2
3.5 4
255

F

FileAttr
Syntax FileAttr(filenumber, returntype)

Description Returns an Integer specifying the file mode (if returntype is 1) or the operating system file handle
(if returntype is 2). The FileAttr function takes the following named parameters:

If returntype is 2, then the operating system file handle is returned. This is a special Integer value
identifying the file.

Example Sub Main
 Open "c:\autoexec.bat" For Input As #1
 a% = FileAttr(1,1)
 Select Case a%
 Case 1
 Session.Echo "Opened for input."
 Case 2
 Session.Echo "Opened for output."
 Case 4
 Session.Echo "Opened for random."
 Case 8
 Session.Echo "Opened for append."

Parameter Description
filenumber Integer value used to refer to the open file—the number passed to the Open

statement.
Returntype Integer specifying the type of value to be returned. If returntype is 1, then one of

the following values is returned:

1 Input
2 Output
4 Random
6 Append
32 Binary
257

FileCopy
 Case 32
 Session.Echo "Opened for binary."
 Case Else
 Session.Echo "Unknown file mode."
 End Select
 a% = FileAttr(1,2)
 Session.Echo "File handle is: " & a%
 Close
End Sub

See Also Drive, Folder, and File Access on page 3

FileCopy
Syntax FileCopy source, destination

Description Copies a source file to a destination file. The FileCopy function takes the following named
parameters:

The file will be copied and renamed if the source and destination filenames are not the same.

Example Sub Main
 On Error Goto ErrHandler
 FileCopy "c:\autoexec.bat", "c:\autoexec.sav"
 Open "c:\autoexec.sav" For Input As # 1
 FileCopy "c:\autoexec.sav", "c:\autoexec.sv2"
 Close
 Exit Sub
ErrHandler:
 If Err = 55 Then 'File already open.
 Session.Echo "Cannot copy an open file. Close it and try again."
 Else
 Session.Echo "An unspecified file copy error has occurred."
 End If
 Resume Next
End Sub

See Also Drive, Folder, and File Access on page 3

FileDateTime
Syntax FileDateTime(pathname)

Description Returns a Date variant representing the date and time of the last modification of a file. This function
retrieves the date and time of the last modification of the file specified by pathname (wildcards are not

Parameter Description
source String containing the name of a single file to copy. The source parameter cannot

contain wildcards (? or *) but may contain path information.
Destination String containing a single, unique destination file, which may contain a drive and

path specification.
258

FileDirs
allowed). A runtime error results if the file does not exist. The value returned can be used with the
date/time functions (i.e., Year, Month, Day, Weekday, Minute, Second, Hour) to extract the individual
elements.

Win32 stores the file creation date, last modification date, and the date the file was last written to. The
FileDateTime function only returns the last modification date.

Example Sub Main
 If FileExists("c:\autoexec.bat") Then
 a# = FileDateTime("c:\autoexec.bat")
 Session.Echo "The date/time information for the file is: " & Year(a#) & "-" &
Month(a#) & "-" & Day(a#)
 Else
 Session.Echo "The file does not exist."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3; Time and Date Access on page 10

FileDirs
Syntax FileDirs array() [,dirspec$]

Description Fills a String or Variant array with directory names from disk. The FileDirs statement takes the
following parameters:

Parameter Description
array() Either a zero- or a one-dimensioned array of strings or variants. The array can be

either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number
of elements.

If there are no elements, then the array will be redimensioned to contain no dimen-
sions. You can use the LBound, UBound, and ArrayDims functions to determine the
number and size of the new array's dimensions.

array() If the array is fixed, each array element is first erased, then the new elements are
placed into the array.

If there are fewer elements than will fit in the array, then the remaining elements are
initialized to zero-length strings (for string arrays) or Empty (for variant arrays). A
runtime error results if the array is too small to hold the new elements.

dirspec$ String containing the file search mask, such as: t*.c:*.* If this parameter is omitted
or an empty string, then * is used, which fills the array with all the subdirectory names
within the current directory.
259

FileExists
Example Sub Main
 Dim a$()
 FileDirs a$,"c:*.*"
 Session.Echo "The first directory is: " & a$(0)
End Sub

See Also Character and String Manipulation on page 2; Drive, Folder, and File Access on page 3

FileExists
Syntax FileExists(filename$)

Description Returns True if filename$ exists; returns False otherwise. This function determines whether a given
filename$ is valid. This function returns False if filename$ specifies a subdirectory.

Example Sub Main
 If FileExists("c:\autoexec.bat") Then
 Session.Echo "This file exists!"
 Else
 Session.Echo "File does not exist."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3

FileLen
Syntax FileLen(pathname)

Description Returns a Long representing the length of pathname in bytes. This function is used in place of the LOF
function to retrieve the length of a file without first opening the file. A runtime error results if the file
does not exist.

Example Sub Main
 If (FileExists("c:\autoexec.bat") And (FileLen("c:\autoexec.bat") _
<> 0)) Then
 b% = FileLen("c:\autoexec.bat")
 Session.Echo "The length of autoexec.bat is: " & b%
 Else
 Session.Echo "File does not exist."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3

FileList
Syntax FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

Description Fills a String or Variant array with filenames from disk. The FileList function takes the following
parameters:
260

FileList
The FileList function returns different files as specified by the include_attr and exclude_attr and
whether these parameter have been specified. The following table shows these differences: If neither
the include_attr or exclude_attr has been specified, then the following defaults are assumed:

If include_attr is specified and exclude_attr is missing, then FileList excludes all files not
specified by include_attr. If include_attr is missing, its value is assumed to be zero.

Wildcards
The * character matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple *'s and ?'s can appear within the expression to form complete searching
patterns. The following table shows some examples:

Parameter Description
array() Either a zero- or a one-dimensioned array of strings or variants. The array can be

either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements.
If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and ArrayDims functions to deter-
mine the number and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements are
placed into the array.

If there are fewer elements than will fit in the array, then the remaining elements
are initialized to zero-length strings (for string arrays) or Empty (for variant
arrays). A runtime error results if the array is too small to hold the new elements.

Filespec$ String specifying which filenames are to be included in the list. The filespec$
parameter can include wildcards, such as * and ?. If this parameter is omitted,
then * is used.

include_attr Integer specifying attributes of files you want included in the list. It can be any
combination of the attributes listed below.

exclude_attr Integer specifying attributes of files you want excluded from the list. It can be any
combination of the attributes listed below.

Parameter Default
exclude_attr ebHidden Or ebDirectory Or ebSystem Or ebVolume
include_attr ebNone Or ebArchive Or ebReadOnly
261

FileParse$
File attributes
These numbers can be any combination of the following:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim a$()
 FileList a$,"*.*", (ebNormal + ebNone), ebSystem
 If ArrayDims(a$) > 0 Then
 Session.Echo a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)
 Else
 Session.Echo "No files found."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3

FileParse$
Syntax FileParse$(filename$[, operation])

Description Returns a String containing a portion of filename$ such as the path, drive, or file extension. The
filename$ parameter can specify any valid filename (it does not have to exist). For example:

..\test.dat
c:\sheets\test.dat
test.dat

This Pattern Matches These Files Not These Files
*S.*TXT SAMPLE. TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT
C*T.TXT CAT.TXT CAP.TXT, ACATS.TXT
C*T CAT, CAP.TXT CAT.DOC
C?T CAT, CUT CAT.TXT, CAPITCT
* (All files)

Constant Value Includes
ebNormal 0 Read-only, archive, subdir, none
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebDirectory 16 Subdirectories
ebArchive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes
262

Fix
A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of the filename$ to
extract. It can be any of the following values.

If operation is not specified, then the full name is returned. A runtime error will result if operation
is not one of the above values.

A runtime error results if filename$ is empty.

Note The backslash and forward slash can be used interchangeably. For example, "c:\test.dat" is the same
as "c:/test.dat".

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim a$(6)
 For i = 1 To 5
 a$(i) = FileParse$("c:\testsub\autoexec.bat",i - 1)
 Next i
 Session.Echo a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf & a$(5)
End Sub

See Also Character and String Manipulation on page 2; Drive, Folder, and File Access on page 3

Fix
Syntax Fix(number)

Description Returns the integer part of number. This function returns the integer part of the given value by
removing the fractional part. The sign is preserved. The Fix function returns the same type as number,
with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a String, then a Double variant is returned.

• If number contains no valid data, then a Null variant is returned.

Value Meaning Example
0 Full name c:\sheets\test.dat
1 Drive c
2 Path c:\sheets
3 Name test.dat
4 Root test
5 Extension dat
263

For...Each
Example Sub Main
 a# = -19923.45
 b% = Fix(a#)
 Session.Echo "The fixed portion of -19923.45 is: " & b%
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

For...Each
Syntax For Each member in group:

 [statements]
 [Exit For]
 [statements]
Next [member]

Description Repeats a block of statements for each element in a collection or array. The For...Each statement
takes the following parameters:

The compiler supports iteration through OLE collections or arrays with the exception of arrays of user-
defined types or fixed-length strings. The iteration variable is a copy of the collection or array element
in the sense that change the value of member within the loop has no effect on the collection or array.

The For...Each statement traverses array elements in the same order the elements are stored in
memory. For example, the array elements contained in the array defined by the statement

Dim a(1 To 2,3 To 4)

are traversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the elements are
traversed should not be relevant to the correct operation of the macro.

The For...Each statement continues executing until there are no more elements in group or until an
Exit For statement is encountered.

For...Each statements can be nested. In such a case, the Next [member] statement applies to the
innermost For...Each or For...Next statement. Each member variable of nested For...Each
statements must be unique.

A Next statement appearing by itself (with no member variable) matches the innermost For...Each or
For...Next loop.

Parameter Description
member Name of a variable to hold an element for each iteration of the loop. If group is an

array, then member must be a variant variable. If group is a collection, then member
must be an object variable, an explicit OLE automation object, or a variant.

Group Name of a collection or array.
Statements Any number of statements.
264

For...Next
Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example Sub Main
 Dim a(3 To 10) As Single
 Dim i As Variant
 Dim s As String
 For i = 3 To 10
 a(i) = Rnd()
 Next i
 For Each i In a
 i = i + 1
 Next i
 s = ""
 For Each i In a
 If s <> "" Then s = s & ","
 s = s & i
 Next i
 Session.Echo s
End Sub

The following subroutine displays the names of each worksheet in an Excel workbook.

Sub Main
 Dim Excel As Object
 Dim Sheets As Object
 Set Excel = CreateObject("Excel.Application")
 Excel.Visible = 1
 Excel.Workbooks.Add
 Set Sheets = Excel.Worksheets
 For Each a In Sheets
 Session.Echo a.Name
 Next a
End Sub

See Also Macro Control and Compilation on page 6

For...Next
Syntax For counter = start To end [Step increment]

 [statements]
 [Exit For]
 [statements]
Next [counter [,nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop counter by a given
increment each time through the loop. The For statement takes the following parameters:
265

For...Next
The For...Next statement continues executing until an Exit For statement is encountered when
counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement applies to the
innermost For...Next.

The Next clause can be optimized for nested next loops by separating each counter with a comma. The
ordering of the counters must be consistent with the nesting order (innermost counter appearing before
outermost counter). The following example shows two equivalent For statements:

For i = 1 To 10 For i = 1 To 10
 For j = 1 To 10 For j = 1 To 10
 Next j Next j,i
Next i

A Next clause appearing by itself (with no counter variable) matches the innermost For loop.

The counter variable can be changed within the loop but will have no effect on the number of times
the loop will execute.

Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example Sub Main
 For x = -1 To 0
 For y = -1 To 0
 Z = x Or y
 mesg = mesg & Format(Abs(x%),"0") & " Or "
 mesg = mesg & Format(Abs(y%),"0") & " = "

Parameter Description
counter Name of a numeric variable. Variables of the following types can be used: integer,

long, single, double, variant.
Start Initial value for counter. The first time through the loop, counter is assigned this

value.
End Final value for counter. The statements will continue executing until counter is

equal to end.
Increment Amount added to counter each time through the loop. If end is greater than start,

then increment must be positive.

If end is less than start, then increment must be negative.

If increment is not specified, then 1 is assumed. The expression given as increment
is evaluated only once. Changing the step during execution of the loop will have no
effect.

statements Any number of statements.
266

Format, Format$
 mesg = mesg & Format(Z,"True/False") & Basic.Eoln$
 Next y
 Next x
 Session.Echo mesg
End Sub

See Also Macro Control and Compilation on page 6

Format, Format$
Syntax Format[$](expression [, [format] [, [firstdayofweek] [, firstweekofyear]]])

Description Returns a String formatted to user specification. Format$ returns a String, whereas Format returns
a String variant. The Format$/Format functions take the following named parameters:

If format is omitted and the expression is numeric, then these functions perform the same function as
the Str$ or Str statements, except that they do not preserve a leading space for positive values.

If expression is Null, then a zero-length string is returned.

The maximum length of the string returned by Format or Format$ functions is 255.

The firstdayofweek parameter, if specified, can be any of the following constants:

Parameter Description
expression String or numeric expression to be formatted. The compiler will only examine

the first 255 characters of expression.
format Format expression that can be either one of the built-in formats or a user-

defined format consisting of characters that specify how the expression should
be displayed. string, numeric, and date/time formats cannot be mixed in a sin-
gle format expression.

Firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed (i.e.,
the constant ebSunday described below).

Firstweekofyear Indicates the first week of the year. If omitted, then the first week of the year
is considered to be that containing January 1 (i.e., the constant ebFirstJan1 as
described bellow).

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofweek.
EbSunday 1 Sunday (the default)
ebMonday 2 Monday
ebTuesday 3 Tuesday
ebWednesday 4 Wednesday
267

Format, Format$
The firstdayofyear parameter, if specified, can be any of the following constants:

Built-in formats
To format numeric expressions, you can specify one of the built-in formats. There are two categories
of built-in formats: one deals with numeric expressions and the other with date/time values. The
following tables list the built-in numeric and date/time format strings, followed by an explanation of
what each does.

Numeric formats

ebThursday 5 Thursday
ebFriday 6 Friday
ebSaturday 7 Saturday

Constant Value Description

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofyear.
EbFirstJan1 1 The first week of the year is that in which January 1 occurs (the

default).
ebFirstFourDays 2 The first week of the year is that containing at least four days in the

year.
ebFirstFullWeek 3 The first week of the year is the first full week of the year.

Format Description
General Number Displays the numeric expression as is, with no additional formatting.
Currency Displays the numeric expression as currency, with thousands separator if neces-

sary. The built-in currency format allows the specification of an optional user-
defined format specification used only for zero values:
Currency;zero-format-string
where zero-format-string is a user-defined format used specifically for zero
values.

Fixed Displays at least one digit to the left of the decimal separator and two digits to
the right.

Standard Displays the numeric expression with thousands separator if necessary. Dis-
plays at least one digit to the left of the decimal separator and two digits to the
right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%) will
appear at the right of the formatted output. Two digits are displayed to the right
of the decimal separator.
268

Format, Format$
Date/Time formats

Default date/time formats are read from the [Intl] section of the win.ini file.

User-defined formats
In addition to the built-in formats, you can specify a user-defined format by using characters that have
special meaning when used in a format expression. The following list the characters you can use for
numeric, string, and date/time formats and explain their functions.

Scientific Displays the number using scientific notation. One digit appears before the dec-
imal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other values.
True/False Displays False if the numeric expression is 0. Displays True for all other values.
On/Off Displays Off if the numeric expression is 0. Displays On for all other values.

Format Description

Format Description
General date Displays the date and time. If there is no fractional part in the numeric expression,

then only the date is displayed. If there is no integral part in the numeric expres-
sion, then only the time is displayed. Output is in the following form:

1/1/95 01:00:00 AM

Long date Displays a long date—prints out the day of the week, the full name of the month,
and the numeric date and year.

Medium date Displays a medium date—prints out only the abbreviated name of the month.
Short date Displays a short date.
Long time Displays the long time. The default is: h:mm:ss.
Medium time Displays the time using a 12-hour clock. Hours and minutes are displayed, and

the AM/PM designator is at the end.
Short time Displays the time using a 24-hour clock. Hours and minutes are displayed.
269

Format, Format$
Numeric formats

Character Meaning
Empty string Displays the numeric expression as is, with no additional formatting.
0 This is a digit placeholder. Displays a number or a 0. If a number exists in the

numeric expression in the position where the 0 appears, the number will be
displayed. Otherwise, a 0 will be displayed. If there are more 0s in the format
string than there are digits, the leading and trailing 0s are displayed without
modification.

This is a digit placeholder. Displays a number or nothing. If a number exists in
the numeric expression in the position where the number sign appears, the
number will be displayed. Otherwise, nothing will be displayed. Leading and
trailing 0s are not displayed.

. This is the decimal placeholder. Designates the number of digits to the left of
the decimal and the number of digits to the right. The character used in the
formatted string depends on the decimal placeholder, as specified by your
locale.

% This is the percentage operator. The numeric expression is multiplied by 100,
and the percent character is inserted in the same position as it appears in the
user-defined format string.

, This is the thousands separator. The common use for the thousands separator
is to separate thousands from hundreds. To specify this use, the thousands sep-
arator must be surrounded by digit placeholders. Commas appearing before
any digit placeholders are specified are just displayed. Adjacent commas with
no digit placeholders specified between them and the decimal mean that the
number should be divided by 1,000 for each adjacent comma in the format
string. A comma immediately to the left of the decimal has the same function.
The actual thousands separator character used depends on the character speci-
fied by your locale.

E- E+ e- e+ These are the scientific notation operators, which display the number in scien-
tific notation. At least one digit placeholder must exist to the left of E-, E+, e-,
or e+. Any digit placeholders displayed to the left of E-, E+, e-, or e+ deter-
mine the number of digits displayed in the exponent. Using E+ or e+ places a +
in front of positive exponents and a – in front of negative exponents. Using E-
or e- places a – in front of negative exponents and nothing in front of positive
exponents.

: This is the time separator. Separates hours, minutes, and seconds when time
values are being formatted. The actual character used depends on the charac-
ter specified by your locale.

/ This is the date separator. Separates months, days, and years when date values
are being formatted. The actual character used depends on the character speci-
fied by your locale.
270

Format, Format$
Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you specify
one format, it applies to all values. If you specify two formats, the first applies to positive values and
the second to negative values. If you specify three formats, the first applies to positive values, the
second to negative values, and the third to 0s. If you include semicolons with no format between them,
the format for positive values is used.

String formats

- + $ () space These are the literal characters you can display. To display any other character,
you should precede it with a backslash or enclose it in quotes.

\ This designates the next character as a displayed character. To display charac-
ters, precede them with a backslash. To display a backslash, use two back-
slashes. Double quotation marks can also be used to display characters.
Numeric formatting characters, date/time formatting characters, and string
formatting characters cannot be displayed without a preceding backslash.

"ABC" Displays the text between the quotation marks, but not the quotation marks.
To designate a double quotation mark within a format string, use two adjacent
double quotation marks.

* This will display the next character as the fill character. Any empty space in a
field will be filled with the specified fill character.

Character Meaning

Character Meaning
@ This is a character placeholder. It displays a character if one exists in the expression in

the same position; otherwise, it displays a space. Placeholders are filled from right to
left unless the format string specifies left to right.

& This is a character placeholder. It displays a character if one exists in the expression in
the same position; otherwise, it displays nothing. Placeholders are filled from right to
left unless the format string specifies left to right.

< This character forces lowercase. It displays all characters in the expression in lower-
case.

> This character forces uppercase. It displays all characters in the expression in upper-
case.

! This character forces placeholders to be filled from left to right. The default is right to
left.
271

Format, Format$
Date/Time formats

Example Const crlf = Chr$(13) + Chr$(10)

Character Meaning
c Displays the date as ddddd and the time as ttttt. Only the date is displayed if no frac-

tional part exists in the numeric expression. Only the time is displayed if no integral
portion exists in the numeric expression.

d Displays the day without a leading 0 (1–31).
dd Displays the day with a leading 0 (01–31).
ddd Displays the day of the week abbreviated (Sun–Sat).
dddd Displays the day of the week (Sunday–Saturday).
ddddd Displays the date as a short date.
dddddd Displays the date as a long date.
w Displays the number of the day of the week (1–7). Sunday is 1; Saturday is 7.
ww Displays the week of the year (1–53).
m Displays the month without a leading 0 (1–12). If m immediately follows h or hh, m is

treated as minutes (0–59).
mm Displays the month with a leading 0 (01–12). If mm immediately follows h or hh, mm

is treated as minutes with a leading 0 (00–59).
mmm Displays the month abbreviated (Jan–Dec).
mmmm Displays the month (January–December).
q Displays the quarter of the year (1–4).
yy Displays the year, not the century (00–99).
yyyy Displays the year (1000–9999).
h Displays the hour without a leading 0 (0–24).
hh Displays the hour with a leading 0 (00–24).
n Displays the minute without a leading 0 (0–59).
nn Displays the minute with a leading 0 (00–59).
s Displays the second without a leading 0 (0–59).
ss Displays the second with a leading 0 (00–59).
ttttt Displays the time. A leading 0 is displayed if specified by your locale.
AM/PM or
AMPM

Displays the time using a 12-hour clock. Displays an uppercase AM for time values
before 12 noon. Displays an uppercase PM for time values after 12 noon and before 12
midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm at the end.
A/P Displays the time using a 12-hour clock. Displays an uppercase A or P at the end.
a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at the end.
272

FreeFile
Sub Main
 a# = 1199.234
 mesg = "Some general formats for '" & a# & "' are:"
 mesg = mesg & Format$(a#,"General Number") & crlf
 mesg = mesg & Format$(a#,"Currency") & crlf
 mesg = mesg & Format$(a#,"Standard") & crlf
 mesg = mesg & Format$(a#,"Fixed") & crlf
 mesg = mesg & Format$(a#,"Percent") & crlf
 mesg = mesg & Format$(a#,"Scientific") & crlf
 mesg = mesg & Format$(True,"Yes/No") & crlf
 mesg = mesg & Format$(True,"True/False") & crlf
 mesg = mesg & Format$(True,"On/Off") & crlf
 mesg = mesg & Format$(a#,"0,0.00") & crlf
 mesg = mesg & Format$(a#,"##,###,###.###") & crlf
 Session.Echo mesg
 da$ = Date$
 mesg = "Some date formats for '" & da$ & "' are:"
 mesg = mesg & Format$(da$,"General Date") & crlf
 mesg = mesg & Format$(da$,"Long Date") & crlf
 mesg = mesg & Format$(da$,"Medium Date") & crlf
 mesg = mesg & Format$(da$,"Short Date") & crlf
 Session.Echo mesg
 ti$ = Time$
 mesg = "Some time formats for '" & ti$ & "' are:"
 mesg = mesg & Format$(ti$,"Long Time") & crlf
 mesg = mesg & Format$(ti$,"Medium Time") & crlf
 mesg = mesg & Format$(ti$,"Short Time") & crlf
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2

FreeFile
Syntax FreeFile [([rangenumber])]

Description Returns an Integer containing the next available file number. This function returns the next available
file number within the specified range. If rangenumber is 0, then a number between 1 and 255 is
returned; if 1, then a number between 256 and 511 is returned. If rangenumber is not specified, then a
number between 1 and 255 is returned.

The function returns 0 if there is no available file number in the specified range.

The number returned is suitable for use in the Open statement.

Example Sub Main
 a = FreeFile
 Session.Echo "The next free file number is: " & a
End Sub

See Also Drive, Folder, and File Access on page 3
273

Function...End Function
Function...End Function
Syntax [Private | Public] [Static] Function name[(arglist)] [As ReturnType]

 [statements]
End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are allowed):

[Optional] [ByVal | ByRef] parameter [()] [As type]

Description Creates a user-defined function. The Function statement has the following parts:

Part Description
Private Indicates that the function being defined cannot be called from other macros in other

modules.
Public Indicates that the function being defined can be called from other macros in other

modules. If both the Private and Public keywords are missing, then Public is
assumed.

Static Recognized by the compiler but currently has no effect.
name Name of the function, which must follow naming conventions:

Must start with a letter.

May contain letters, digits, and the underscore character (_). Punctuation and type-
declaration characters are not allowed. The exclamation point (!) can appear within
the name as long as it is not the last character, in which case it is interpreted as a type-
declaration character.

Must not exceed 80 characters in length. Additionally, the name parameter can end
with an optional type-declaration character specifying the type of data returned by the
function (i.e., any of the following characters: %, &, !, #, @).

Optional Keyword indicating that the parameter is optional. All optional parameters must be of
type variant. Furthermore, all parameters that follow the first optional parameter must
also be optional. If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine whether an optional parame-
ter was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.
ByRef Keyword indicating that parameter is passed by reference. If neither the ByVal nor

the ByRef keyword is given, then ByRef is assumed.
parameter Name of the parameter, which must follow the same naming conventions as those

used by variables. This name can include a type-declaration character, appearing in
place of As type.
274

Function...End Function
A function returns to the caller when either of the following statements is encountered: End Function
or Exit Function.

Functions can be recursive.

Returning Values from Functions
To assign a return value, an expression must be assigned to the name of the function, as shown below:

Function TimesTwo(a As Integer) As Integer
 TimesTwo = a * 2
End Function

If no assignment is encountered before the function exits, then one of the following values is returned:

The type of the return value is determined by the As ReturnType clause in the Function statement
itself. As an alternative, a type-declaration character can be added to the Function name. For example,
the following two definitions of Test both return String values:

Function Test() As String
 Test = "Hello, world"
End Function
Function Test$()
 Test = "Hello, world"
End Function

type Type of the parameter (integer, string, and so on). Arrays are indicated with parenthe-
ses. For example, an array of integers would be declared as follows:
Function Test(a() As Integer)End Function

ReturnType Type of data returned by the function. If the return type is not given, then variant is
assumed. The ReturnType can only be specified if the function name (i.e., the name
parameter) does not contain an explicit type-declaration character.

Part Description

Value Data Type Returned by the Function
0 Integer, long, single, double, currency
Zero-length string String
Nothing Object (or any data object)
Error Variant
December 30, 1899 Date
False Boolean
275

Function...End Function
Passing Parameters to Functions
Parameters are passed to a function either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the ByRef keyword, then any
modifications to that passed parameter within the function change the value of that variable in the
caller. If the parameter is declared using the ByVal keyword, then the value of that variable cannot be
changed in the called function. If neither the ByRef or ByVal keywords are specified, then the
parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

Optional Parameters
You can skip parameters when calling functions, as shown in the following example:

Function Test(a%,b%,c%) As Variant
End Function
Sub Main
 a = Test(1,,4) 'Parameter 2 was skipped.
End Sub

You can skip any parameter, with the following restrictions:

• The call cannot end with a comma. For instance, using the above example, the following is not
valid:

a = Test(1,,)

• The call must contain the minimum number of parameters as required by the called function. For
instance, using the above example, the following are invalid:

a = Test(,1) 'Only passes two out of three required
 'parameters.
a = Test(1,2) 'Only passes two out of three required
 'parameters.

When you skip a parameter in this manner, the compiler creates a temporary variable and passes this
variable instead. The value of this temporary variable depends on the data type of the corresponding
parameter in the argument list of the called function, as described in the following table:

Value Data Type
0 Integer, long, single, double, currency
Zero-length string String
Nothing Object (or any data object)
276

Fv
Within the called function, you will be unable to determine whether a parameter was skipped unless
the parameter was declared as a variant in the argument list of the function. In this case, you can use
the IsMissing function to determine whether the parameter was skipped:

Function Test(a,b,c)
 If IsMissing(a) Or IsMissing(b) Then Exit Sub
End Function

Example Function Factorial(n%) As Integer
 'This function calculates N! (N-factoral).
 f% = 1
 For i = n To 2 Step -1
 f = f * i
 Next i
 Factorial = f
End Function

Sub Main
 a% = 0
 Do While a% < 2
 a% = Val(InputBox$("Enter an integer number greater than 2.","Compute
Factorial"))
 Loop
 b# = Factorial(a%)
 Session.Echo "The factoral of " & a% & " is: " & b#
End Sub

See Also Macro Control and Compilation on page 6

Fv
Syntax Fv(rate, nper, pmt, pv, due)

Description Calculates the future value of an annuity based on periodic fixed payments and a constant rate of
interest. An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans. The
Fv function requires the following named parameters:

Error Variant
December 30, 1899 Date
False Boolean

Value Data Type
277

Fv
The rate and nper values must be expressed in the same units. If rate is expressed as a percentage
per month, then nper must also be expressed in months. If rate is an annual rate, then the nper value
must also be given in years.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the future value of 100 dollars paid periodically for a period of 10 years (120
months) at a rate of 10% per year (or .10/12 per month) with payments made on the first of the month.
Note that payments are negative values.

Sub Main
 a# = Fv((.10/12),120,-100.00,0,1)
 Session.Echo "Future value is: " & Format(a#,"Currency")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Parameter Description
rate Double representing the interest rate per period. Make sure that annual rates are nor-

malized for monthly periods (divided by 12).
nper Double representing the total number of payments (periods) in the annuity.
pmt Double representing the amount of each payment per period. Payments are entered as

negative values, whereas receipts are entered as positive values.
pv Double representing the present value of your annuity. In the case of a loan, the

present value would be the amount of the loan, whereas in the case of a retirement
annuity, the present value would be the amount of the fund.

due Integer indicating when payments are due for each payment period. A 0 specifies pay-
ment at the end of each period, whereas a 1 indicates payment at the start of each
period.
278

G

Get
Syntax Get [#] filenumber, [recordnumber], variable

Description Retrieves data from a random or binary file and stores that data into the specified variable. The Get
statement accepts the following parameters:

With random files, a runtime error will occur if the length of the data being read exceeds the reclen
parameter specified with the Open statement. If the length of the data being read is less than the record
length, the file pointer is advanced to the start of the next record. With binary files, the data elements
being read are contiguous; the file pointer is never advanced.

Parameter Description
filenumber Integer used to identify the file. This is the same number passed to the Open

statement.
recordnumber Long specifying which record is to be read from the file. For binary files, this

number represents the first byte to be read starting with the beginning of the file
(the first byte is 1). For random files, this number represents the record number
starting with the beginning of the file (the first record is 1). This value ranges
from 1 to 2147483647. If the recordnumber parameter is omitted, the next
record is read from the file (if no records have been read yet, then the first
record in the file is read). When this parameter is omitted, the commas must still
appear, as in the following example:

Get #1,,recvar If recordnumber

is specified, and it overrides any previous change in file position specified with
the Seek statement.

variable Variable into which data will be read. The type of the variable determines how
the data is read from the file, as described below.
279

Get
Variable types
The type of the variable parameter determines how data will be read from the file. It can be any of
the following types:

Example Sub Main
 Open "test.dat" For Random Access Write As #1
 For x = 1 to 10

Variable Type File Storage Description
Integer 2 bytes are read from the file.
Long 4 bytes are read from the file.
String (variable-length) In binary files, variable-length strings are read by first determining the

specified string variable's length and then reading that many bytes
from the file. For example, to read a string of eight characters:

s$=String$(8,"")Get#1,,s$

In random files, variable-length strings are read by first reading a 2-
byte length and then reading that many characters from the file.

String (fixed-length) Fixed-length strings are read by reading a fixed number of characters
from the file equal to the string's declared length.

Double 8 bytes are read from the file (IEEE format).
Single 4 bytes are read from the file (IEEE format).
Date 8 bytes are read from the file (IEEE double format).
Boolean 2 bytes are read from the file. Nonzero values are True, and zero values

are False.
Variant A 2-byte VarType is read from the file, which determines the format of

the data that follows. Once the VarType is known, the data is read indi-
vidually, as described above. With user-defined errors, after the 2-byte
VarType, a 2-byte unsigned integer is read and assigned as the value of
the user-defined error, followed by 2 additional bytes of information
about the error. The exception is with strings, which are always pre-
ceded by a 2-byte string length.

User-defined types Each member of a user-defined data type is read individually. In binary
files, variable-length strings within user-defined types are read by first
reading a 2-byte length followed by the string's content. This storage is
different from variable-length strings outside of user-defined types.
When reading user-defined types, the record length must be greater
than or equal to the combined size of each element within the data
type.

Arrays Arrays cannot be read from a file using the Get statement.
Object Object variables cannot be read from a file using the Get statement.
280

GetAttr
 y% = x * 10
 Put #1,x,y
 Next x
 Close
 Open "test.dat" For Random Access Read As #1
 For y = 1 to 5
 Get #1,y,x%
 mesg = mesg & "Record " & y & ": " & x% & Basic.Eoln$
 Next y
 Session.Echo mesg
 Close
End Sub

See Also Drive, Folder, and File Access on page 3

GetAttr
Syntax GetAttr(pathname)

Description Returns an Integer containing the attributes of the specified file. The attribute value returned is the
sum of the attributes set for the file. The value of each attribute is as follows:

To determine whether a particular attribute is set, you can And the values shown above with the value
returned by GetAttr.

If the result is True, the attribute is set, as shown below:

Dim w As Integer
w = GetAttr("sample.txt")
If w And ebReadOnly Then Session.Echo "This file is read-only."

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 If Not FileExists("test.dat") Then
 Open "test.dat" For Random Access Write As #1
 Close
 End If
 y% = GetAttr("test.dat")

Value Constant Includes
0 ebNormal Read-only files, archive files, subdirectories, and files with no attributes
1 ebReadOnly Read-only files
2 ebHidden Hidden files
4 ebSystem System files
9 ebVolume Volume label
16 ebDirectory Subdirectories
32 ebArchive Files that have changed since the last backup
64 ebNone Files with no attributes
281

GetObject
 If y% And ebNone Then mesg = mesg & _
 "No archive bit is set." & crlf
 If y% And ebReadOnly Then mesg = mesg & _
 "The read-only bit is set." & crlf
 If y% And ebHidden Then mesg = mesg & "The hidden bit is set." & _
 crlf
 If y% And ebSystem Then mesg = mesg & "The system bit is set." & _
 crlf
 If y% And ebVolume Then mesg = mesg & "Volume bit is set." & crlf
 If y% And ebDirectory Then mesg = mesg & "Directory bit is set." &
 & crlf
 If y% And ebArchive Then mesg = mesg & "The archive bit is set."
 Session.Echo mesg
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

GetObject
Syntax GetObject(pathname [, class])

Description Returns the object specified by pathname or returns a previously instantiated object of the given class.
This function is used to retrieve an existing OLE Automation object, either one that comes from a file
or one that has previously been instantiated.

The pathname argument specifies the full pathname of the file containing the object to be activated.
The application associated with the file is determined by OLE at runtime. For example, suppose that
a file called c:\docs\resume.doc was created by a word processor called wordproc.exe. The following
statement would invoke wordproc.exe, load the file called c:\docs\resume.doc, and assign that object
to a variable:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename followed by a string
representing the part of the object that you want to activate. For example, to activate the first three
pages of the document in the previous example:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first named parameter is
omitted. The following table summarizes the different behaviors of GetObject:
282

GoSub
Examples This first example instantiates the existing copy of Excel.

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")

This second example loads the OLE server associated with a document.

Dim MyObject As Object
Set MyObject = GetObject("c:\documents\resume.doc",)

See Also Objects on page 10; DDE Access on page 11

GoSub
Syntax GoSub label

Description Causes execution to continue at the specified label. Execution can later be returned to the statement
following the GoSub by using the Return statement. The label parameter must be a label within the
current function or subroutine. GoSub outside the context of the current function or subroutine is not
allowed.

Example Sub Main
 uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
 GoSub CheckName
 Session.Echo "Hello, " & uname$
 Exit Sub
CheckName:
 If (uname$ = "") Then
 GoSub BlankName
 ElseIf uname$ = "MICHAEL" Then
 GoSub RightName
 Else
 GoSub OtherName
 End If
 Return
BlankName:
 Session.Echo "No name? Clicked Cancel? I'm shutting down."

Pathname Class GetObject Returns
Not specified Specified A reference to an existing instance of the specified object. A runt-

ime error results if the object is not already loaded.
" " Specified A reference to a new object (as specified by class). A runtime error

occurs if an object of the specified class cannot be found. This is
the same as CreateObject.

Specified Not specified The default object from pathname. The application to activate is
determined by OLE based on the given filename.

Specified Specified The object given class from the file given by pathname. A runtime
error occurs if an object of the given class cannot be found in the
given file.
283

Goto
 Exit Sub
RightName:
 Return
OtherName:
 Session.Echo "I am renaming you MICHAEL!"
 uname$ = "MICHAEL"
 Return
End Sub

See Also Macro Control and Compilation on page 6

Goto
Syntax Goto label

Description Transfers execution to the line containing the specified label. The compiler will produce an error if
label does not exist. The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

• Must begin with a letter.

• May contain letters, digits, and the underscore character.

• Must not exceed 80 characters in length.

• Must be followed by a colon (:).

Labels are not case-sensitive.

When you're running a macro within the macro editor, you can break out of an infinite loop by pressing
Ctrl+Break.

Example Sub Main
 uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
 If uname$ = "MICHAEL" Then
 Goto RightName
 Else
 Goto WrongName
 End If
WrongName:
 If (uname$ = "") Then
 Session.Echo "No name? Clicked Cancel? I'm shutting down."
 Else
 Session.Echo "I am renaming you MICHAEL!"
 uname$ = "MICHAEL"
 Goto RightName
 End If
 Exit Sub
RightName:
 Session.Echo "Hello, MICHAEL!"
End Sub

See Also Macro Control and Compilation on page 6
284

GroupBox
GroupBox
Syntax GroupBox x,y,width,height,title$ [,.Identifier]

Description Defines a group box within a dialog template. This statement can only appear within a dialog template
(i.e., between the Begin Dialog and End Dialog statements).

The group box control is used for static display only the user cannot interact with a group box control.

Separator lines can be created using group box controls. This is accomplished by creating a group box
that is wider than the width of the dialog and extends below the bottom of the dialog; i.e., three sides
of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no title.

The GroupBox statement requires the following parameters:

Example Sub Main
 Begin Dialog OptionsTemplate 16,32,128,84,"Options"
 GroupBox 4,4,116,40,"Window Options"
 CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar
 CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
 GroupBox -12,52,152,48," ",.SeparatorLine
 OKButton 16,64,40,14,.OK
 CancelButton 68,64,40,14,.Cancel
 End Dialog
 Dim OptionsDialog As OptionsTemplate
 Dialog OptionsDialog
End Sub

See Also User Interaction on page 9

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative

to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
title$ String containing the label of the group box. If title$ is a zero-length string, then

no title will appear.
.Identifier Optional parameter that specifies the name by which this control can be refer-

enced by statements in a dialog function (such as DlgFocus and DlgEnable). If
omitted, then the first two words of title$ are used.
285

H

HelpButton
Syntax HelpButton x,y,width,height,HelpFileName$,HelpContext, [,.Identifier]

Description Defines a help button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The HelpButton statement
takes the following parameters:

When the user selects a help button, the associated help file is located at the indicated topic. Selecting
a help button does not remove the dialog. Similarly, no actions are sent to the dialog procedure when
a help button is selected.

When a help button is present within a dialog, it can be automatically selected by pressing the help key
F1.

Parameter Description
x,y Integer position of the control (in dialog units) relative to the upper left cor-

ner of the dialog.
width,height Integer dimensions of the control in dialog units.
HelpFileName$ String expression specifying the name of the help file to be invoked when

the button is selected.
HelpContext Long expression specifying the ID of the topic within HelpFileName$ con-

taining context-sensitive help.
.Identifier Name by which this control can be referenced by statements in a dialog

function (such as DlgFocus and DlgEnable).
287

Hex, Hex$
Example Sub Main
 Begin Dialog HelpDialogTemplate ,,180,96,"Untitled"
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 HelpButton 132,48,40,14,"", 10
 Text 16,12,88,12,"Please click ""Help"".",.Text1
 End Dialog
Dim HelpDialog As HelpDialogTemplate
Dialog HelpDialog
End Sub

See Also User Interaction on page 9

Hex, Hex$
Syntax Hex[$](number)

Description Returns a String containing the hexadecimal equivalent of number. Hex$ returns a String, whereas
Hex returns a String variant. The returned string contains only the number of hexadecimal digits
necessary to represent the number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number before converting
to hex. If the passed number is an integer, then a maximum of four digits are returned; otherwise, up
to eight digits can be returned.

The number parameter can be any expression convertible to a number. If number is Null, then Null is
returned. Empty is treated as 0.

Example Sub Main
 Do
 xs$ = InputBox$("Enter a number to convert:","Hex Convert")
 x = Val(xs$)
 If x <> 0 Then
 Session.Echo "Dec: " & x & " Hex: " & Hex$(x)
 Else
 Session.Echo "Goodbye."
 End If
 Loop While x <> 0
End Sub

See Also Character and String Manipulation on page 2
288

Hour
Hour
Syntax Hour(time)

Description Returns the hour of the day encoded in the specified time parameter. The value returned is an Integer
between 0 and 23 inclusive. The time parameter is any expression that converts to a Date.

Example Sub Main
 xt# = TimeValue(Time$())
 xh# = Hour(xt#)
 xm# = Minute(xt#)
 xs# = Second(xt#)
 Session.Echo "The current time is: " & xh# & ":" & xm# & ":" & xs#
End Sub

See Also Time and Date Access on page 10
289

I

If...Then...Else
Syntax 1 If condition Then statements [Else else_statements]

Syntax 2 If condition Then
 [statements]
[ElseIf else_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Description Conditionally executes a statement or group of statements. The single-line conditional statement
(syntax 1) has the following parameters:

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description
condition Any expression evaluating to a boolean value.
Statements One or more statements separated with colons. This group of statements is

executed when condition is True.
else_statements One or more statements separated with colons. This group of statements is

executed when condition is False.

Parameter Description
condition Any expression evaluating to a boolean value.
Statements One or more statements to be executed when condition is True.
291

Iif
There can be as many ElseIf conditions as required.

Example Sub Main
 uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
 If uname$ = "MICHAEL" Then GoSub MikeName
 If uname$ = "MIKE" Then
 GoSub MikeName
 Exit Sub
 End If
 If uname$ = "" Then
 Session.Echo "Since you don't have a name, I'll call you MIKE!"
 uname$ = "MIKE"
 GoSub MikeName
 ElseIf uname$ = "MICHAEL" Then
 GoSub MikeName
 Else
 GoSub OtherName
 End If
 Exit Sub
MikeName:
 Session.Echo "Hello, MICHAEL!"
 Return
OtherName:
 Session.Echo "Hello, " & uname$ & "!"
 Return
End Sub

See Also Macro Control and Compilation on page 6

Iif
Syntax Iif(expression, truepart, falsepart)

Description Returns truepart if condition is True; otherwise, returns falsepart. Both expressions are calculated
before Iif returns. The Iif function is shorthand for the following construct:

If condition Then
 variable = truepart
Else
 variable = falsepart
End If

else_condition Any expression evaluating to a boolean value. The else_condition is
evaluated if condition is False.

elseif_statements One or more statements to be executed when condition is False and
else_condition is True.

else_statments One or more statements to be executed when both condition and
else_condition are False.

Parameter Description
292

IMEStatus
Example Sub Main
 s$ = "Car"
 Session.Echo Iif(s$ = "Car","Nice Car","Nice Automobile")
End Sub

See Also Macro Control and Compilation on page 6

IMEStatus
Syntax IMEStatus[()]

Description Returns the current status of the input method editor. The IMEStatus function returns one of the
following constants for Japanese locales:

For Chinese locales, one of the following constants are returned:

For Korean locales, this function returns a value with the first 5 bits having the following meaning:

Constant Value Description
ebIMENoOp 0 IME not installed.
EbIMEOn 1 IME on.
EbIMEOff 2 IME off.
EbIMEDisabled 3 IME disabled.
EbIMEHiragana 4 Hiragana double-byte character.
EbIMEKatakanaDbl 5 Katakana double-byte characters.
EbIMEKatakanaSng 6 Katakana single-byte characters.
EbIMEAlphaDbl 7 Alphanumeric double-byte characters.
EbIMEAlphaSng 8 Alphanumeric single-byte characters.

Constant Value Description
ebIMENoOp 0 IME not installed.
EbIMEOn 1 IME on.
EbIMEOff 2 IME off.

Bit If Not Set (Or 0) If Set (Or 1)
Bit 0 IME not installed IME installed
Bit 1 IME disabled IME enabled
Bit 2 English mode Hangeul mode
Bit 3 Banja mode (single-byte) Junja mode (double-byte)
Bit 4 Normal mode Hanja conversion mode
293

Imp (operator)
Note You can test for the different bits using the And operator as follows:

a = IMEStatus()
If a And 1 Then … 'Test for bit 0
If a And 2 Then … 'Test for bit 1
If a And 4 Then … 'Test for bit 2
If a And 8 Then … 'Test for bit 3
If a And 16 Then … 'Test for bit 4

This function always returns 0 if no input method editor is installed.

Example Sub Main
 a = IMEStatus()
 Select case a
 Case 0
 Session.Echo "IME not installed."
 Case 1
 Session.Echo "IME on."
 Case 2
 Session.Echo "IME off."
 End Select
End Sub

See Also Operating System Control on page 9

Imp (operator)
Syntax result = expression1 Imp expression2

Description Performs a logical or binary implication on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical implication is performed as follows:

Expression One Expression Two Result
True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null
294

Input#
Binary implication
If the two expressions are Integer, then a binary implication is performed, returning an Integer
result. All other numeric types (including Empty variants) are converted to Long and a binary
implication is then performed, returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions, according to the following table:

Example Sub Main
 a = 10 : b = 20 : c = 30 : d = 40
 If (a < b) Imp (c < d) Then
 Session.Echo "a is less than b implies that c is less than d."
 Else
 Session.Echo "a is less than b does not imply that c is less than d."
 End If
 If (a < b) Imp (c > d) Then
 Session.Echo "a is less than b implies that c is greater than d."
 Else
 Session.Echo "a is less than b does not imply that c is greater than d."
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Input#
Syntax Input [#]filenumber%,variable[,variable]…

Description Reads data from the file referenced by filenumber into the given variables. Each variable must be
type-matched to the data in the file. For example, a String variable must be matched to a string in the
file. The following parsing rules are observed while reading each variable in the variable list:

• Leading white space is ignored (spaces and tabs).

• When reading String variables, if the first character on the line is a quotation mark, then charac-
ters are read up to the next quotation mark or the end of the line, whichever comes first. Blank lines
are read as empty strings. If the first character read is not a quotation mark, then characters are read
up to the first comma or the end of the line, whichever comes first. String delimiters (quotes, com-
ma, end-of-line) are not included in the returned string.

Bit in Expression One Bit in Expression Two Result
1 1 1
0 1 1
1 0 0
0 0 1
295

Input#
• When reading numeric variables, scanning of the number stops when the first non-numeric char-
acter (such as a comma, a letter, or any other unexpected character) is encountered. Numeric errors
are ignored while reading numbers from a file. The resultant number is automatically converted to
the same type as the variable into which the value will be placed. If there is an error in conversion,
then 0 is stored into the variable.

• After reading the number, input is skipped up to the next delimiter—a comma, an end-of-line, or
an end-of-file.

• Numbers must adhere to any of the following syntax:

[-|+]digits[.digits][E[-|+]digits][!|#|%|&|@]
&Hhexdigits[!|#|%|&]
&[O]octaldigits[!|#|%|&|@]

• When reading Boolean variables, the first character must be #; otherwise, a runtime error occurs.
If the first character is #, then input is scanned up to the next delimiter (a comma, an end-of-line,
or an end-of-file). If the input matches #FALSE#, then False is stored in the Boolean; otherwise,
True is stored.

• When reading date variables, the first character must be #; otherwise, a runtime error occurs. If the
first character is #, then the input is scanned up to the next delimiter (a comma, an end-of-line, or
an end-of-file). If the input ends in a # and the text between the #'s can be correctly interpreted as
a date, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files. These dates use
this syntax:

#YYYY-MM-DD HH:MM:SS#

where YYYY is a year between 100 and 9999, MM is a month between 1 and 12, DD is a day between 1
and 31, HH is an hour between 0 and 23, MM is a minute between 0 and 59, and SS is a second between
0 and 59.

• When reading Variant variables, if the data begins with a quotation mark, then a string is read con-
sisting of the characters between the opening quotation mark and the closing quotation mark, end-
of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up to the next comma, end-of-
line, or end-of-file and a determination is made as to what data is being represented. If the data cannot
be represented as a number, Date, Error, Boolean, or Null, then it is read as a string.

The following table describes how special data is interpreted as variants:

Special Data Interpreted as Variant
Blank line Read as an empty variant.
#NULL# Read as a null variant.
TRUE# Read as a boolean variant.
296

Input#
• If an error occurs in interpretation of the data as a particular type, then that data is read as a String
variant.

• When reading numbers into variants, the optional type-declaration character determines the
VarType of the resulting variant. If no type-declaration character is specified, then the compiler
will read the number according to the following rules:

• Rule 1: If the number contains a decimal point or an exponent, then the number is read as Cur-
rency. If there is an error converting to Currency, then the number is treated as a Double.

• Rule 2: If the number does not contain a decimal point or an exponent, then the number is
stored in the smallest of the following data types that most accurately represents that value:
integer, long, currency, double.

• End-of-line is interpreted as either a single line feed, a single carriage return, or a carriage-return/
line-feed pair. Thus, text files from any platform can be interpreted using this command.

• The filenumber parameter is a number that is used to refer to the open file the number passed to
the Open statement.

• The filenumber must reference a file opened in Input mode. It is good practice to use the Write
statement to write date elements to files read with the Input statement to ensure that the variable
list is consistent between the input and output routines.

• Null characters are ignored.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Open "test.dat" For Output As #1
 Write #1,2112,"David","McCue","123-45-6789"
 Close
 Open "test.dat" For Input As #1
 Input #1,x%,st1$,st2$,st3$
 mesg = "Employee " & x% & " Information" & crlf & crlf
 mesg = mesg & "First Name: " & st1$ & crlf
 mesg = mesg & "Last Name: "& st2$ & crlf
 mesg = mesg & "Social Security Number: " & sy3$
 Session.Echo mesg
 Close
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

#FALSE# Read as a boolean variant.
ERROR code# Read as a user-defined error.
Date# Read as a date variant.
"text" Read as a string variant.

Special Data Interpreted as Variant
297

Input, Input$, InputB, InputB$
Input, Input$, InputB, InputB$
Syntax Input[$](numchars,[#]filenumber)

InputB[$](numbytes,[#]filenumber)

Description Returns a specified number of characters or bytes read from a given sequential file. The Input$ and
InputB$ functions return a String, whereas Input and InputB return a String variant. The following
parameters are required:

The Input and Input$ functions read all characters, including spaces and end-of-lines. Null characters
are ignored.

The InputB and InputB$ functions are used to read byte data from a file.

Example Const crlf = Chr$(13) & Chr$(10)

Sub Main
 x& = FileLen("c:\autoexec.bat")
 If x& > 0 Then
 Open "c:\autoexec.bat" For Input As #1
 Else
 Session.Echo "File not found or empty."
 Exit Sub
 End If
 If x& > 80 Then
 ins = Input(80,#1)
 Else
 ins = Input(x,#1)
 End If
 Close
 Session.Echo "File length: " & x& & crlf & ins
End Sub

See Also Drive, Folder, and File Access on page 3

InputBox, InputBox$
Syntax InputBox[$](prompt [, [title] [, [default] [,[xpos],[ypos] [,helpfile,context]]]])

Description Displays a dialog with a text box into which the user can type. The content of the text box is returned
as a String (in the case of InputBox$) or as a String variant (in the case of InputBox). A zero-length

Parameter Description
numchars Integer containing the number of characters to be read from the file.
numbytes Integer containing the number of bytes to be read from the file.
filenumber Integer referencing a file opened in either Input or Binary mode. This is the same

number passed to the Open statement.
298

InStr, InstrB
string is returned if the user selects Cancel. The InputBox/InputBox$ functions take the following
named parameters:

You can type a maximum of 255 characters into InputBox.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

When Cancel is selected, an empty string is returned. An empty string is also returned when the user
selects the OK button with no text in the input box. Thus, it is not possible to determine the difference
between these two situations. If you need to determine the difference, you should create a user-defined
dialog or use the AskBox function.

Example Sub Main
 s$ = InputBox$("File to copy:","Copy","sample.txt")
End Sub

See Also User Interaction on page 9

InStr, InstrB
Syntax InStr([start,] search, find [,compare])

InStrB([start,] search, find [,compare])

Description Returns the first character position of string find within string search. The InStr function takes the
following parameters:

Parameter Description
prompt Text to be displayed above the text box. The prompt parameter can contain multiple

lines, each separated with an end-of-line (a carriage return, line feed, or carriage-
return/line-feed pair). A runtime error is generated if prompt is null.

title Caption of the dialog. If this parameter is omitted, then no title appears as the dialog's
caption. A runtime error is generated if title is null.

default Default response. This string is initially displayed in the text box. A runtime error is
generated if default is null.

xpos, ypos Integer coordinates, given in twips (twentieths of a point), specifying the upper left
corner of the dialog relative to the upper left corner of the screen. If the position is
omitted, then the dialog is positioned on or near the application executing the macro.

helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is
specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If this
parameter is specified, then helpfile must also be specified.
299

InStr, InstrB
If the string is found, then its character position within search is returned, with 1 being the character
position of the first character.

The InStr and InStrB functions observe the following additional rules:

• If either search or find is Null, then Null is returned.

• If the compare parameter is specified, then start must also be specified. In other words, if there
are three parameters, then it is assumed that these parameters correspond to start, search, and
find.

• A runtime error is generated if start is null.

• A runtime error is generated if compare is not 0 or 1.

• If search is empty, then 0 is returned.

• If find is empty, then start is returned. If start is greater than the length of search, then 0 is
returned.

• A runtime error is generated if start is less than or equal to zero.

The InStr and InStrB functions operate on character and byte data respectively. The Instr function
interprets the start parameter as a character, performs a textual comparisons, and returns a character
position. The InStrB function, on the other hand, interprets the start parameter as a byte position,
performs binary comparisons, and returns a byte position.

On SBCS platforms, the InStr and InStrB functions are identical.

Parameter Description
start Integer specifying the character position (for Instr) or byte position (for InstrB) where

searching begins. The start parameter must be between 1 and 32767. If this parame-
ter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertible to a string.
find Text for which to search. This can be any expression convertible to a string.
compare Integer controlling how string comparisons are performed. It can be any of the fol-

lowing values:

0 String comparisons are case-sensitive.

1 String comparisons are case-insensitive.

Any other value produces a runtime error. If this parameter is omitted, then string
comparisons use the current Option Compare setting. If no Option Compare state-
ment has been encountered, then Binary is used (i.e., string comparisons are case-
sensitive).
300

Int
Example Sub Main
 a$ = "This string contains the name Stuart and other characters."
 x% = InStr(a$,"Stuart",1)
 If x% <> 0 Then
 b$ = Mid$(a$,x%,6)
 Session.Echo b$ & " was found."
 Exit Sub
 Else
 Session.Echo "Stuart not found."
 End If
End Sub

See Also Character and String Manipulation on page 2

Int
Syntax Int(number)

Description Returns the integer part of number. This function returns the integer part of a given value by returning
the first integer less than the number. The sign is preserved. The Int function returns the same type as
number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a string, then a double variant is returned.

• If number is null, then a null variant is returned.

Example Sub Main
 a# = -1234.5224
 b% = Int(a#)
 Session.Echo "The integer part of -1234.5224 is: " & b%
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Integer (data type)
Syntax Integer

Description Used to declare whole numbers with up to four digits of precision. Integer variables are used to hold
numbers within the following range:

–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure, integers require
2 bytes of storage. When used with binary or random files, 2 bytes of storage are required.

When passed to external routines, integer values are sign-extended to the size of an integer on that
platform (either 16 or 32 bits) before pushing onto the stack.
301

IPmt
The type-declaration character for integer is %.

See Also Keywords, Data Types, Operators, and Expressions on page 4

IPmt
Syntax IPmt(rate, per, nper, pv, fv, due)

Description Returns the interest payment for a given period of an annuity based on periodic, fixed payments and
a fixed interest rate. An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages, monthly savings
plans, and retirement plans. The following table describes the named parameters:

The rate and nper parameters must be expressed in the same units. If rate is expressed in percentage
paid per month, then nper must also be expressed in months. If rate is an annual rate, then the period
given in nper should also be in years or the annual rate should be divided by 12 to obtain a monthly
rate.

If the function returns a negative value, it represents interest you are paying out, whereas a positive
value represents interest paid to you.

Parameter Description
rate Double representing the interest rate per period. If the payment periods are monthly,

be sure to divide the annual interest rate by 12 to get the monthly rate.
per Double representing the payment period for which you are calculating the interest

payment. If you want to know the interest paid or received during period 20 of an
annuity, this value would be 20.

nper Double representing the total number of payments in the annuity. This is usually
expressed in months, and you should be sure that the interest rate given above is for
the same period that you enter here.

pv Double representing the present value of your annuity. In the case of a loan, the
present value would be the amount of the loan because that is the amount of cash you
have in the present. In the case of a retirement plan, this value would be the current
value of the fund because you have a set amount of principal in the plan.

fv Double representing the future value of your annuity. In the case of a loan, the future
value would be zero because you will have paid it off. In the case of a savings plan, the
future value would be the balance of the account after all payments are made.

due Integer indicating when payments are due. If this parameter is 0, then payments are
due at the end of each period (usually, the end of the month). If this value is 1, then
payments are due at the start of each period (the beginning of the month).
302

IRR
Example This example calculates the amount of interest paid on a $1,000.00 loan financed over 36 months with
an annual interest rate of 10%. Payments are due at the beginning of the month. The interest paid
during the first 10 months is displayed in a table.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 For x = 1 to 10
 ipm# = IPmt((.10/12),x,36,1000,0,1)
 mesg = mesg & Format(x,"00") & " : " & Format(ipm#," 0,0.00") & crlf
 Next x
 Session.Echo mesg
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

IRR
Syntax IRR(valuearray(),guess)

Description Returns the internal rate of return for a series of periodic payments and receipts. The internal rate of
return is the equivalent rate of interest for an investment consisting of a series of positive and/or
negative cash flows over a period of regular intervals. It is usually used to project the rate of return on
a business investment that requires a capital investment up front and a series of investments and
returns on investment over time. The IRR function requires the following named parameters:

The value of IRR is found by iteration. It starts with the value of guess and cycles through the
calculation adjusting guess until the result is accurate within 0.00001 percent. After 20 tries, if a result
cannot be found, IRR fails, and the user must pick a better guess.

Example This example illustrates the purchase of a lemonade stand for $800 and a series of incomes from the
sale of lemonade over 12 months. The projected incomes for this example are generated in two
For...Next Loops, and then the internal rate of return is calculated and displayed. (Not a bad
investment!)

Const crlf = Chr$(13) + Chr$(10)

Sub Main

Parameter Description
valuearray() Array of double numbers that represent payments and receipts. Positive values are

payments, and negative values are receipts.
There must be at least one positive and one negative value to indicate the initial
investment (negative value) and the amount earned by the investment (positive
value).

guess Double containing your guess as to the value that the IRR function will return. The
most common guess is .1 (10 percent).
303

Is
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 mesg = valu#(1) & ", "
 'Calculate the second through fifth months' sales.
 For x = 2 To 5
 valu(x) = 100 + (x * 2)
 mesg = mesg & valu(x) & ", "
 Next x
 'Calculate the sixth through twelfth months' sales.
 For x = 6 To 12
 valu(x) = 100 + (x * 10)
 mesg = mesg & valu(x) & ", "
 Next x
 'Calculate the equivalent investment return rate.
 retrn# = IRR(valu,.1)
 mesg = "The values: " & crlf & mesg & crlf & crlf
 Session.Echo mesg & "Return rate: " & Format(retrn#,"Percent")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Is
Syntax object Is [object | Nothing]

Description Returns True if the two operands refer to the same object; returns False otherwise. This operator is
used to determine whether two object variables refer to the same object. Both operands must be object
variables of the same type (i.e., the same data object type or both of type Object).

The Nothing constant can be used to determine whether an object variable is uninitialized:

If MyObject Is Nothing Then Session.Echo "MyObject is uninitialized."

Uninitialized object variables reference no object.

When comparing OLE Automation objects, the Is operator will only return True if the operands
reference the same OLE Automation object. This is different from data objects. For example, the
following use of Is (using the object class called excel.application) returns True:

Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = a
If a Is b Then Beep

The following use of Is will return False, even though the actual objects may be the same:
304

IsDate
Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = GetObject(,"excel.application")
If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b reference the same
object, they may be treated as different objects by OLE 2.0 (this is dependent on the OLE 2.0 server
application).

Example Sub Main
 Dim CurrentSession As Object
 Set CurrentSession = Application.ActiveSession
 If CurrentSession.Circuit = Nothing Then
 MsgBox "No communications method selected."
 End If
End

Sub InsertDate(ByVal WinWord As Object)
 If WinWord Is Nothing Then
 Session.Echo "Object variant is not set."
 Else
 WinWord.Insert Date$
 End If
End Sub

Sub Main
 Dim WinWord As Object
 On Error Resume Next
 WinWord = CreateObject("word.basic")
 InsertDate WinWord
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Objects on page 10

IsDate
Syntax IsDate(expression)

Description Returns True if expression can be legally converted to a date; returns False otherwise.

Example Sub Main
 Dim a As Variant
Retry:
 a = InputBox("Enter a date.", "Enter Date")
 If IsDate(a) Then
 Session.Echo Format(a,"long date")
 Else
 Session.Echo "Not quite, please try again!"
 Goto Retry
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Time and Date Access on page 10
305

IsEmpty
IsEmpty
Syntax IsEmpty(expression)

Description Returns True if expression is a Variant variable that has never been initialized; returns False
otherwise. The IsEmpty function is the same as the following:

 (VarType(expression) = ebEmpty)

Example Sub Main
 Dim a As Variant
 If IsEmpty(a) Then
 a = 1.0# 'Give uninitialized data a Double value 0.0.
 Session.Echo "The variable has been initialized to: " & a
 Else
 Session.Echo "The variable was already initialized!"
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

IsError
Syntax IsError(expression)

Description Returns True if expression is a user-defined error value; returns False otherwise.

Example Function Div(ByVal a,ByVal b) As Variant
 If b = 0 Then
 Div = CVErr(2112) 'Return a special error value.
 Else
 Div = a / b 'Return the division.
 End If
End Function

Sub Main
 Dim a As Variant
 a = Div(10,12)
 If IsError(a) Then
 Session.Echo "The following error occurred: " & CStr(a)
 Else
 Session.Echo "The result is: " & a
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

IsMissing
Syntax IsMissing(argname)
306

IsNull
Description Returns True if argname was passed to the current subroutine or function; returns False if omitted.
The IsMissing function is used with variant variables passed as optional parameters (using the
Optional keyword) to the current subroutine or function. For nonvariant variables or variables that
were not declared with the Optional keyword, IsMissing will always return True.

Example Sub Test(AppName As String,Optional isMinimize As Variant)
 app = Shell(AppName)
 If Not IsMissing(isMinimize) Then
 AppMinimize app
 Else
 AppMaximize app
 End If
End Sub

Sub Main
 Test "Notepad" 'Maximize this application
 Test "Notepad",True 'Minimize this application
End Sub

See Also Macro Control and Compilation on page 6

IsNull
Syntax IsNull(expression)

Description Returns True if expression is a Variant variable that contains no valid data; returns False otherwise.
The IsNull function is the same as the following:

 (VarType(expression) = ebNull)

Example Sub Main
 Dim a As Variant 'Initialized as Empty
 If IsNull(a) Then Session.Echo "The variable contains no valid data."
 a = Empty * Null
 If IsNull(a) Then Session.Echo "Null propagated through the expression."
End Sub

See Also Macro Control and Compilation on page 6

IsNumeric
Syntax IsNumeric(expression)

Description Returns True if expression can be converted to a number; returns False otherwise. If passed a
number or a variant containing a number, then IsNumeric always returns True. If a string or string
variant is passed, then IsNumeric will return True only if the string can be converted to a number. The
following syntax is recognized as valid numbers:

&Hhexdigits[&|%|!|#|@]

&[O]octaldigits[&|%|!|#|@]
307

IsObject
[-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is retrieved and one of the above
rules is applied.

IsNumeric returns False if expression is a date.

Example Sub Main
 Dim s$ As String
 s$ = InputBox("Enter a number.","Enter Number")
 If IsNumeric(s$) Then
 Session.Echo "You did well!"
 Else
 Session.Echo "You didn't do so well!"
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5

IsObject
Syntax IsObject(expression)

Description Returns True if expression is a Variant variable containing an Object; returns False otherwise.

Example Sub Main
 Dim v As Variant
 On Error Resume Next
 Set v = GetObject(,"Excel.Application")
 If IsObject(v) Then
 Session.Echo "The default object value is: " & v = v.Value
 Else
 Session.Echo "Excel not loaded."
 End If
End Sub

See Also Objects on page 10

Item$
Syntax Item$(text$,first [,[last] [,delimiters$]])

Description Returns all the items between first and last within the specified formatted text list. The Item$
function takes the following parameters:
308

ItemCount
The Item$ function treats embedded null characters as regular characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
 slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
 list1$ = Item$(ilist$,5,12)
 list2$ = Item$(slist$,2,9,"/")
 Session.Echo "The returned lists are: " & crlf & list1$ & crlf & list2$
End Sub

See Also Character and String Manipulation on page 2

ItemCount
Syntax ItemCount(text$ [,delimiters$])

Description Returns an Integer containing the number of items in the specified delimited text. Items are
substrings of a delimited text string. Items, by default, are separated by commas and/or end-of-lines.
This can be changed by specifying different delimiters in the delimiters$ parameter. For example,
to parse items using a backslash:

n = ItemCount(text$,"\")

The ItemCount function treats embedded null characters as regular characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
 slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"
 l1% = ItemCount(ilist$)
 l2% = ItemCount(slist$,"/")
 mesg = "The first lists contains: " & l1% & " items." & crlf

Parameter Description
text$ String containing the text from which a range of items is returned.
first Integer containing the index of the first item to be returned. If first is greater than

the number of items in text$, then a zero-length string is returned.
last Integer containing the index of the last item to be returned. All of the items between

first and last are returned. If last is greater than the number of items in text$,
then all items from first to the end of text are returned. If last is missing, then
only the item specified by first is returned.

delimiters$ String containing different item delimiters. By default, items are separated by com-
mas and end-of-lines. This can be changed by specifying different delimiters in the
delimiters$ parameter.
309

ItemCount
 mesg = mesg & "The second list contains: " & l2% & " items."
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2
310

K

Keywords (topic)
The following keywords are any word or symbol recognized as part of the macro language.

Access
Alias
And
Any
Append
Application
As
Base
Begin
Binary
Boolean
ByRef
ByVal
Call
CancelButton
Case
CDecl
CheckBox
Chr
ChrB
ChrW
Circuit
Close
ComboBox
Compare
Const
CStrings
Currency
Date
Declare
Default
DefBool
DefCur
DefDate
DefDbl
DefInt

DefLng
DefObj
DefSng
DefStr
DefVar
Dialog
Dim
Do
Double
DropListBox
Else
ElseIf
End
Eqv
Error
Exit
Explicit
For
Function
Get
Global
GoSub
Goto
GroupBox
HelpButton
If
Imp
Inline
Input
Input
InputB
Integer
Is
Len
Let
Lib

Like
Line
ListBox
Lock
Long
Loop
LSet
Mid
MidB
Mod
Name
New
Next
Not
Nothing
Object
Off
OKButton
On
Open
Option
Optional
OptionButton
OptionGroup
Or
Output
ParamArray
Pascal
Picture
PictureButton
Preserve
Print
Private
Public
PushButton
Put

Random
Read
ReDim
Rem
Resume
Return
RSet
Seek
Select
Session
Set
Shared
Single
Spc
Static
StdCall
Step
Stop
String
Sub
System
Tab
Text
TextBox
Then
Time
To
Transfer
Type
Unlock
Until
Variant
Wend
While
Width
Write

Xor
311

Kill
Restrictions
All keywords are reserved in that you cannot create a variable, function, constant, or subroutine with
the same name as a keyword. However, you are free to use all keywords as the names of structure
members.

For all other keywords, the following restrictions apply:

• You can create a subroutine or function with the same name as a keyword.

• You can create a variable with the same name as a keyword as long as the variable is first explicitly
declared with a Dim, Private, or Public statement.

Kill
Syntax Kill pathname

Description Deletes all files matching pathname. The Kill statement accepts the following named parameter:

The pathname argument can include wildcards, such as * and ?. The * character matches any sequence
of zero or more characters, whereas the ? character matches any single character. Multiple *'s and ?'s
can appear within the expression to form complex searching patterns.

Example Sub Main
 If Not FileExists("test1.dat") Then
 Open "test1.dat" For Output As #1
 Open "test2.dat" For Output As #2
 Close
 End If
 If FileExists ("test1.dat") Then
 Session.Echo "File test1.dat exists."
 Kill "test?.dat"
 End If
 If FileExists ("test1.dat") Then
 Session.Echo "File test1.dat still exists."
 Else
 Session.Echo "test?.dat successfully deleted."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3

Parameter Description
pathname Specifies the file to delete. If filetype is specified, then this parameter must specify

a path. Otherwise, this parameter can include both a path and a file specification con-
taining wildcards.
312

L

Lbound
Syntax Lbound(ArrayVariable() [,dimension])

Description Returns an Integer containing the lower bound of the specified dimension of the specified array
variable. The dimension parameter is an integer specifying the desired dimension. If this parameter is
not specified, then the lower bound of the first dimension is returned.

The Lbound function can be used to find the lower bound of a dimension of an array returned by an
OLE Automation method or property:

Lbound(object.property [,dimension])
Lbound(object.method [,dimension])

Examples This example dimensions two arrays and displays their lower bounds.

Sub Main
 Dim a(5 To 12)
 Dim b(2 To 100, 9 To 20)
 lba = LBound(a)
 lbb = LBound(b,2)
 Session.Echo "The lower bound of a is: " & lba & _
 " The lower bound of b is: " & lbb
 'This example uses LBound and UBound to dimension a
 'dynamic array to hold a copy of an array redimmed by the
 'FileList statement.
 Dim fl$()
 FileList fl$,"*.*"
 count = UBound(fl$)
 If ArrayDims(a) Then
 Redim nl$(LBound(fl$) To UBound(fl$))
 For x = 1 To count
 nl$(x) = fl$(x)
 Next x
 Session.Echo "The last element of the new array is: " & _
 nl$(count)
 End If
End Sub
313

LCase, LCase$
See Also Keywords, Data Types, Operators, and Expressions on page 4

LCase, LCase$
Syntax LCase[$](string)

Description Returns the lowercase equivalent of the specified string. LCase$ returns a String, whereas LCase
returns a String variant. Null is returned if string is Null.

Example Sub Main
 lname$ = "WILLIAMS"
 fl$ = Left$(lname$,1)
 rest$ = Mid$(lname$,2,Len(lname$))
 lname$ = fl$ & LCase$(rest$)
 Session.Echo "The converted name is: " & lname$
End Sub

See Also Character and String Manipulation on page 2

Left, Left$, LeftB, LeftB$
Syntax Left[$](string, length)

LeftB[$](string,length)

Description Returns the leftmost length characters (for Left and Left$) or bytes (for LeftB and LeftB$) from a
given string.

Left$ returns a String, whereas Left returns a String variant.

The length parameter is an Integer value specifying the number of characters to return. If length is
0, then a zero-length string is returned. If length is greater than or equal to the number of characters
in the specified string, then the entire string is returned.

The LeftB and LeftB$ functions are used to return a sequence of bytes from a string containing byte
data. In this case, length specifies the number of bytes to return. If length is greater than the number
of bytes in string, then the entire string is returned.

Null is returned if string is Null.

Example Sub Main
 lname$ = "WILLIAMS"
 fl$ = Left$(lname$,1)
 rest$ = Mid$(lname$,2,Len(lname$))
 lname$ = fl$ & LCase$(rest$)
 Session.Echo "The converted name is: " & lname$
End Sub

See Also Character and String Manipulation on page 2
314

Len, LenB
Len, LenB
Syntax Len(expression)

LenB(expression)

Description Returns the number of characters (for Len) or bytes (for LenB) in String expression or the number of
bytes required to store the specified variable. If expression evaluates to a string, then Len returns the
number of characters in a given string or 0 if the string is empty. When used with a Variant variable,
the length of the variant when converted to a String is returned. If expression is a Null, then Len
returns a Null variant.

The LenB function is used to return the number of bytes in a given string. On SBCS systems, the LenB
and Len functions are identical.

If used with a non-String or non-Variant variable, these functions return the number of bytes
occupied by that data element.

When used with user-defined data types, these functions return the combined size of each member
within the structure. Since variable-length strings are stored elsewhere, the size of each variable-length
string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements when appearing within a
structure:

The Len and LenB functions always returns 0 with object variables or any data object variable.

Data Element Size
Integer 2 bytes
Long 4 bytes
Float 4 bytes
Double 8 bytes
Currency 8 bytes
String (variable-length) 2 bytes
String (fixed-length) The length of the string as it appears in the string's declaration in char-

acters for Len and bytes for LenB.
Objects 0 bytes. Both data object variables and variables of type object are

always returned as 0 size.
User-defined type Combined size of each structure member. Variable-length strings

within structures require 2 bytes of storage. Arrays within structures
are fixed in their dimensions. The elements for fixed arrays are stored
within the structure and therefore require the number of bytes for each
array element multiplied by the size of each array dimension:
element_size*dimension1*dimension2...
315

Let
Examples This example uses the Len function to change uppercase names to lowercase with an uppercase first
letter.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 lname$ = "WILLIAMS"
 fl$ = Left$(lname$,1)
 ln% = Len(lname$)
 rest$ = Mid$(lname$,2,ln%)
 lname$ = fl$ & LCase$(rest$)
 Session.Echo "The converted name is: " & lname$

 'This example returns a table of lengths for standard numeric types.
 Dim lns(4)
 a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
 lns(1) = Len(a%)
 lns(2) = Len(b&)
 lns(3) = Len(c!)
 lns(4) = Len(d#)
 mesg = "Lengths of standard types:" & crlf
 mesg = mesg & "Integer: " & lns(1) & crlf
 mesg = mesg & "Long: " & lns(2) & crlf
 mesg = mesg & "Single: " & lns(3) & crlf
 mesg = mesg & "Double: " & lns(4) & crlf
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2

Let
Syntax [Let] variable = expression

Description Assigns the result of an expression to a variable. The use of the word Let is supported for compatibility
with other implementations of VBA. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard to
type conversions. However, it is possible for an overflow error to occur when converting from larger
to smaller types. This happens when the larger type contains a numeric quantity that cannot be
represented by the smaller type. For example, the following code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer
amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.
316

Like
Example Sub Main
 Let a$ = "This is a string."
 Let b% = 100
 Let c# = 1213.3443
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Like
Syntax expression Like pattern

Description Compares two strings and returns True if the expression matches the given pattern; returns False
otherwise. Case sensitivity is controlled by the Option Compare setting. The pattern expression can
contain special characters that allow more flexible matching:

A range specifies a grouping of characters. To specify a match of any of a group of characters, use the
syntax [ABCDE]. To specify a range of characters, use the syntax [A-Z]. Special characters must
appear within brackets, such as []*?#.

If expression or pattern is not a string, then both expression and pattern are converted to String
variants and compared, returning a Boolean variant. If either variant is Null, then Null is returned.

The following table shows some examples:

Example Sub Main
 a$ = "This is a string variable of 123456 characters"
 b$ = "123.45"
 If a$ Like "[A-Z][g-i]*" Then Session.Echo _
 "The first comparison is True."
 If b$ Like "##3.##" Then Session.Echo "_

Character Evaluates To
? Matches a single character.
* Matches one or more characters.
Matches any digit.
[range] Matches if the character in question is within the specified range.
[!range] Matches if the character in question is not within the specified range.

Expression True if pattern is False if pattern is
"EBW" "E*W", "E*" "E*B"

"SML" "B*[r-t]icMacro" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#","#?#" "###","#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]","[*]"
317

Line Input#
 The second comparison is True."
 If a$ Like "*variable*" Then Session.Echo _
 "The third comparison is True."
End Sub

See Also Character and String Manipulation on page 2

Line Input#
Syntax Line Input #filenumber,variable

Description Reads an entire line into the given variable.

The filenumber parameter is a number that is used to refer to the open file the number passed to the
Open statement. The filenumber must reference a file opened in Input mode.

The file is read up to the next end-of-line, but the end-of-line character(s) is (are) not returned in the
string. The file pointer is positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will automatically
declare the variable if the specified variable has not yet been used or dimensioned.

This statement recognizes either a single line feed or a carriage-return/line-feed pair as the end-of-line
delimiter.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Open "c:\autoexec.bat" For Input As #1
 For x = 1 To 5
 Line Input #1,lin$
 mesg = mesg & lin$ & crlf
 Next x
 Session.Echo "The first 5 lines of your autoexec.bat are:" & crlf & mesg
End Sub

See Also Drive, Folder, and File Access on page 3

Line Numbers (topic)
Line numbers are not supported. As an alternative to line numbers, you can use meaningful labels as
targets for absolute jumps, as shown below:

Sub Main
 Dim i As Integer
 On Error Goto MyErrorTrap
 i = 0
LoopTop:
 i = i + 1
 If i < 10 Then Goto LoopTop
318

Line$
MyErrorTrap:
 Session.Echo "An error occurred."
End Sub

Line$
Syntax Line$(text$,first[,last])

Description Returns a String containing a single line or a group of lines between first and last. Lines are
delimited by carriage return, line feed, or carriage-return/line-feed pairs. Embedded null characters are
treated as regular characters. The Line$ function takes the following parameters:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Open "c:\autoexec.bat" For Input As #1
 For x = 1 To 5
 Line Input #1,lin$
 txt = txt & lin$ & crlf
 Next x
 lines$ = Line$(txt,3,4)
 Session.Echo lines$
End Sub

See Also Character and String Manipulation on page 2

LineCount
Syntax LineCount(text$)

Description Returns an Integer representing the number of lines in text$. Lines are delimited by carriage return,
line feed, or both. Embedded null characters are treated as regular characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 x = 1
 Open "c:\autoexec.bat" For Input As #1
 While (x < 10) And Not EOF(1)
 Line Input #1,lin$
 txt = txt & lin$ & crlf
 x = x + 1
 Wend

Parameter Description
text$ String containing the text from which the lines will be extracted.
first Integer representing the index of the first line to return. If last is omitted, then this

line will be returned. If first is greater than the number of lines in text$, then a zero-
length string is returned.

last Integer representing the index of the last line to return.
319

ListBox
 lines! = LineCount(txt)
 Session.Echo "The number of lines in txt is: " & lines! & crlf & crlf & txt
End Sub

See Also Character and String Manipulation on page 2

ListBox
Syntax ListBox x,y,width,height,ArrayVariable,.Identifier

Description Creates a listbox within a dialog template. When the dialog is invoked, the listbox will be filled with
the elements contained in ArrayVariable. This statement can only appear within a dialog template
(i.e., between the Begin Dialog and End Dialog statements). The ListBox statement requires the
following parameters:

Example Sub Main
 Dim files() As String
 Dim dirs() As String
 Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"
 Text 8,4,24,8,"&Files:"
 ListBox 8,16,60,72,files$,.Files
 Text 76,4,21,8,"&Dirs:"
 ListBox 76,16,56,72,dirs$,.Dirs
 OKButton 140,4,40,14
 CancelButton 140,24,40,14
 End Dialog
 FileList files
 FileDirs dirs

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) rela-

tive to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
ArrayVariable Specifies a single-dimensioned array of strings used to initialize the elements of

the listbox. If this array has no dimensions, then the listbox will be initialized
with no elements. A runtime error results if the specified array contains more
than one dimension. ArrayVariable can specify an array of any fundamental
data type (structures are not allowed). null and empty values are treated as zero-
length strings.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates an integer vari-
able whose value corresponds to the index of the listbox's selection (0 is the first
item, 1 is the second, and so on), which is not affected by the current setting of
the Option Base command. This variable can be accessed using the following
syntax:
DialogVariable.Identifier
320

Literals (topic)
 Dim ListBoxDialog As ListBoxTemplate
 rc% = Dialog(ListBoxDialog)
End Sub

See Also User Interaction on page 9

Literals (topic)
Literals are values of a specific type. The following table shows the different types of literals:

Constant folding
The compiler supports constant folding where constant expressions are calculated by the compiler at
compile time. For example, the expression:

i% = 10 + 12

is the same as:

i% = 22

Similarly, with strings, the expression:

Literal Description
10 Integer whose value is 10.
43265 Long whose value is 43,265.
5# Double whose value is 5.0. A number's type can be explicitly set using any of the

following type-declaration characters:
% Integer
& long
double
! single

5.5 Double whose value is 5.5. Any number with decimal point is considered a double.
5.4E100 Double expressed in scientific notation.
&HFF Integer expressed in hexadecimal.
&O47 Integer expressed in octal.
&HFF# Double expressed in hexadecimal.
"hello" String of five characters: hello.
"""hello""" String of seven characters: "hello". Quotation marks can be embedded within

strings by using two consecutive quotation marks.
#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can appear

with #s. Date literals are interpreted at execution time using the locale settings of
the host environment. To ensure that date literals are correctly interpreted for all
locales, use the international date format: YYYY-MM-DD HH:MM:SS#
321

Loc
s$ = "Hello," + " there" + Chr(46)

is the same as:

s$ = "Hello, there."

Loc
Syntax Loc(filenumber)

Description Returns a Long representing the position of the file pointer in the given file. The filenumber parameter
is an Integer used to refer to the number passed by the Open statement. The Loc function returns
different values depending on the mode in which the file was opened:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Open "c:\autoexec.bat" For Input As #1
 For x = 1 To 5
 If Not EOF(1) Then Line Input #1,lin$
 Next x
 lc% = Loc(1)
 Close
 Session.Echo "The file location is: " & lc%
End Sub

See Also Drive, Folder, and File Access on page 3

Lock, Unlock
Syntax Lock [#] filenumber [,{record | [start] To end}]

Unlock [#] filenumber [,{record | [start] To end}]

 Description Locks or unlocks a section of the specified file, granting or denying other processes access to that
section of the file. The Lock statement locks a section of the specified file, preventing other processes
from accessing that section of the file until the Unlock statement is issued. The Unlock statement
unlocks a section of the specified file, allowing other processes access to that section of the file. The
Lock and Unlock statements require the following parameters:

File Mode Returns
Input Current byte position divided by 128
Output Current byte position divided by 128
Append Current byte position divided by 128
Binary Position of the last byte read or written
Random Number of the last record read or written
322

Lock, Unlock
For sequential files, the record, start, and end parameters are ignored. The entire file is locked or
unlocked.

The section of the file is specified using one of the following:

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before the file is closed. Ranges within files are not unlocked automatically
when your macro terminates, which can cause file access problems for other processes. It is a good
idea to group the Lock and Unlock statements close together in the code, both for readability and so
subsequent readers can see that the lock and unlock are performed on the same range. This practice
also reduces errors in file locks.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This is record number: "
 b$ = "0"
 rec$ = ""
 mesg = ""
 Open "test.dat" For Random Access Write Shared As #1
 For x = 1 To 10
 rec$ = a$ & x
 Lock #1,x
 Put #1,,rec$
 Unlock #1,x
 mesg = mesg & rec$ & crlf
 Next x
 Close
 Session.Echo "The records are:" & crlf & mesg
 mesg = ""
 Open "test.dat" For Random Access Read Write Shared As #1
 For x = 1 To 10

Parameter Description
filenumber Integer used to refer to the open file—the number passed to the Open statement.
record Long specifying which record to lock or unlock.
start Long specifying the first record within a range to be locked or unlocked.
end Long specifying the last record within a range to be locked or unlocked.

Syntax Description
No parameters Locks or unlocks the entire file (no record specification is given).
record Locks or unlocks the specified record number (for Random files) or byte (for

Binary files).
To end Locks or unlocks from the beginning of the file to the specified record (for Ran-

dom files) or byte (for Binary files).
start To end Locks or unlocks the specified range of records (for Random files) or bytes (for

Binary files).
323

Lof
 rec$ = Mid$(rec$,1,23) & (11 - x)
 Lock #1,x
 Put #1,x,rec$
 Unlock #1,x
 mesg = mesg & rec$ & crlf
 Next x
 Session.Echo "The records are: " & crlf & mesg
 Close
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

Lof
Syntax Lof(filenumber)

Description Returns a Long representing the number of bytes in the given file. The filenumber parameter is an
Integer used to refer to the open file the number passed to the Open statement. The file must currently
be open.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This is record number: "
 Open "test.dat" For Random Access Write Shared As #1
 For x = 1 To 10
 rec$ = a$ & x
 put #1,,rec$
 mesg = mesg & rec$ & crlf
 Next x
 Close
 Open "test.dat" For Random Access Read Write Shared As #1
 r% = Lof(1)
 Close
 Session.Echo "The length of test.dat is: " & r%
End Sub

See Also Drive, Folder, and File Access on page 3

Log
Syntax Log(number)

Description Returns a Double representing the natural logarithm of a given number. The value of number must be
a Double greater than 0. The value of e is 2.71828.

Example Sub Main
 x# = Log(100)
 Session.Echo "The natural logarithm of 100 is: " & x#
End Sub

See Also Numeric, Math, and Accounting Functions on page 5
324

Long (data type)
Long (data type)
Syntax Long

Description Long variables are used to hold numbers (with up to ten digits of precision) within the following range:

–2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes of
storage. When used with binary or random files, 4 bytes of storage are required.

The type-declaration character for Long is &.

See Also Keywords, Data Types, Operators, and Expressions on page 4

LSet
Syntax 1 LSet dest = source

Syntax 2 LSet dest_variable = source_variable

Description Left-aligns the source string in the destination string or copies one user-defined type to another.

Syntax 1
The LSet statement copies the source string source into the destination string dest. The dest
parameter must be the name of either a String or Variant variable. The source parameter is any
expression convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest, and the remaining
characters are padded with spaces. If source$ is longer in length than dest, then source is truncated,
copying only the leftmost number of characters that will fit in dest.

The destvariable parameter specifies a String or Variant variable. If destvariable is a Variant
containing Empty, then no characters are copied. If destvariable is not convertible to a String, then
a runtime error occurs. A runtime error results if destvariable is Null.

Syntax 2
The source structure is copied byte for byte into the destination structure. This is useful for copying
structures of different types. Only the number of bytes of the smaller of the two structures is copied.
Neither the source structure nor the destination structure can contain strings.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim mesg, tmpstr$
 tmpstr$ = String$(40, "*")
 mesg = "Here are two strings that have been right-" + crlf
 mesg = mesg & "and left-justified in a 40-character string."
325

LTrim, LTrim$
 mesg = mesg & crlf & crlf
 RSet tmpstr$ = "Right->"
 mesg = mesg & tmpstr$ & crlf
 LSet tmpstr$ = "<-Left"
 mesg = mesg & tmpstr$ & crlf
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2

LTrim, LTrim$
See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$.
326

M

Mid, Mid$, MidB, MidB$ (functions)
Syntax Mid[$](string, start [,length])

MidB[$](string, start [,length])

Description Returns a substring of the specified string, beginning with start, for length characters (for Mid and
Mid$) or bytes (for MidB and MidB$).

The Mid and Mid$ functions return a substring starting at character position start and will be length
characters long. The MidB and MidB functions return a substring starting at byte position start and will
be length bytes long.

The Mid$ and MidB$ functions return a string, whereas the Mid and MidB functions return a string
variant.

These functions take the following named parameters:

The Mid function will return Null if string is Null.

The MidB and MidB$ functions are used to return a substring of bytes from a string containing byte data.

Example Const crlf = Chr$(13) + Chr$(10)

Parameter Description
string Any string expression containing the text from which data is returned.
start Integer specifying the position where the substring begins. If start is greater than the

length of string, then a zero-length string is returned.
length Integer specifying the number of characters or bytes to return. If this parameter is

omitted, then the entire string is returned, starting at start.
327

Mid, Mid$, MidB, MidB$ (statements)
Sub Main
 a$ = "This is the Main string containing text."
 b$ = Mid$(a$,13,Len(a$))
 Mid$ (b$,1) = NEW "
 Session.Echo a$ & crlf & b$
End Sub

See Also Character and String Manipulation on page 2

Mid, Mid$, MidB, MidB$ (statements)
Syntax Mid[$](variable,start[,length]) = newvalue

MidB[$](variable,start[,length]) = newvalue

Description Replaces one part of a string with another. The Mid/Mid$ statements take the following parameters:

The resultant string is never longer than the original length of variable.

With Mid and MidB, variable must be a variant variable convertible to a string, and newvalue is any
expression convertible to a string. A runtime error is generated if either variant is null.

The MidB and MidB$ statements are used to replace a substring of bytes, whereas Mid and Mid$ are used
to replace a substring of characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This is the Main string containing text."
 b$ = Mid$(a$,13,Len(a$))
 Mid$(b$,1) = "NEW "
 Session.Echo a$ & crlf & b$
End Sub

See Also Character and String Manipulation on page 2

Parameter Description
variable String or variant variable to be changed.
start Integer specifying the character position (for Mid and Mid$) or byte position (for

MidB and MidB$) within variable where replacement begins. If start is greater
than the length of variable, then variable remains unchanged.

length Integer specifying the number of characters or bytes to change. If this parameter is
omitted, then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to a
string.
328

Minute
Minute
Syntax Minute(time)

Description Returns the minute of the day encoded in the specified time parameter. The value returned is as an
Integer between 0 and 59 inclusive. The time parameter is any expression that converts to a date.

Example Sub Main
 xt# = TimeValue(Time$())
 xh# = Hour(xt#)
 xm# = Minute(xt#)
 xs# = Second(xt#)
 Session.Echo "The current time is: " & xh# & ":" & xm# & ":" & xs#
End Sub

See Also Time and Date Access on page 10

MIRR
Syntax MIRR(valuearray(),financerate,reinvestrate)

Description Returns a Double representing the modified internal rate of return for a series of periodic payments
and receipts. The modified internal rate of return is the equivalent rate of return on an investment in
which payments and receipts are financed at different rates. The interest cost of investment and the
rate of interest received on the returns on investment are both factors in the calculations. The MIRR
function requires the following named parameters:

The financerate and reinvestrate parameters should be expressed as percentages. For example, 11
percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct sequence.

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The proceeds are placed in
a bank at 9 percent interest. The incomes are estimated (generated) over 12 months. This program first
generates the income stream array in two For...Next loops, and then the modified internal rate of
return is calculated and displayed. Notice that the annual rates are normalized to monthly rates by
dividing them by 12.

Parameter Description
valuearray() Array of double numbers representing the payments and receipts. Positive values

are payments (invested capital), and negative values are receipts (returns on invest-
ment). There must be at least one positive (investment) value and one negative
(return) value.

financerate Double representing the interest rate paid on invested monies (paid out).
reinvestrate Double representing the rate of interest received on incomes from the investment

(receipts).
329

MkDir
Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 mesg = valu(1) & ", "
 For x = 2 To 5
 valu(x) = 100 + (x * 2) 'Incomes months 2-5
 mesg = mesg & valu(x) & ", "
 Next x
 For x = 6 To 12
 valu(x) = 100 + (x * 10) 'Incomes months 6-12
 mesg = mesg & valu(x) & ", "
 Next x
 retrn# = MIRR(valu,.1/12,.09/12) 'Note: normalized annual rates
 mesg = "The values: " & crlf & mesg & crlf & crlf
 Session.Echo mesg & "Modified rate: " & Format(retrn#,"Percent")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

MkDir
Syntax MkDir path

Description Creates a new directory as specified by path.

Example Sub Main
 On Error Resume Next
 MkDir "TestDir"
 If Err <> 0 Then
 Session.Echo "The following error occurred: " & Error(Err)
 Else
 Session.Echo "Directory was created and is about to be removed."
 RmDir "TestDir"
 End If
End Sub

See Also Drive, Folder, and File Access on page 3

Mod
Syntax expression1 Mod expression2

Description Returns the remainder of expression1 / expression2 as a whole number. If both expressions are
integers, then the result is an integer. Otherwise, each expression is converted to a Long before
performing the operation, returning a Long. A runtime error occurs if the result overflows the range of
a long. If either expression is null, then null is returned. Empty is treated as 0.

Example This example uses the Mod operator to determine the value of a randomly selected card where card 1
is the ace (1) of clubs and card 52 is the king (13) of spades. Since the values recur in a sequence of
13 cards within 4 suits, we can use the Mod function to determine the value of any given card number.
330

Month
Const crlf = Chr$(13) + Chr$(10)

Sub Main
 cval$ = "ACE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,"
 cval$ = cval$+"NINE,TEN,JACK,QUEEN,KING"
 Randomize
 card% = Random(1,52)
 value = card% Mod 13
 If value = 0 Then value = 13
 CardNum$ = Item$(cval,value)
 If card% < 53 Then suit$ = "spades"
 If card% < 40 Then suit$ = "hearts"
 If card% < 27 Then suit$ = "diamonds"
 If card% < 14 Then suit$ = "clubs"
 mesg = "Card number " & card% & " is the "
 mesg = mesg & CardNum & " of " & suit$
 Session.Echo mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Numeric, Math, and Accounting
Functions on page 5

Month
Syntax Month(date)

Description Returns the month of the date encoded in the specified date parameter. The value returned is as an
Integer between 1 and 12 inclusive. The date parameter is any expression that converts to a date.

Example Sub Main
 mons$ = "Jan., Feb., Mar., Apr., May, Jun., Jul., "
 mons$ = mons$ + "Aug., Sep., Oct., Nov., Dec."
 tdate$ = Date$
 tmonth! = Month(DateValue(tdate$))
 Session.Echo "The current month is: " & Item$(mons$,tmonth!)
End Sub

See Also Time and Date Access on page 10

Msg (object)
The Msg object provides a quick modeless dialog—that is, a dialog which the user may ignore,
continuing to run other commands before closing. A good example of a modeless dialog is the
Edit>Find dialog in many word processors, which can be left open while editing the text.

Msg.Close
Syntax Msg.Close

Description Closes the modeless message dialog. Nothing will happen if there is no open message dialog.
331

Msg (object)
Example Sub Main
 Msg.Open "Printing. Please wait...",0,True,True
 Sleep 3000
 Msg.Close
End Sub

See Also User Interaction on page 9

Msg.Open
Syntax Msg.Open prompt,timeout,cancel,thermometer [,XPos,YPos]

Description Displays a message in a dialog with an optional Cancel button and thermometer. The Msg.Open
method takes the following named parameters:

Unlike other dialoges, a message dialog remains open until the user selects Cancel, the timeout has
expired, or the Msg.Close method is executed (this is sometimes referred to as modeless).

Only a single message window can be opened at any one time. The message window is removed
automatically when a macro terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard. However, these
events will never reach the message dialog unless you periodically call DoEvents from within your
macro.

Parameter Description
prompt String containing the text to be displayed. The text can be changed using the

Msg.Text property.
timeout Integer specifying the number of seconds before the dialog is automatically

removed. The timeout parameter has no effect if its value is 0.
cancel Boolean controlling whether or not a Cancel button appears within the dialog

beneath the displayed message. If this parameter is True, then a Cancel button
appears. If it is not specified or False, then no Cancel button is created. If a user
chooses the Cancel button at runtime, a trappable runtime error is generated (error
number 18). In this manner, a message dialog can be displayed and processing
can continue as normal, aborting only when the user cancels the process by
choosing the Cancel button.

thermometer Boolean controlling whether the dialog contains a thermometer. If this parameter
is True, then a thermometer is created between the text and the optional Cancel
button. The thermometer initially indicates 0% complete and can be changed
using the Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left corner of the message
box, in twips (twentieths of a point). If these parameters are not specified, then the
window is centered on top of the application.
332

Msg (object)
Example Sub Main
 Msg.Open "Printing. Please wait...",0,True,False
 Sleep 3000
 Msg.Close
 Msg.Open "Printing. Please wait...",0,True,True
 For x = 1 to 100
 Msg.Thermometer = x
 Next x
 Sleep 1000
 Msg.Close
End Sub

See Also User Interaction on page 9

Msg.Text
Syntax Msg.Text [= newtext$]

Description Changes the text within an open message dialog (one that was previously opened with the Msg.Open
method). The message dialog is not resized to accommodate the new text. A runtime error will result
if a message dialog is not currently open (using Msg.Open).

Example Sub Main
 Msg.Open "Reading Record",0,True,False
 For i = 1 To 100
 'Read a record here.
 'Update the modeless message box.
 Sleep 100
 Msg.Text ="Reading record " & i
 Next i
 Msg.Close
End Sub

See Also User Interaction on page 9

Msg.Thermometer
Syntax Msg.Thermometer [= percentage]

Description Changes the percentage filled indicated within the thermometer of a message dialog (one that was
previously opened with the Msg.Open method). A runtime error will result if a message box is not
currently open (using Msg.Open) or if the value of percentage is not between 0 and 100 inclusive.

Example Sub Main
 On Error Goto ErrorTrap
 Msg.Open "Reading records from file...",0,True,True
 For i = 1 To 100 'Read a record here.
 'Update the modeless message box.
 Msg.Thermometer =i
 DoEvents
 Sleep 50
 Next i
 Msg.Close
 On Error Goto 0 'Turn error trap off.
 Exit Sub
333

MsgBox (function)
ErrorTrap:
 If Err = 809 Then
 MsgBox "Cancel was pressed!"
 Exit Sub 'Reset error handler.
 End If
End Sub

See Also User Interaction on page 9

MsgBox (function)
Syntax MsgBox(prompt [, [buttons] [,[title] [,helpfile,context]]])

Description Displays a message in a dialog with a set of predefined buttons, returning an Integer representing
which button was selected. The MsgBox function takes the following named parameters:

The MsgBox function returns one of the following values:

The buttons parameter is the sum of any of the following values:

Parameter Description
prompt Message to be displayed—any expression convertible to a string. End-of-lines can be

used to separate lines (either a carriage return, line feed, or both). If a given line is too
long, it will be word-wrapped. If prompt contains character 0, then only the characters
up to the character 0 will be displayed.
The width and height of the dialog are sized to hold the entire contents of prompt. A
runtime error is generated if prompt is null.

buttons Integer specifying the type of dialog (see below).
title Caption of the dialog. This parameter is any expression convertible to a string. If it is

omitted, then "SmarTerm" is used. A runtime error is generated if title is null.
helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is

specified, then context must also be specified.
context Number specifying the ID of the topic within helpfile for this dialog's help. If this

parameter is specified, then helpfile must also be specified.

Constant Value Description
ebOK 1 OK was pressed.
ebCancel 2 Cancel was pressed.
ebAbort 3 Abort was pressed.
ebRetry 4 Retry was pressed.
ebIgnore 5 Ignore was pressed.
ebYes 6 Yes was pressed.
ebNo 7 No was pressed.
334

MsgBox (function)
The default value for buttons is 0 (display only the OK button, making it the default).

If both the helpfile and context parameters are specified, then context-sensitive help can be invoked
using the help key F1. Invoking help does not remove the dialog.

Breaking Text across Lines
The prompt parameter can contain end-of-line characters, forcing the text that follows to start on a new
line. The following example shows how to display a string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an end-of-line.

Example Sub Main
 MsgBox "This is a simple message box."
 MsgBox "This is a message box with a title and an icon.", _
 ebExclamation,"Simple"
 MsgBox "This message box has OK and Cancel buttons.", _
 ebOkCancel,"MsgBox"
 MsgBox "This message box has Abort, Retry, and Ignore buttons.", _
 ebAbortRetryIgnore,"MsgBox"
 MsgBox "This message box has Yes, No, and Cancel buttons.", _
 ebYesNoCancel Or ebDefaultButton2,"MsgBox"
 MsgBox "This message box has Yes and No buttons.",ebYesNo,"MsgBox"

Constant Value Description
ebOKOnly 0 Displays OK button only.
ebOKCancel 1 Displays OK and Cancel buttons.
ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.
ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.
ebYesNo 4 Displays Yes and No buttons.
ebRetryCancel 5 Displays Retry and Cancel buttons.
ebCritical 16 Displays stop icon.
ebQuestion 32 Displays question mark icon.
ebExclamation 48 Displays exclamation point icon.
ebInformation 64 Displays information icon.
ebDefaultButton1 0 First button is the default button.
ebDefaultButton2 256 Second button is the default button.
ebDefaultButton3 512 Third button is the default button.
ebApplicationModal 0 Application modal—the current application is suspended until the

dialog is closed.
ebSystemModal 4096 System modal—all applications are suspended until the dialog is

closed.
335

MsgBox (statement)
 MsgBox "This message box has Retry and Cancel buttons." , _
 ebRetryCancel,"MsgBox"
 MsgBox "This message box is system modal!",ebSystemModal
End Sub

See Also User Interaction on page 9

MsgBox (statement)
Syntax MsgBox prompt [, [buttons] [,[title] [, helpfile, context]]]

Description Same as the MsgBox function, except that the statement form does not return a value. See MsgBox
(function).

Example Sub Main
 MsgBox "This is text displayed in a message box." 'Display text.
 MsgBox "The result is: " & (10 * 45) 'Display a number.
End Sub

See Also User Interaction on page 9
336

N

Name
Syntax Name oldfile$ As newfile$

Description Renames a file. Each parameter must specify a single filename. Wildcard characters such as * and ?
are not allowed. You can name files to different directories on the same physical disk volume. For
example, the following rename will work under Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will error under
Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak"

To rename a file to a different physical disk, you must first copy the file, then erase the original:

FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak"
Kill "c:\samples\mydoc.txt"

Example Sub Main
 On Error Resume Next
 If FileExists("test.dat") Then
 Name "test.dat" As "test2.dat"
 If Err <> 0 Then
 mesg = "File exists and cannot be renamed! Error: " _
 & Err
 Else
 mesg = "File exists and renamed to test2.dat."
 End If
 Else
 Open "test.dat" For Output As #1
 Close
 Name "test.dat" As "test2.dat"
 If Err <> 0 Then
 mesg = "File created but not renamed! Error: " & Err
 Else
 mesg = "File created and renamed to test2.dat."
337

Named Parameters (topic)
 End If
 End If
 Session.Echo mesg
End Sub

See Also Drive, Folder, and File Access on page 3

Named Parameters (topic)
Many language elements support named parameters. Named parameters allow you to specify
parameters to a function or subroutine by name rather than in adherence to a predetermined order. The
following table contains examples showing various calls to Session.Echo both using parameter by
both name and position.

.

Using named parameter makes your code easier to read, while at the same time removes you from
knowing the order of parameter. With functions that require many parameters, most of which are
optional, code becomes significantly easier to write and maintain.

When supported, the names of the named parameter appear in the description of that language
element.

When using named parameter, you must observe the following rules:

• Named parameter must use the parameter name as specified in the description of that language el-
ement. Unrecognized parameter names cause compiler errors.

• All parameters, whether named or positional, are separated by commas.

• The parameter name and its associated value are separated with :=

• If one parameter is named, then all subsequent parameters must also be named as shown here:

DateAdd("m", Number:= 2, Date:= "December 31, 1992")
DateAdd(Interval:= "m",,"December 31, 1992") WRONG!!!

New
Syntax 1 Dim ObjectVariable As New ObjectType

Syntax 2 Set ObjectVariable = New ObjectType

Description Creates a new instance of the specified object type, assigning it to the specified object variable. The
New keyword is used to declare a new instance of the specified data object. This keyword can only be
used with data object types. At runtime, the application or extension that defines that object type is

Parameter Call
By Name DateAdd(Interval:= "m", Number:= 2, Date:= "December 31, 1992")

By Position DateAdd("m", 2, "December 31, 1992")
338

Not
notified that a new object is being defined. The application responds by creating a new physical object
(within the appropriate context) and returning a reference to that object, which is immediately
assigned to the variable being declared. When that variable goes out of scope (i.e., the Sub or Function
procedure in which the variable is declared ends), the application is notified. The application then
performs some appropriate action, such as destroying the physical object.

See Also Objects on page 10

Not
Syntax Not expression

Description Returns either a logical or binary negation of expression. The result is determined as shown in the
following table:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a = False
 b = True
 If (Not a and b) Then mesg = "a = False, b = True" & crlf
 toggle% = True
 mesg = mesg & "toggle% is now " & Format(toggle%,"True/False") & crlf
 toggle% = Not toggle%
 mesg = mesg & "toggle% is now " & Format(toggle%,"True/False") & crlf
 toggle% = Not toggle%
 mesg = mesg & "toggle% is now " & Format(toggle%,"True/False")
 Session.Echo mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Now
Syntax Now[()]

Description Returns a Date variant representing the current date and time.

Expression Result
True False
False True
Null Null
Any numeric type Binary negation of the number. If the number is an integer, then an integer is

returned. Otherwise, the expression is first converted to a long, then a binary
negation is performed, returning a long.

Empty Treated as a long value 0.
339

NPer
Example Sub Main
 t1# = Now()
 Session.Echo "Wait a while and click OK."
 t2# = Now()
 t3# = Second(t2#) - Second(t1#)
 Session.Echo "Elapsed time was: " & t3# & " seconds."
End Sub

See Also Time and Date Access on page 10

NPer
Syntax NPer(rate, pmt, pv, fv, due)

Description Returns the number of periods for an annuity based on periodic fixed payments and a constant rate of
interest. An annuity is a series of fixed payments paid to or received from an investment over a period
of time. Examples of annuities are mortgages, retirement plans, monthly savings plans, and term loans.
The NPer function requires the following named parameters:

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the number of $100.00 monthly payments necessary to accumulate
$10,000.00 at an annual rate of 10%. Payments are made at the beginning of the month.

Sub Main
 ag# = NPer((.10/12),100,0,10000,1)
 Session.Echo "The number of monthly periods is: " & Format(ag#,"Standard")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Parameter Description
rate Double representing the interest rate per period. If the periods are monthly, be sure to

normalize annual rates by dividing them by 12.
Pmt Double representing the amount of each payment or income. Income is represented by

positive values, whereas payments are represented by negative values.
Pv Double representing the present value of your annuity. In the case of a loan, the

present value would be the amount of the loan, and the future value (see below) would
be zero.

Fv Double representing the future value of your annuity. In the case of a loan, the future
value would be zero, and the present value would be the amount of the loan.

Due Integer indicating when payments are due for each payment period. A 0 specifies pay-
ment at the end of each period, whereas a 1 indicates payment at the start of each
period.
340

Npv
Npv
Syntax Npv(rate, valuearray())

Description Returns the net present value of an annuity based on periodic payments and receipts, and a discount
rate. The Npv function requires the following named parameters:

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

For accurate results, be sure to enter your payments and receipts in the correct order because Npv uses
the order of the array values to interpret the order of the payments and receipts.

If your first cash flow occurs at the beginning of the first period, that value must be added to the return
value of the Npv function. It should not be included in the array of cash flows.

Npv differs from the Pv function in that the payments are due at the end of the period and the cash flows
are variable. Pv's cash flows are constant, and payment may be made at either the beginning or end of
the period.

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The incomes are estimated
(generated) over 12 months. This program first generates the income stream array in two For...Next
loops, and then the net present value (Npv) is calculated and displayed. Note normalization of the
annual 10% rate.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 mesg = valu(1) & ", "
 For x = 2 To 5 'Months 2-5
 valu(x) = 100 + (x * 2)
 mesg = mesg & valu(x) & ", "
 Next x
 For x = 6 To 12 'Months 6-12
 valu(x) = 100 + (x * 10) 'Accelerated income
 mesg = mesg & valu(x) & ", "
 Next x
 NetVal# = NPV((.10/12),valu)

Parameter Description
rate Double that represents the interest rate over the length of the period. If the values

are monthly, annual rates must be divided by 12 to normalize them to monthly
rates.

valuearray() Array of double numbers representing the payments and receipts. Positive values
are payments, and negative values are receipts. There must be at least one positive
and one negative value.
341

Npv
 mesg = "The values:" & crlf & mesg & crlf & crlf
 Session.Echo mesg & "Net present value: " & Format(NetVal#,"Currency")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5
342

O

Object (data type)
Syntax Object

Description Used to declare OLE Automation variables. The Object type is used to declare variables that reference
objects within an application using OLE Automation. Each object is a 4-byte (32-bit) value that
references the object internally. The value 0 (or Nothing) indicates that the variable does not reference
a valid object, as is the case when the object has not yet been given a value. Accessing properties or
methods of such Object variables generates a runtime error.

Using objects
Object variables are declared using the Dim, Public, or Private statement:

Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object) using the Set
statement:

Set MyApp = CreateObject("phantom.application")
Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:

MyApp.Color = 10
i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:

MyApp.Open "sample.txt"
isSuccess = MyApp.Save("new.txt",15)
343

Objects (topic)
Automatic destruction
The compiler keeps track of the number of variables that reference a given object so that the object
can be destroyed when there are no longer any references to it:

Sub Main() 'Number of references to object
 Dim a As Object '0
 Dim b As Object '0
 Set a = CreateObject("phantom.application) '1
 Set b = a '2
 Set a = Nothing '1
End Sub '0bject destroyed

Note An OLE Automation object is instructed by the compiler to destroy itself when no variables reference
that object. However, it is the responsibility of the OLE Automation server to destroy it. Some servers
do not destroy their objects, usually when the objects have a visual component and can be destroyed
manually by the user.

See Also Objects on page 10

Objects (topic)
The macro language defines two types of objects: data objects and OLE Automation objects.
Syntactically, these are referenced in the same way.

What is an object
An object is an encapsulation of data and routines into a single unit. The use of objects has the effect
of grouping together a set of functions and data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a sheet object may
expose an integer called NumColumns. Usually, properties can be both retrieved (get) and modified
(set).

Objects also expose internal routines for programmability called methods. An object method can take
the form of a function or a subroutine. For example, a OLE Automation object called MyApp may
contain a method subroutine called Open that takes a single argument (a filename): MyApp.Open
"c:\files\sample.txt".

Declaring Object Variables
In order to gain access to an object, you must first declare an object variable using either Dim, Public,
or Private: Dim o As Object. Initially, objects are given the value 0 (or Nothing). Before an object
can be accessed, it must be associated with a existing object.
344

Objects (topic)
Assigning a Value to an Object Variable
An object variable must reference a real physical object before accessing any properties or methods
of that object. To instantiate an object, use the Set statement.

Dim MyApp As Object
Set MyApp = CreateObject("Server.Application")

Accessing Object Properties
Once an object variable has been declared and associated with a physical object, it can be modified
using macro code. Properties are syntactically accessible using the dot operator, which separates an
object name from the property being accessed:

MyApp.BackgroundColor = 10
i% = MyApp.DocumentCount

Properties are set using the normal assignment statement:

MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:

i% = MyApp.DocumentCount + 10
Session.Echo "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods
Like properties, methods are accessed via the dot operator. Object methods that do not return values
behave like subroutines (i.e., the arguments are not enclosed within parentheses):

MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls. Any arguments must be enclosed in
parentheses:

If MyApp.DocumentCount = 0 Then Session.Echo "No open documents."
NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a property value, as
shown below:

variable = object.property(arg1,arg2)
variable = object.method(arg1,arg2)

Comparing Object Variables
The values used to represent objects are meaningless to the macro in which they are used, with the
following exceptions:
345

Objects (topic)
• Objects can be compared to each other to determine whether they refer to the same object.

• Objects can be compared with Nothing to determine whether the object variable refers to a valid
object.

Object comparisons are accomplished using the Is operator:

If a Is b Then Session.Echo "a and b are the same object."
If a Is Nothing Then Session.Echo "a is not initialized."
If b Is Not Nothing Then Session.Echo "b is in use."

Collections
A collection is a set of related object variables. Each element in the set is called a member and is
accessed via an index, either numeric or text, as shown below:

MyApp.Toolbar.Buttons(0)
MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:

Dim MyToolbarButton As Object
Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")
MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the collection and
methods that allow navigation within that collection:

Dim MyToolbarButton As Object
NumButtons% = MyApp.Toolbar.Buttons.Count
MyApp.Toolbar.Buttons.MoveNext
MyApp.Toolbar.Buttons.FindNext "Save"
For i = 1 To MyApp.Toolbar.Buttons.Count
 Set MyToolbarButton = MyApp.Toolbar.Buttons(i)
 MyToolbarButton.Caption = "Copy"
Next i

Predefined Objects
There are a few objects predefined for use in all macros. These are:

• Application

• Circuit

• Clipboard

• Dlg

• Err
346

Oct, Oct$
• Msg

• Session

• Transfer

See Also “Using SmarTerm’s objects” on page 19

Oct, Oct$
Syntax Oct[$](number)

Description Returns a String containing the octal equivalent of the specified number. Oct$ returns a String,
whereas Oct returns a String variant. The returned string contains only the number of octal digits
necessary to represent the number.

The number parameter is any numeric expression. If this parameter is Null, then Null is returned.
Empty is treated as 0. The number parameter is rounded to the nearest whole number before converting
to the octal equivalent.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 st$ = "The octal values are: " & crlf
 For x = 1 To 5
 y% = x * 10
 st$ = st$ & y% & " : " & Oct$(y%) & crlf
 Next x
 Session.Echo st$
End Sub

See Also Character and String Manipulation on page 2

OKButton
Syntax OKButton x,y,width,height [,.Identifier]

Description Creates an OK button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The OKButton statement
accepts the following parameters:

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative to

the upper left corner of the dialog.
width, height Integer coordinates specifying the position of the control (in dialog units) relative to

the upper left corner of the dialog.
.Identifier Name by which this control can be referenced by statements in a dialog function

(such as DlgFocus and DlgEnable).
347

On Error
If the DefaultButton parameter is not specified in the Dialog statement, the OK button will be used
as the default button. In this case, the OK button can be selected by pressing Enter on a nonbutton
control.

A dialog template must contain at least one OKButton, CancelButton, or PushButton statement
(otherwise, the dialog cannot be dismissed).

Example Sub Main
 Begin Dialog ButtonTemplate 17,33,104,23,"Buttons"
 OKButton 8,4,40,14,.OK
 CancelButton 56,4,40,14,.Cancel
 End Dialog
 Dim ButtonDialog As ButtonTemplate
 WhichButton = Dialog(ButtonDialog)
 If WhichButton = -1 Then
 MsgBox "OK was pressed."
 ElseIf WhichButton = 0 Then
 MsgBox "Cancel was pressed."
 End If

End Sub

See Also User Interaction on page 9

On Error
Syntax On Error {Goto label | Resume Next | Goto 0}

Description Defines the action taken when a trappable runtime error occurs. The form On Error Goto label causes
execution to transfer to the specified label when a runtime error occurs. The form On Error Resume
Next causes execution to continue on the line following the line that caused the error. The form On
Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the macro ends, then an error will be generated. An error trap is only
active within the subroutine or function in which it appears. Once an error trap has gained control,
appropriate action should be taken, and then control should be resumed using the Resume statement.
The Resume statement resets the error handler and continues execution. If a procedure ends while an
error is pending, then an error will be generated. (The Exit Sub or Exit Function statement also
resets the error handler, allowing a procedure to end without displaying an error message.)

Errors within an Error Handler
If an error occurs within the error handler, then the error handler of the caller (or any procedure in the
call stack) will be invoked. If there is no such error handler, then the error is fatal, causing the macro
to stop executing. The following statements reset the error state (i.e., these statements turn off the fact
that an error occurred):

Resume
Err=-1
348

On Error
The Resume statement forces execution to continue, either on the same line or on the line following the
line that generated the error. The Err=-1 statement allows explicit resetting of the error state so that
the macro can continue normal execution without resuming at the statement that caused the error
condition.

The On Error statement will not reset the error. Thus, if an On Error statement occurs within an error
handler, it has the effect of changing the location of a new error handler for any new errors that may
occur once the error has been reset.

Example This example shows three types of error handling. The first case simply bypasses an expected error
and continues. The second case creates an error branch that jumps to a common error handling routine
that processes incoming errors, clears the error (with the Resume statement) and resumes. The third
case clears all internal error handling so that execution will stop when the next error is encountered.

Sub Main
 Dim x%
 a = 10000
 b = 10000
 On Error Goto Pass 'Branch to this label on error.
 Do
 x% = a * b
 Loop
Pass:
 Err = -1 'Clear error status.
 Session.Echo "Cleared error status and continued."
 On Error Goto Overflow 'Branch to new error routine on any
 x% = 1000 'subsequent errors.
 x% = a * b
 x% = a / 0
 On Error Goto 0 'Clear error branching.
 x% = a * b 'Program will stop here.
 Exit Sub 'Exit before common error routine.
Overflow: 'Beginning of common error routine.
 If Err = 6 then
 Session.Echo "Overflow Branch."
 Else
 Session.Echo Error(Err)
 End If
 Resume Next
End Sub

See Also Macro Control and Compilation on page 6
349

Open
Open
Syntax Open filename$ [For mode] [Access accessmode] [lock] As [#] filenumber

 [Len = reclen]

Description Opens a file for a given mode, assigning the open file to the supplied filenumber. The filename$
parameter is a string expression that contains a valid filename. The filenumber parameter is a number
between 1 and 255. The FreeFile function can be used to determine an available file number. The
mode parameter determines the type of operations that can be performed on that file:

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be performed on the file:

If the accessmode parameter is not specified, the following defaults are used:

File Mode Description
Input Opens an existing file for sequential input (filename$ must exist). The value of

accessmode, if specified, must be Read.
Output Opens an existing file for sequential output, truncating its length to zero, or creates a

new file. The value of accessmode, if specified, must be Write.
Append Opens an existing file for sequential output, positioning the file pointer at the end of the

file, or creates a new file. The value of accessmode, if specified, must be Read Write.
Binary Opens an existing file for binary I/O or creates a new file. Existing binary files are

never truncated in length. The value of accessmode, if specified, determines how the
file can subsequently be accessed.

Random Opens an existing file for record I/O or creates a new file. Existing random files are
truncated only if accessmode is Write. The reclen parameter determines the record
length for I/O operations.

Access Description
Read Opens the file for reading only. This value is valid only for files opened in Binary,

Random, or Input mode.
Write Opens the file for writing only. This value is valid only for files opened in Binary,

Random, or Output mode.
Read Write Opens the file for both reading and writing. This value is valid only for files opened

in Binary, Random, or Append mode.

File Mode Default Value for accessmode
Input Read
Output Write
350

Open
The lock parameter determines what access rights are granted to other processes that attempt to open
the same file. The following table describes the values for lock:

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened twice; once to create
the file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each of the length specified
by the reclen parameter. If this parameter is missing, then 128 is used. For files opened for sequential
I/O, the reclen parameter specifies the size of the internal buffer used by the compiler when
performing I/O. Larger buffers mean faster file access. For Binary files, the reclen parameter is
ignored.

For files opened in Append mode, the compiler opens the file and positions the file pointer after the
last character in the file. The end-of-file character, if present, is not removed.

Example Sub Main
 Open "test.dat" For Output Access Write Lock Write As #2
 Close
 Open "test.dat" For Input Access Read Shared As #1
 Close
 Open "test.dat" For Append Access Write Lock Read Write as #3
 Close
 Open "test.dat" For Binary Access Read Write Shared As #4
 Close
 Open "test.dat" For Random Access Read Write Lock Read As #5
 Close
 Open "test.dat" For Input Access Read Shared As #6

Append Read Write
Binary When the file is initially opened, access is attempted three times in the following

order:

1. Read Write
2. Write
3. Read

Random Same as Binary files

File Mode Default Value for accessmode

Lock Value Description
Shared Other processes can read and write file. (Deny none.)
Lock Read Other processes can write but not read file. (Deny read.)
Lock Write Other processes can read but not write file. (Deny write.)
Lock Read Write Other processes can neither read nor write file. (Exclusive.)
351

OpenFilename$
 Close
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

OpenFilename$
Syntax OpenFilename$[([title$ [,[extensions$] [,helpfile,context]]])]

Description Displays a dialog that prompts the user to select from a list of files, returning the full pathname of the
file the user selects or a zero-length string if the user selects Cancel. This function displays the
standard file open dialog, which allows the user to select a file. It takes the following parameters:

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

The extensions$ parameter must be in the following format:

type:ext[,ext][;type:ext[,ext]]...

For example, the following are valid extensions$ specifications:

"All Files:*.*"
"Documents:*.TXT,*.DOC"
"All Files:*.*;Documents:*.TXT,*.DOC"

Example Sub Main
 Dim f As String,s As String
 f$ = OpenFilename$("Open Picture","Text Files:*.TXT")
 If f$ <> "" Then

Parameter Description
title$ String specifying the title that appears in the dialog's title bar. If this parameter is

omitted, then "Open" is used.
extension$ String specifying the available file types. If this parameter is omitted, then all files are

displayed.
helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is

specified, then context must also be specified.
context Number specifying the ID of the topic within helpfile for this dialog's help. If this

parameter is specified, then helpfile must also be specified.

Placeholder Description
type Specifies the name of the grouping of files, such as All Files.
ext Specifies a valid file extension, such as *.BAT or *.?F?.
352

Operator Precedence (topic)
 Open f$ For Input As #1
 Line Input #1,s$
 Close #1
 MsgBox "First line from " & f$ & " is " & s$
 End If
End Sub

See Also Drive, Folder, and File Access on page 3; User Interaction on page 9

Operator Precedence (topic)
The following table shows the precedence of the operators. Operations involving operators of higher
precedence occur before operations involving operators of lower precedence. When operators of equal
precedence occur together, they are evaluated from left to right.

The precedence order can be controlled using parentheses, as shown below:

a = 4 + 3 * 2 'a becomes 10.
a = (4 + 3) * 2 'a becomes 14.

Operator Precision (topic)
When numeric, binary, logical or comparison operators are used, the data type of the result is generally
the same as the data type of the more precise operand. For example, adding an Integer and a Long
first converts the Integer operand to a Long, then performs a long addition, overflowing only if the
result cannot be contained with a Long. The order of precision is shown in the following list:

Operator Description Precedence
() Parentheses Highest
^ Exponentiation
- Unary minus
/, * Division and multiplication
\ Integer division
Mod Modulo
+, - Addition and subtraction
& String concatenation
=, <>, >, <, <=, >= Relational
Like, Is String and object comparison
Not Logical negation
And Logical or binary conjunction
Or Logical or binary disjunction
Xor, Eqv, Imp Logical or binary operators Lowest
353

Option Base
There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is used with variant data.
In many cases, an overflow causes automatic promotion of the result to the next highest precise data
type. For example, adding two Integer variants results in an Integer variant unless it overflows, in
which case the result is automatically promoted to a Long variant.

Option Base
Syntax Option Base {0 | 1}

Description Sets the lower bound for array declarations. By default, the lower bound used for all array declarations
is 0. This statement must appear outside of any functions or subroutines.

Example Option Base 1
Sub Main
 Dim a(10) 'Contains 10 elements (not 11).
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Option Compare
Syntax Option Compare [Binary | Text]

Description Controls how strings are compared. When Option Compare is set to Binary, then string comparisons
are case-sensitive (e.g., "A" does not equal "a"). When it is set to Text, string comparisons are case-
insensitive (e.g., "A" is equal to "a"). The default value for Option Compare is Binary.

The Option Compare statement affects all string comparisons in any statements that follow the Option
Compare statement. Additionally, the setting affects the default behavior of Instr, StrComp, and the
Like operator. The following table shows the types of string comparisons affected by this setting:

Data Type Precision
Empty Least precise
Boolean

Integer

Long

Single

Date

Double

Currency Most precise
354

Option CStrings
The Option Compare statement must appear outside the scope of all subroutines and functions. In
other words, it cannot appear within a Sub or Function block.

Example Option Compare Binary
Sub CompareBinary
 a$ = "This String Contains UPPERCASE."
 b$ = "this string contains uppercase."
 If a$ = b$ Then
 MsgBox "The two strings were compared case-insensitive."
 Else
 MsgBox "The two strings were compared case-sensitive."
 End If
End Sub
Option Compare Text
Sub CompareText
 a$ = "This String Contains UPPERCASE."
 b$ = "this string contains uppercase."
 If a$ = b$ Then
 MsgBox "The two strings were compared case-insensitive."
 Else
 MsgBox "The two strings were compared case-sensitive."
 End If
End Sub
Sub Main
'!
 CompareBinary 'Calls subroutine above.
 CompareText 'Calls subroutine above.
End Sub

See Also Character and String Manipulation on page 2

Option CStrings
Syntax Option CStrings {On | Off}

Description Turns on or off the ability to use C-style escape sequences within strings. When Option CStrings On
is in effect, the compiler treats the backslash character as an escape character when it appears within
strings. An escape character is simply a special character that otherwise cannot ordinarily be typed by
the computer keyboard.

> < <>

<= >= Instr

StrComp Like

Escape Description Equivalent Expression
\r Carriage return Chr$(13)

\n Line Feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)
355

Option Default
With hexadecimal values, the compiler stops scanning for digits when it encounters a nonhexadecimal
digit or two digits, whichever comes first. Similarly, with octal values, the compiler stops scanning
when it encounters a nonoctal digit or three digits, whichever comes first.

When Option CStrings Off is in effect, then the backslash character has no special meaning. This
is the default.

Example Option CStrings On
Sub Main
 MsgBox "They said, \"Watch out for that clump of grass!\""
 MsgBox "First line.\r\nSecond line."
 MsgBox "Char A: \x41 \r\n Char B: \x42"
End Sub

See Also Character and String Manipulation on page 2

Option Default
Syntax Option Default type

Description Sets the default data type of variables and function return values when not otherwise specified. By
default, the type of implicitly defined variables and function return values is Variant. This statement
is used for backward compatibility with earlier versions of VBA where the default data type was
Integer.

Note This statement must appear outside the scope of all functions and subroutines.

Currently, type can only be set to Integer.

\f Form Feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0_

\" Double quote "" or Chr$(34)

\\ Backslash Chr$(92)

\? Question mark ?

\' Single quote '

\xhh Hexadecimal number Chr$(Val(&Hhh))

\ooo Octal number Chr$(Val(&Oooo))

\anycharacter Any character anycharacter

Escape Description Equivalent Expression
356

Option Explicit
Example Option Default Integer

Function AddIntegers(a As Integer,b As Integer)
 Foo = a + b
End Function

Sub Main
 Dim a,b,result
 a = InputBox("Enter an integer:")
 b = InputBox("Enter an integer:")
 result = AddIntegers(a,b)
End Sub

See Also Macro Control and Compilation on page 6

Option Explicit
Syntax Option Explicit

Description The Option Explicit statement enforces explicit declaration of variables with Dim, Public, or
Private. By default, the compiler implicitly declares variables that are used but have not been
explicitly declared with Dim, Public, or Private. To avoid typing errors, use Option Explicit to
prevent this behavior.

The Option Explicit statement also enforces explicit declaration of all subroutines and functions
(with the Declare statement) called by other members of the macro collective. Once specified, all
externally called subroutines and functions must be explicitly declared with the Declare statement.

Note Functions called by other members of the macro collective must always be declared with the Declare
statement. This does not mean that you must also always use the Option Explicit statement; if you
do not use Option Explicit, you can declare functions without declaring subroutines. Note, also, that
not all members of the macro collective can supply subroutines and functions to the rest of the
collective. See “Modules and collectives” on page 24 for more information.

See Also Declare on page 201; Macro Control and Compilation on page 6

OptionButton
Syntax OptionButton x,y,width,height,title$ [,.Identifier]

Description Defines an option button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The OptionButton statement
accepts the following parameters:
357

OptionGroup
Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example See OptionGroup (statement).

See Also User Interaction on page 9

OptionGroup
Syntax OptionGroup .Identifier

Description Specifies the start of a group of option buttons within a dialog template. The .Identifier parameter
specifies the name by which the group of option buttons can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an integer variable whose
value corresponds to the index of the selected option button within the group (0 is the first option
button, 1 is the second option button, and so on). This variable can be accessed using the following
syntax: DialogVariable.Identifier.

This statement can only appear within a dialog template (i.e., between the Begin Dialog and End
Dialog statements).

When the dialog is created, the option button specified by .Identifier will be on; all other option
buttons in the group will be off. When the dialog is dismissed, the .Identifier will contain the
selected option button.

Example Sub Main
 Begin Dialog PrintTemplate 16,31,128,65,"Print"
 GroupBox 8,8,64,52,"Orientation",.Junk
 OptionGroup .Orientation
 OptionButton 16,20,37,8,"Portrait",.Portrait
 OptionButton 16,32,51,8,"Landscape",.Landscape
 OptionButton 16,44,49,8,"Don't Care",.DontCare
 OKButton 80,8,40,14
 End Dialog
 Dim PrintDialog As PrintTemplate
 Dialog PrintDialog
End Sub

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative to

the upper left corner of the dialog.
width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing text that appears within the option button. This text may contain an
ampersand character to denote an accelerator letter, such as "&Portrait" for Portrait,
which can be selected by pressing the P accelerator.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable).
358

Or
See Also User Interaction on page 9

Or
Syntax result = expression1 Or expression2

Description Performs a logical or binary disjunction on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical disjunction is performed as follows:

Binary Disjunction
If the two expressions are Integer, then a binary disjunction is performed, returning an Integer
result. All other numeric types (including Empty variants) are converted to Long and a binary
disjunction is then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

Examples This first example shows the use of logical Or.

Dim s$ As String
s$ = InputBox$("Enter a string.")
If s$ = "" Or Mid$(s$,1,1) = "A" Then
 s$ = LCase$(s$)
End If

Expression One Expression Two Result
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

Bit in Expression One Bit in Expression Two Result
1 1 1
0 1 1
1 0 1
0 0 0
359

Or
This second example shows the use of binary Or.

Dim w As Integer
TryAgain:
 s$ = InputBox$("Enter a hex number (four digits max).")
 If Mid$(s$,1,1) <> "&" Then
 s$ = "&H" & s$
 End If
 If Not IsNumeric(s$) Then Goto TryAgain
 w = CInt(s$)
 MsgBox "Your number is &H" & Hex$(w)
 w = w Or &H8000
 MsgBox "Your number with the high bit set is &H" & Hex$(w)

See Also Keywords, Data Types, Operators, and Expressions on page 4
360

P

Picture
Syntax Picture x,y,width,height,PictureName$,PictureType [,[.Identifier] [,style]]

Description Creates a picture control in a dialog template. Picture controls are used for the display of graphics
images only. The user cannot interact with these controls. The Picture statement accepts the
following parameters:

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative

to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
PictureName$ String containing the name of the picture. If PictureType is 0, then this name

specifies the name of the file containing the image. If PictureType is 10, then
PictureName$ specifies the name of the image within the resource of the picture
library. If PictureName$ is empty, then no picture will be associated with the con-
trol. A picture can later be placed into the picture control using the DlgSetPic-
ture statement.

PictureType Integer specifying the source for the image. The following sources are supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the PicName$
parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). If omitted, then the first two words of Pic-
tureName$ are used.
361

PictureButton
The picture control extracts the actual image from either a disk file or a picture library. In the case of
bitmaps, both 2- and 16-color bitmaps are supported. In the case of WMFs, the compiler supports the
Placeable Windows Metafile.

If PictureName$ is a zero-length string, then the picture is removed from the picture control, freeing
any memory associated with that picture.

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256. Picture
libraries are implemented as DLLs.

Examples This first example shows how to use a picture from a file.

Sub Main
 Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
 OKButton 240,8,40,14
 Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

This second example shows how to use a picture from a picture library with a 3D frame.

Sub Main
 Begin Dialog LogoDialogTemplate _
 16,31,288,76,"Introduction",,"pictures.dll"
 OKButton 240,8,40,14
 Picture 8,8,224,64,"CompanyLogo",10,.Logo,1
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

See Also User Interaction on page 9

PictureButton
Syntax PictureButton x,y,width,height,PictureName$,PictureType [,.Identifier]

style Specifies whether the picture is drawn within a 3D frame. It can be either of the
following values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If this parameter is omitted, then the picture control is drawn with a normal frame.

Parameter Description
362

PictureButton
Description Creates a picture button control in a dialog template. Picture button controls behave very much like
push button controls. Visually, picture buttons are different from push buttons in that they contain a
graphic image imported either from a file or from a picture library. The PictureButton statement
accepts the following parameters:

The picture button control extracts the actual image from either a disk file or a picture library,
depending on the value of PictureType.

If PictureName$ is a zero-length string, then the picture is removed from the picture button control,
freeing any memory associated with that picture.

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256. Picture
libraries are implemented as DLLs.

Examples This first example shows how to use a picture from a file.

Sub Main
 Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
 OKButton 240,8,40,14
 PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub
'This second example shows how to use a picture from a picture
'library.

Sub Main

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative to

the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
PictureName$ String containing the name of the picture. If PictureType is 0, then this name spec-

ifies the name of the file containing the image. If PictureType is 10, then Picture-
Name$ specifies the name of the image within the resource of the picture library. If
PictureName$ is empty, then no picture will be associated with the control. A pic-
ture can later be placed into the picture control using the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are supported:

• The image is contained in a file on disk.

• The image is contained in a picture library as specified by the PicName$ param-
eter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable).
363

Pmt
 Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
 OKButton 240,8,40,14
 PictureButton 8,4,224,64,"CompanyLogo",10,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

See Also User Interaction on page 9

Pmt
Syntax Pmt(rate, nper, pv, fv, due)

Description Returns the payment for an annuity based on periodic fixed payments and a constant rate of interest.
An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The Pmt
function requires the following named parameters:

The rate and nper parameters must be expressed in the same units. If rate is expressed in months,
then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the payment necessary to repay a $1,000.00 loan over 36 months at an annual
rate of 10%. Payments are due at the beginning of the period.

Sub Main
 x = Pmt((.1/12),36,1000.00,0,1)
 mesg = "The payment to amortize $1,000 over 36 months @ 10% is: "
 Session.Echo mesg & Format(x,"Currency")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Parameter Description
rate Double representing the interest rate per period. If the periods are given in months, be

sure to normalize annual rates by dividing them by 12.
Nper Double representing the total number of payments in the annuity.
Pv Double representing the present value of your annuity. In the case of a loan, the

present value would be the amount of the loan.
Fv Double representing the future value of your annuity. In the case of a loan, the future

value would be 0.
Due Integer indicating when payments are due for each payment period. A 0 specifies pay-

ment at the end of each period, whereas a 1 specifies payment at the start of each
period.
364

PopUpMenu
PopUpMenu
 Syntax PopUpMenu(MenuList$())

 Description Displays a PopUp menu on the SmarTerm display screen at the point where the mouse cursor currently
resides. Returns a numeric value corresponding to the menu selection.

Example:
Sub Main
'!
Dim RetVal as Integer
Dim MenuList$(3)
MenuList$(0)="Menu Option 1"
MenuList$(1)="Menu Option 2"
MenuList$(2)="Menu Option 3"
MenuList$(3)="Menu Option 4"
RetVal=PopUpMenu(MenuList$)
End Sub

PPmt
Syntax PPmt(rate, per, nper, pv, fv, due)

Description Calculates the principal payment for a given period of an annuity based on periodic, fixed payments
and a fixed interest rate. An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are mortgages and monthly
savings plans. The PPmt function requires the following named parameters:

The rate and nper parameters must be in the same units to calculate correctly. If rate is expressed in
months, then nper must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent payments received.

Parameter Description
rate Double representing the interest rate per period.
Per Double representing the number of payment periods. The per parameter can be no less

than 1 and no greater than nper.
Nper Double representing the total number of payments in your annuity.
Pv Double representing the present value of your annuity. In the case of a loan, the

present value would be the amount of the loan.
Fv Double representing the future value of your annuity. In the case of a loan, the future

value would be 0.
Due Integer indicating when payments are due. If this parameter is 0, then payments are

due at the end of each period; if it is 1, then payments are due at the start of each
period.
365

Print
Example This example calculates the principal paid during each year on a loan of $1,000.00 with an annual rate
of 10% for a period of 10 years. The result is displayed as a table containing the following information:
payment, principal payment, principal balance.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 pay = Pmt(.1,10,1000.00,0,1)
 mesg = "Amortization table for 1,000" & crlf & _
 "at 10% annually for"
 mesg = mesg & " 10 years: " & crlf & crlf
 bal = 1000.00
 For per = 1 to 10
 prn = PPmt(.1,per,10,1000,0,0)
 bal = bal + prn
 mesg = mesg & Format(pay,"Currency") & " " & _
 Format$(Prn,"Currency")
 mesg = mesg & " " & Format(bal,"Currency") & crlf
 Next per
 Session.Echo mesg
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Print
Syntax Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description Prints data to an output device. The following table describes how data of different types is written:

Data Type Description
String Printed in its literal form, with no enclosing quotes.
Any numeric type Printed with an initial space reserved for the sign (space = positive). Addi-

tionally, there is a space following each number.
Boolean Printed as "True" or "False". These keywords are translated as appropriate

according to your system’s locale.
Date Printed using the short date format. If either the date or time component is

missing, only the provided portion is printed (this is consistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed
366

Print
Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then a carriage return is
printed to the file. If the last expression ends with a semicolon, no carriage return is printed; the next
Print statement will output information immediately following the expression. If the last expression
in the list ends with a comma, the file pointer is positioned at the start of the next print zone on the
current line.

The Tab and Spc functions provide additional control over the column position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified number
of spaces.

Note Null characters Chr$(0) within strings are translated to spaces when printing to the Viewport window.
When printing to files, this translation is not performed.

This statement writes data to a viewport window.

If no viewport window is open, then the statement is ignored. Printing information to a viewport
window is a convenient way to output debugging information. To open a viewport window, use the
following statement:

Viewport.Open

Examples Sub Main
 i% = 10
 s$ = "This is a test."
 Print "The value of i=";i%,"the value of s=";s$
 'This example prints the value of i% in print zone
 '1 and s$ in print zone 3.
 Print i%,,s$
 'This example prints the value of i% and s$
 'separated by 10 spaces.
 Print i%;Spc(10);s$
 'This example prints the value of i in column 1 and s$ in
 'column 30.

Null Prints "null". This keyword is translated as appropriate according to your
system’s locale.

User-defined errors User-defined errors are printed to files as "Error code", where code is the
value of the user-defined error. The word "Error" is not translated. The
"Error" keyword is translated as appropriate according to your system’s
locale.

Object For any object type, the compiler retrieves the default property of that
object and prints this value using the above rules.

Data Type Description
367

Print#
 Print i%;Tab(30);s$
 'This example prints the value of i% and s$.
 Print i%;s$,
 Print 67
End Sub

See Also Drive, Folder, and File Access on page 3

Print#
Syntax Print #filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description Writes data to a sequential disk file. The filenumber parameter is a number that is used to refer to the
open file—the number passed to the Open statement. The following table describes how data of
different types is written:

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then an end-of-line is
printed to the file. If the last expression ends with a semicolon, no end-of-line is printed; the next Print
statement will output information immediately following the expression. If the last expression in the
list ends with a comma, the file pointer is positioned at the start of the next print zone on the current
line.

Data Type Description
String Printed in its literal form, with no enclosing quotes.
Any numeric type Printed with an initial space reserved for the sign (space = positive). Addi-

tionally, there is a space following each number.
Boolean Printed as "True" or "False". These keywords are translated as appropriate

according to your system’s locale.
Date Printed using the short date format. If either the date or time component is

missing, only the provided portion is printed (this is consistent with the
"general date" format understood by the Format/Format$ functions).

Empty Nothing is printed
Null Prints "null". This keyword is translated as appropriate according to your

system’s locale.
User-defined errors User-defined errors are printed to files as "Error code", where code is the

value of the user-defined error. The word "Error" is not translated. The
"Error" keyword is translated as appropriate according to your system’s
locale.

Object For any object type, the compiler retrieves the default property of that object
and prints this value using the above rules.
368

Private
The Write statement always outputs information ending with an end-of-line. Thus, if a Print
statement is followed by a Write statement, the file pointer is positioned on a new line.

The Print statement can only be used with files that are opened in Output or Append mode.

The Tab and Spc functions provide additional control over the file position. The Tab function moves
the file position to the specified column, whereas the Spc function outputs the specified number of
spaces.

In order to correctly read the data using the Input# statement, you should write the data using the
Write statement.

Examples Sub Main
 'This example opens a file and prints some data.
 Open "test.dat" For Output As #1
 i% = 10
 s$ = "This is a test."
 Print #1,"The value of i=";i%,"the value of s=";s$
 'This example prints the value of i% in print zone 1 and
 's$ in print zone 3.
 Print #1,i%,,s$
 'This example prints the value of i% and s$ separated by
 'ten spaces.
 Print #1,i%;Spc(10);s$
 'This example prints the value of i in column 1 and s$ in
 'column 30.
 Print #1,i%;Tab(30);s$
 'This example prints the value of i% and s$.
 Print #1,i%;s$,
 Print #1,67
 Close #1
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

Private
Syntax Private name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of private variables and their corresponding types and sizes. Private variables are global
to every Sub and Function within the currently executing macro. If a type-declaration character is used
when specifying name (such as %, @, &, $, or !), the optional [As type] expression is not allowed. For
example, the following are allowed:

Private foo As Integer
Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following syntax:

[lower To] upper [,[lower To] upper]...
369

Private
The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option
Base statement has been encountered). Up to 60 array dimensions are allowed. The total size of an
array (not counting space for strings) is limited to 64K. Dynamic arrays are declared by not specifying
any bounds:

Private a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type,
or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private, then it
will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Private name As String * length

where length is a literal number specifying the string's length.

Initial Values
All declared variables are given initial values, as described in the following table:

Example See Public (statement).

Data Type Initial Value
Integer 0
Long 0
Double 0.0
Single 0.0
Currency 0.0
Object Nothing
Date December 31, 1899 00:00:00
Boolean False
Variant Empty
String "" (zero-length string)
User-defined type Structure elements are given the default values listed above.
Arrays Array elements are given the default values listed above.
370

Public
See Also Macro Control and Compilation on page 6

Public
Syntax Public name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of public variables and their corresponding types and sizes. Public variables are global
to all Subs and Functions in all macros. If a type-declaration character is used when specifying name
(such as %, @, &, $, or !), the optional [As type] expression is not allowed. For example, the following
are allowed:

Public foo As integer
Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option
Base statement has been encountered). Up to 60 array dimensions are allowed. The total size of an
array (not counting space for strings) is limited to 64K. Dynamic arrays are declared by not specifying
any bounds:

Public a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type,
or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private, then it
will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword Global is also supported. It has the same meaning as Public.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Public name As String * length

where length is a literal number specifying the string's length.

All declared variables are given initial values, as described in the following table:
371

PushButton
Sharing Variables
When sharing variables, you must ensure that the declarations of the shared variables are the same in
each macro that uses those variables. If the public variable being shared is a user-defined structure,
then the structure definitions must be exactly the same.

Example Const crlf = Chr$(13) + Chr$(10)

Public x#, ar#
Sub Area()
 ar# = (x# ^ 2) * Pi
End Sub

Sub Main
 mesg = "The area of the ten circles are:" & crlf
 For x# = 1 To 10
 Area
 mesg = mesg & x# & ": " & ar# & Basic.Eoln$
 Next x#
 Session.Echo mesg
End Sub

See Also Macro Control and Compilation on page 6

PushButton
Syntax PushButton x,y,width,height,title$ [,.Identifier]

Description Defines a push button within a dialog template. Choosing a push button causes the dialog to close
(unless the dialog function redefines this behavior). This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements).

Data Type Initial Value
Integer 0
Long 0
Double 0.0
Single 0.0
Currency 0.0
Date December 31, 1899 00:00:00
Object Nothing
Boolean False
Variant Empty
String "" (zero-length string)
User-defined type Structure elements are given the default values listed above.
Arrays Array elements are given the default values listed above.
372

Put
The PushButton statement accepts the following parameters:

If a push button is the default button, it can be selected by pressing Enter on a nonbutton control.

A dialog template must contain at least one OKButton, CancelButton, or PushButton statement
(otherwise, the dialog cannot be dismissed).

Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example Sub Main
 Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"
 OKButton 8,4,40,14,.OK
 CancelButton 8,24,40,14,.Cancel
 PushButton 8,44,40,14,"1",.Button1
 PushButton 8,64,40,14,"2",.Button2
 PushButton 56,4,40,14,"3",.Button3
 PushButton 56,24,40,14,"4",.Button4
 PushButton 56,44,40,14,"5",.Button5
 PushButton 56,64,40,14,"6",.Button6
 End Dialog
 Dim ButtonDialog As ButtonTemplate
 WhichButton% = Dialog(ButtonDialog)
 MsgBox "You pushed button " & WhichButton%
End Sub

See Also User Interaction on page 9

Put
Syntax Put [#]filenumber, [recordnumber], variable

Description Writes data from the specified variable to a Random or Binary file. The Put statement accepts the
following parameters:

Parameter Description
x, y Integer coordinates specifying the position of the control (in dialog units) relative

to the upper left corner of the dialog.
width, height Integer coordinates specifying the dimensions of the control in dialog units.
title$ String containing the text that appears within the push button. This text may con-

tain an ampersand character to denote an accelerator letter, such as "&Save" for
Save.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable).
373

Put
The variable parameter is the name of any variable of any of the following types:

Parameter Description
filenumber Integer representing the file to be written to. This is the same value as

returned by the Open statement.
Recordnumber Long specifying which record is to be written to the file. For Binary files,

this number represents the first byte to be written starting with the beginning
of the file (the first byte is 1). For Random files, this number represents the
record number starting with the beginning of the file (the first record is 1).
This value ranges from 1 to 2147483647. If the recordnumber parameter is
omitted, the next record is written to the file (if no records have been written
yet, then the first record in the file is written). When recordnumber is omit-
ted, the commas must still appear, as in the following example:

Put #1,,recvar

If recordlength is specified, it overrides any previous change in file posi-
tion specified with the Seek statement.

Variable Type File Storage Description
Integer 2 bytes are written to the file.
Long 4 bytes are written to the file.
String (variable-length) In Binary files, variable-length strings are written by first determin-

ing the specified string variable's length, then writing that many
bytes to a file. In Random files, variable-length strings are written by
first writing a 2-byte length, then writing that many characters to the
file.

String (fixed-length) Fixed-length strings are written to Random and Binary files in the
same way: the number of characters equal to the string's declared
length are written.

Double 8 bytes are written to the file (IEEE format),
Single 4 bytes are written to the file (IEEE format).
Date 8 bytes are written to the file (IEEE double format).
Boolean 2 bytes are written to the file (either –1 for True or 0 for False).
Variant A 2-byte VarType is written to the file followed by the data as

described above. With variants of type 10 (user-defined errors), the
2-byte VarType is followed by a 2-byte unsigned integer (the error
value), which is then followed by 2 additional bytes of information.
The exception is with strings, which are always preceded by a 2-byte
string length.
374

Pv
With Random files, a runtime error will occur if the length of the data being written exceeds the record
length (specified as the reclen parameter with the Open statement). If the length of the data being
written is less than the record length, the entire record is written along with padding (whatever data
happens to be in the I/O buffer at that time). With Binary files, the data elements are written
contiguously: they are never separated with padding.

Example Sub Main
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Put #1,x,r%
 Next x
 Close
 Open "test.dat" For Random Access Read As #1
 For x = 1 To 10
 Get #1,x,r%
 mesg = mesg & "Record " & x & " is: " & r% & Basic.Eoln$
 Next x
 Session.Echo mesg
 Close
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

Pv
Syntax Pv(rate, nper, pmt, fv, due)

Description Calculates the present value of an annuity based on future periodic fixed payments and a constant rate
of interest. The Pv function requires the following named parameters:

User-defined types Each member of a user-defined data type is written individually. In
Binary files, variable-length strings within user-defined types are
written by first writing a 2-byte length followed by the string's con-
tent. This storage is different than variable-length strings outside of
user-defined types. When writing user-defined types, the record
length must be greater than or equal to the combined size of each ele-
ment within the data type.

Arrays Arrays cannot be written to a file using the Put statement.
Objects Object variables cannot be written to a file using the Put statement.

Variable Type File Storage Description
375

Pv
The rate and nper parameters must be expressed in the same units. If rate is expressed in months,
then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example demonstrates the present value (the amount you'd have to pay now) for a $100,000
annuity that pays an annual income of $5,000 over 20 years at an annual interest rate of 10%.

Sub Main
 pval = Pv(.1,20,-5000,100000,1)
 Session.Echo "The present value is: " & Format(pval,"Currency")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Parameter Description
rate Double representing the interest rate per period. When used with monthly payments,

be sure to normalize annual percentage rates by dividing them by 12.
Nper Double representing the total number of payments in the annuity.
Pmt Double representing the amount of each payment per period.
Fv Double representing the future value of the annuity after the last payment has been

made. In the case of a loan, the future value would be 0.
Due Integer indicating when the payments are due for each payment period. A 0 specifies

payment at the end of each period, whereas a 1 specifies payment at the start of each
period.
376

R

Random
Syntax Random(min,max)

Description Returns a Long value greater than or equal to min and less than or equal to max. Both the min and max
parameters are rounded to Long. A runtime error is generated if min is greater than max.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Randomize 'Start with new random seed.
 For x = 1 To 10
 y = Random(0,100) 'Generate numbers.
 mesg = mesg & y & crlf
 Next x
 Session.Echo "Ten numbers for the lottery: " & crlf & mesg
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Randomize
Syntax Randomize [number]

Description Initializes the random number generator with a new seed. If number is not specified, then the current
value of the system clock is used.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Randomize 'Start with new random seed.
 For x = 1 To 10
 y = Random(0,100) 'Generate numbers.
 mesg = mesg + Str(y) + crlf
 Next x
 Session.Echo "Ten numbers for the lottery: " & crlf & mesg
End Sub
377

Rate
See Also Numeric, Math, and Accounting Functions on page 5

Rate
Syntax Rate(nper, pmt, pv, fv, due, guess)

Description Returns the rate of interest for each period of an annuity. An annuity is a series of fixed payments made
to an insurance company or other investment company over a period of time. Examples of annuities
are mortgages and monthly savings plans. The Rate function requires the following named
parameters:

Positive numbers represent cash received, whereas negative values represent cash paid out.

The value of Rate is found by iteration. It starts with the value of guess and cycles through the
calculation adjusting guess until the result is accurate within 0.00001 percent. After 20 tries, if a result
cannot be found, Rate fails, and the user must pick a better guess.

Example This example calculates the rate of interest necessary to save $8,000 by paying $200 each year for 48
years. The guess rate is 10%.

Sub Main
 r# = Rate(48,-200,8000,0,1,.1)
 Session.Echo "The rate required is: " & Format(r#,"Percent")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

ReadIni$
Syntax ReadIni$(section$,item$[,filename$])

Parameter Description
nper Double representing the total number of payments in the annuity.
Pmt Double representing the amount of each payment per period.
Pv Double representing the present value of your annuity. In a loan situation, the present

value would be the amount of the loan.
Fv Double representing the future value of the annuity after the last payment has been

made. In the case of a loan, the future value would be zero.
Due Integer specifying when the payments are due for each payment period. A 0 indicates

payment at the end of each period, whereas a 1 indicates payment at the start of each
period.

Guess Double specifying a guess as to the value the Rate function will return. The most com-
mon guess is .1 (10 percent).
378

ReadIniSection
Description Returns a String containing the specified item from an INI file. The ReadIni$ function takes the
following parameters:

The maximum length of a string returned by this function is 4096 characters.

If the name of the INI file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

See Also Drive, Folder, and File Access on page 3

ReadIniSection
Syntax ReadIniSection section$,ArrayOfItems()[,filename$]

Description Fills an array with the item names from a given section of the specified INI file. The ReadIniSection
statement takes the following parameters:

Parameter Description
section$ String specifying the section that contains the desired variable, such as "windows".

Section names are specified without the enclosing brackets.
item$ String specifying the item whose value is to be retrieved.
Filename$ String containing the name of the INI file to read.

Parameter Description
section$ String specifying the section that contains the desired variables, such as "win-

dows". Section names are specified without the enclosing brackets.
ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants. The

array can be either dynamic or fixed. If ArrayOfItems() is dynamic, then it will
be redimensioned to exactly hold the new number of elements. If there are no
elements, then the array will be redimensioned to contain no dimensions. You
can use the LBound, UBound, and ArrayDims functions to determine the num-
ber and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements are
placed into the array. If there are fewer elements than will fit in the array, then
the remaining elements are initialized to zero-length strings (for string arrays) or
empty (for variant arrays). A runtime error results if the array is too small to
hold the new elements.

Filename$ String containing the name of an INI file.
379

Redim
On return, the ArrayOfItems() parameter will contain one array element for each variable in the
specified INI section. The maximum combined length of all the entry names returned by this function
is limited to 32K.

If the name of the INI file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

Example Sub Main
 Dim items() As String
 ReadIniSection "windows",items$
 Session.Echo "INI Items:<CR><LF>"
 For i=0 to UBound(items$)
 Session.Echo item$(i) & "<CR><LF>"
 Next i
End Sub

See Also Drive, Folder, and File Access on page 3

Redim
Syntax Redim [Preserve] variablename ([subscriptRange]) [As type],...

Description Redimensions an array, specifying a new upper and lower bound for each dimension of the array. The
variablename parameter specifies the name of an existing array (previously declared using the Dim
statement) or the name of a new array variable. If the array variable already exists, then it must
previously have been declared with the Dim statement with no dimensions, as shown in the following
example:

Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each dimension of the
array using the following syntax:

[lower To] upper [,[lower To] upper]...

If subscriptRange is not specified, then the array is redimensioned to have no elements.

If lower is not specified, then 0 is used (or the value set using the Option Base statement). A runtime
error is generated if lower is less than upper. Array dimensions must be within the following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be declared using any
fundamental data type, user-defined data types, and objects.
380

Rem
Redimensioning an array erases all elements of that array unless the Preserve keyword is specified.
When this keyword is specified, existing data in the array is preserved where possible. If the number
of elements in an array dimension is increased, the new elements are initialized to 0 (or empty string).
If the number of elements in an array dimension is decreased, then the extra elements will be deleted.
If the Preserve keyword is specified, then the number of dimensions of the array being redimensioned
must either be zero or the same as the new number of dimensions.

Example Sub Main
 Dim fl$()
 FileList fl$,"*.*"
 count = Ubound(fl$)
 Redim nl$(Lbound(fl$) To Ubound(fl$))
 For x = 1 to count
 nl$(x) = fl(x)
 Next x
 Session.Echo "The last element of the new array is: " & nl$(count)
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Rem
Syntax Rem text

Description Causes the compiler to skip all characters on that line.

Example Sub Main
 Rem This is a line of comments that serves to illustrate the
 Rem workings of the code. You can insert comments to make it
 Rem more readable and maintainable in the future.
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4; Macro Control and Compilation on
page 6

Reset
Syntax Reset

Description Closes all open files, writing out all I/O buffers.

Example Sub Main
 Open "test.dat" for Output Access Write as # 1
 Reset
 Kill "test.dat"
 If FileExists("test.dat") Then
 Session.Echo "The file was not deleted."
 Else
 Session.Echo "The file was deleted."
 End If
End Sub
381

Resume
See Also Drive, Folder, and File Access on page 3

Resume
Syntax Resume {[0] | Next | label}

Description Ends an error handler and continues execution.

The form Resume 0 (or simply Resume by itself) causes execution to continue with the statement that
caused the error.

The form Resume Next causes execution to continue with the statement following the statement that
caused the error.

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing this statement, new errors
can be generated and trapped as normal.

Example This example accepts two integers from the user and attempts to multiply the numbers together. If
either number is larger than an integer, the program processes an error routine and then continues
program execution at a specific section using Resume <label>. Another error trap is then set using
Resume Next. The new error trap will clear any previous error branching and also tell the program to
continue execution of the program even if an error is encountered.

Sub Main
 Dim a%, b%, x%
Again:
 On Error Goto Overflow
 a% = InputBox("Enter 1st integer to multiply","Enter Number")
 b% = InputBox("Enter 2nd integer to multiply","Enter Number")
 On Error Resume Next 'Continue program execution at
 x% = a% * b% 'next line if an error occurs.
 if err = 0 then
 Session.Echo x%
 else
 Session.Echo a% & " * " & b% & " cause an overflow!"
 end if
 Exit Sub
Overflow: 'Error handler.
 Session.Echo "You've entered a noninteger value. Try again!"
 Resume Again
End Sub

See Also Macro Control and Compilation on page 6

Return
Syntax Return
382

Right, Right$, RightB, RightB$
Description Transfers execution control to the statement following the most recent GoSub. A runtime error results
if a Return statement is encountered without a corresponding GoSub statement.

Example Sub Main
 GoSub SubTrue
 Session.Echo "The Main routine continues here."
 Exit Sub
SubTrue:
 Session.Echo "This message is generated in the subroutine."
 Return
 Exit Sub
End Sub

See Also Macro Control and Compilation on page 6

Right, Right$, RightB, RightB$
Syntax Right[$](string, length)

RightB[$](string, length)

Description Returns the rightmost length characters (for Right and Right$) or bytes (for RightB and RightB$)
from a specified string. The Right$ and RightB$ functions return a String, whereas the Right and
RightB functions return a String variant. These functions take the following named parameters:

The RightB and RightB$ functions are used to return byte data from strings containing byte data.

Example Sub Main
 lname$ = "WILLIAMS"
 x = Len(lname$)
 rest$ = Right$(lname$,x - 1)
 fl$ = Left$(lname$,1)
 lname$ = fl$ & LCase$(rest$)
 Session.Echo "The converted name is: " & lname$
End Sub

See Also Character and String Manipulation on page 2

RmDir
Syntax RmDir path

Description Removes the directory specified by the String contained in path.

Parameter Description
string String from which characters are returned. A runtime error is generated if string is

null.
Length Integer specifying the number of characters or bytes to return. If length is greater than

or equal to the length of the string, then the entire string is returned. If length is 0,
then a zero-length string is returned.
383

Rnd
Note Removing a directory that is the current directory on that drive causes unpredictable side effects. For
example, consider the following statements:

MkDir "Z:\JUNK"
ChDir "Z:\JUNK"
RmDir "Z:\JUNK"

If drive Z is a network drive, then some networks will delete the directory and unmap the drive without
generating a macro error. If drive Z is a local drive, the directory will not be deleted, nor will the macro
receive an error.

Different file systems exhibit similar strange behavior in these cases.

Example Sub Main
 On Error Goto ErrMake
 MkDir("test01")
 On Error Goto ErrRemove
 RmDir("test01")
ErrMake:
 MsgBox "The directory could not be created."
 Exit Sub
ErrRemove:
 MsgBox "The directory could not be removed."
 Exit Sub
End Sub

See Also Drive, Folder, and File Access on page 3

Rnd
Syntax Rnd[(number)]

Description Returns a random Single number between 0 and 1. If number is omitted, the next random number is
returned. Otherwise, the number parameter has the following meaning:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 For x = -1 To 8
 y! = Rnd(1) * 100
 mesg = mesg & x & " : " & y! & crlf
 Next x
 Session.Echo mesg & "Last form: " & Rnd
End Sub

If Then
number < 0 Always returns the same number.
Number = 0 Returns the last number generated.
Number > 0 Returns the next random number.
384

RSet
See Also Numeric, Math, and Accounting Functions on page 5

RSet
Syntax RSet destvariable = source

Description Copies the source string source into the destination string destvariable. If source is shorter in length
than destvariable, then the string is right-aligned within destvariable and the remaining characters
are padded with spaces. If source is longer in length than destvariable, then source is truncated,
copying only the leftmost number of characters that will fit in destvariable. A runtime error is
generated if source is Null.

The destvariable parameter specifies a string or variant variable. If destvariable is a variant
containing empty, then no characters are copied. If destvariable is not convertible to a string, then a
runtime error occurs. A runtime error results if destvariable is null.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim mesg,tmpstr$
 tmpstr$ = String$(40, "*")
 mesg = "Here are two strings that have been right-" & crlf
 mesg = mesg & "and left-justified in a 40-character string."
 mesg = mesg & crlf & crlf
 RSet tmpstr$ = "Right->"
 mesg = mesg & tmpstr$ & crlf
 LSet tmpstr$ = "<-Left"
 mesg = mesg & tmpstr$ & crlf
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2

RTrim, RTrim$
See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$; Character and String Manipulation on page 2.
385

S

SaveFilename$
Syntax SaveFilename$[([title$ [,[extensions$] [helpfile,context]]])]

Description Displays a dialog that prompts the user to select from a list of files and returns a String containing the
full path of the selected file. The SaveFilename$ function accepts the following parameters:

The SaveFilename$ function returns a full pathname of the file that the user selects. A zero-length
string is returned if the user selects Cancel. If the file already exists, then the user is prompted to
overwrite it.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

The extensions$ parameter must be in the following format:

description:ext[,ext][;description:ext[,ext]]...

Parameter Description
title$ String containing the title that appears on the dialog's caption. If this string is

omitted, then "Save As" is used.
extensions$ String containing the available file types. If this string is omitted, then all files

are used.
helpfile Name of the file containing context-sensitive help for this dialog. If this

parameter is specified, then context must also be specified.
Context Number specifying the ID of the topic within helpfile for this dialog's help.

If this parameter is specified, then helpfile must also be specified.
387

Second
For example, the following are valid extensions$ specifications:

"All Files:*"
"Documents:*.TXT,*.DOC"
"All Files:*;Documents:*.TXT,*.DOC"

Example Sub Main
 e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
 f$ = SaveFilename$("Save Picture",e$)
 If Not f$ = "" Then
 MsgBox "User choose to save file as: " + f$
 Else
 MsgBox "User canceled."
 End If
End Sub

See Also Drive, Folder, and File Access on page 3; User Interaction on page 9

Second
Syntax Second(time)

Description Returns the second of the day encoded in the specified time parameter. The value returned is an
Integer between 0 and 59 inclusive. The time parameter is any expression that converts to a Date.

Example Sub Main
 xt# = TimeValue(Time$())
 xh# = Hour(xt#)
 xm# = Minute(xt#)
 xs# = Second(xt#)
 Session.Echo "The current time is: " & CStr(xh#) & ":" & CStr(xm#) _
 & ":" & CStr(xs#)
End Sub

See Also Time and Date Access on page 10

Seek (function)
Syntax Seek(filenumber)

Description Returns the position of the file pointer in a file relative to the beginning of the file. The filenumber
parameter is a number that refers to an open file—the number passed to the Open statement. The value
returned depends on the mode in which the file was opened:

Placeholder Description
description Specifies the grouping of files for the user, such as All Files.
Ext Specifies a valid file extension, such as *.BAT or *.?F?.
388

Seek (statement)
The value returned is a Long between 1 and 2147483647, where the first byte (or first record) in
the file is 1.

Example Sub Main
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Put #1,x,r%
 Next x
 y = Seek(1)
 Session.Echo "The current file position is: " & y
 Close
End Sub

See Also Drive, Folder, and File Access on page 3

Seek (statement)
Syntax Seek [#] filenumber,position

Description Sets the position of the file pointer within a given file such that the next read or write operation will
occur at the specified position. The Seek statement accepts the following parameters:

A file can be extended by seeking beyond the end of the file and writing data there.

Example Sub Main
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 rec$ = "Record#: " & x
 Put #1,x,rec$
 Next x
 Close

File Mode Returns
Input Byte position for the next read
Output Byte position for the next write
Append Byte position for the next write
Random Number of the next record to be written or read
Binary Byte position for the next read or write

Parameter Description
filenumber Integer used to refer to the open file—the number passed to the Open statement.
Position Long that specifies the location within the file at which to position the file pointer.

The value must be between 1 and 2147483647, where the first byte (or record num-
ber) in the file is 1. For files opened in either Binary, Output, Input, or Append
mode, position is the byte position within the file. For Random files, position is
the record number.
389

Select...Case
 Open "test.dat" For Random Access Read As #1
 Seek #1,9
 Get #1,,rec$
 Session.Echo "The ninth record = " & x
 Close
 Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 3

Select...Case
Syntax Select Case testexpression

[Case expressionlist
 [statement_block]]
[Case expressionlist
 [statement_block]]
 .
 .
[Case Else
 [statement_block]]
End Select

Description Used to execute a block of statements depending on the value of a given expression. The Select Case
statement has the following parts:

Multiple expression ranges can be used within a single Case clause. For example:

Case 1 to 10,12,15, Is > 40

Only the statement_block associated with the first matching expression will be executed. If no
matching statement_block is found, then the statements following the Case Else will be executed.

A Select...End Select expression can also be represented with the If...Then expression. The use
of the Select statement, however, may be more readable.

Part Description
testexpression Any numeric or string expression.
Statement_block Any group of statements. If the testexpression matches any of the expres-

sions contained in expressionlist, then this statement block will be exe-
cuted.

Expressionlist A comma-separated list of expressions to be compared against testexpres-
sion using any of the following syntax:

expression [,expression]...expression To expression Is
relational_operator expression

The resultant type of expression in expressionlist must be the same as that
of testexpression.
390

SelectBox
Example 'This example uses the Select...Case statement to return the
'type of key pressed.
Sub Main

Msgbox "Press any key.",ebOKOnly, "Select Case Example"
Session.KeyWait.Timeout = 10

Session.KeyWait.Start
KeyPress% = Session.KeyWait.Value

If Session.KeyWait.Status = smlWAITTIMEOUT Then
 MsgBox "Timeout period has expired."
Else
 Select Case KeyPress%
 Case 48 to 57
 TypeofKey$ = "number"
 Case 65 to 90, 97 to 122
 TypeofKey$ = "letter"
 Case Else
 TypeofKey$ = "non-alphanumeric"
 End Select
 MsgBox "The detected keystroke was a " & TypeofKey$ & "."
End If

End Sub

See Also Macro Control and Compilation on page 6

SelectBox
Syntax SelectBox([title],prompt,ArrayOfItems [,helpfile,context])

Description Displays a dialog that allows the user to select from a list of choices and returns an Integer containing
the index of the item that was selected. The SelectBox statement accepts the following parameters:

Parameter Description
title Title of the dialog. This can be an expression convertible to a string. A runtime

error is generated if title is null. If title is missing, then the default title is used.
prompt Text to appear immediately above the listbox containing the items. This can be an

expression convertible to a string. A runtime error is generated if prompt is null.
ArrayOfItems Single-dimensioned array. Each item from the array will occupy a single entry in

the listbox. A runtime error is generated if ArrayOfItems is not a single-dimen-
sioned array. ArrayOfItems can specify an array of any fundamental data type
(structures are not allowed). null and empty values are treated as zero-length
strings.

Helpfile Name of the file containing context-sensitive help for this dialog. If this parameter
is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's help. If this
parameter is specified, then helpfile must also be specified.
391

SendKeys
The value returned is an Integer representing the index of the item in the listbox that was selected, with
the first item index to the lower bound of the array. If the lower bound of the array is 0 (the default),
then the first item in the array is index 0, and a return value of -1 indicates that the user clicked Cancel.
If the lower bound of the array is 1 (set with the Option Base statement), then the first item in the array
is index 1, and a return value of 0 indicates that the user clicked Cancel.

Example Sub Main
 Dim a$()
 AppList a$
 result% = SelectBox("Picker","Pick an application:",a$)
 If Not result% = -1 then
 Msgbox "User selected: " & a$(result%)
 Else
 Msgbox "User canceled"
 End If
End Sub

See Also Option Base on page 354; User Interaction on page 9

SendKeys
Syntax SendKeys string [, [wait] [,delay]]

Description Sends the specified keys to the active application, optionally waiting for the keys to be processed
before continuing. If you're running the macro within the macro editor, SendKeys sends keystrokes to
the editor. This statement is intended for use in applications; to send data to a host, use Session.Send
instead.

The SendKeys statement accepts the following named parameters:

The SendKeys statement will wait for a prior SendKeys to complete before executing.

Specifying Keys
To specify any key on the keyboard, simply use that key, such as "a" for lowercase a, or "A" for
uppercase a. Sequences of keys are specified by appending them together: "abc" or "dir /w". Some
keys have special meaning and are therefore specified in a special way—by enclosing them within

Parameter Description
string String containing the keys to be sent. The format for string is described below.
Wait Boolean value. If True, then the compiler waits for the keys to be completely pro-

cessed before continuing. The default value is False, which causes the compiler to
continue macro execution while SendKeys finishes.

Delay Integer specifying the number of milliseconds devoted for the output of the entire
string parameter. It must be within the range 0 <= delay <= 32767. For example, if
delay is 5000 (5 seconds) and the string parameter contains ten keys, then a key will
be output every 1/2 second. If unspecified (0r 0), the keys will play back at full speed.
392

SendKeys
braces. For example, to specify the percent sign, use "{%}". The following table shows the special
keys:

Keys that are not displayed when you press them are also specified within braces, such as {Enter} or
{Up}. A list of these keys follows:

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+", "^", and "%" respectively:

To specify a modifier key combined with a sequence of consecutive keys, group the key sequence
within parentheses, as in the following example:

Key Special Meaning Example
+ Shift "+{F1}" Shift+F1
^ Ctrl "^a" Ctrl+A
~ Shortcut for Enter "~" Enter
% Alt "%F" Alt+F
[] No special meaning "{[}" Open bracket
{} Used to enclose special keys "{Up}" Up arrow
() Used to specify grouping "^(ab)" Ctrl+A, Ctrl+B

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

{Right} {Tab} {Up} {F1} {Scroll Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

For Key Combination Use
Shift+Enter "+{Enter}"

Ctrl+C "^c"

Alt+F2 "%{F2}"
393

Session (object)
Use "~" as a shortcut for embedding Enter within a key sequence:

To embed quotation marks, use two quotation marks in a row:

Key sequences can be repeated using a repeat count within braces:

Example Sub Main
 id = Shell("Notepad.exe")
 AppActivate "Notepad"
 SendKeys "Hello, Notepad." 'Write some text.
 Sleep 2000
 SendKeys "%fs" 'Save file (simulate Alt+F, S keys).
 Sleep 2000
 SendKeys "name.txt{ENTER}" 'Enter name of new file to save.
 AppClose "Notepad"
End Sub

See Also Host Connections on page 5

Session (object)
The Session object gives you access to session-specific aspects of SmarTerm, including emulation
settings and functions, host data access and capture, and basic host control.

Session.Application
Syntax Session.Application

For Key Combination Use
Shift+A, Shift+B "+(abc)"

Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

For Key Combination Use
a, b, Enter, d, e "ab~de"

Enter, Enter "~~"

For Key Combination Use
"Hello" ""Hello""

a"b"c "a""b""c"

For Key Combination Use
Ten "a" keys "{a 10}"

Two Enter keys "{Enter 2}"
394

Session (object)
Description Returns the session's application object.

Example Dim App as Object
Set App = Session.Application

See Also Application and Session Features on page 7

Session.AutoWrap
VT, SCO, ANSI, and DG sessions only

Syntax Session.AutoWrap

Description Returns or sets the session’s autowrap state (boolean)

Example Sub Main
 Dim AutoWrapState as Boolean
 AutoWrapState = Session.AutoWrap
 Session.AutoWrap = False
End Sub

See Also Application and Session Features on page 7

Session.Blink
Syntax Session.Blink

VT, SCO, ANSI, and DG sessions only
Description Returns or sets the blink attribute of the display presentation (boolean)

Example Sub Main
 Dim BlinkState as Boolean
 BlinkState = Session.Blink
 Session.Blink = True
End Sub

See Also Application and Session Features on page 7

Session.Bold
VT, SCO, ANSI, and DG sessions only

Syntax Session.Bold

Description Returns or sets the bold attribute of the display presentation (boolean).

Example Sub Main
 Dim BoldState as Boolean
 BoldState = Session.Bold
 Session.Bold = False
End Sub

See Also Application and Session Features on page 7
395

Session (object)
Session.BufferFormatted
3270 and 5250 sessions only

Syntax Session.BufferFormatted

Description Returns True if the display buffer is formatted – if it contains any field definitions (boolean).

Example Sub Main
 Dim BufForm as Boolean

 BufForm = Session.BufferFormatted
 If BufForm = True Then
 MsgBox "Buffer is formatted"
 End If
End Sub

See Also Application and Session Features on page 7

Session.BufferModified
3270 and 5250 sessions only

Syntax Session.BufferModified

Description Returns True if the display buffer has been modified (boolean). Possible values are:

Example Sub Main
 Dim BufForm as Boolean

 BufForm = Session.BufferModified
 If BufMod = True Then
 MsgBox "Buffer has been modified"
 End If
End Sub

See Also Application and Session Features on page 7

Session.Caption
Syntax Session.Caption

Description Returns or sets SmarTerm's session window caption (string).

Value Definition
True Buffer is formatted
False All other cases.

Value Description
True Buffer has been modified (any MDT bits set)
False All other cases.
396

Session (object)
Example Sub Main
 Dim CurrentCaption as String
 CurrentCaption = Session.Caption
 Session.Caption = "DG Session"
End Sub

See Also Application and Session Features on page 7

Session.Capture
VT, SCO, ANSI, and DG sessions only

Syntax Session.Capture(filename)

where filename is the name of the file to write captured text (string).

Description Returns the completion status of the start-capture operation (boolean). Starts a capture operation,
which writes incoming host data into the specified file.

Example Sub Main
 Dim retval as Boolean
' Start a capture operation.
 Session.CaptureFileHandling = smlOVERWRITE
 retval = Session.Capture("FromHost.txt")
 If retval = FALSE Then
 Session.Echo "Error: Can't create file in Session.Capture"
 End
 End If
' Use LockStep to insure that the host and the PC stay in sync
 Dim LockSession as Object
 Set LockSession = Session.LockStep
 LockSession.Start
' Cause the host to start sending the desired information.
 Session.Send "TYPE REPORT1" + Chr$(13)
' Remain in capture mode until the ending string is detected from the host.
 Session.StringWait.MatchString = "End of Report"
 Session.StringWait.Start
' Terminate the capture.
 Session.EndCapture
' Cancel the LockStep state
 Set LockSession = Nothing
End Sub

See Also Drive, Folder, and File Access on page 3; Application and Session Features on page 7

Session.CaptureFileHandling
VT, SCO, ANSI, and DG sessions only

Syntax Session.CaptureFileHandling

Description Returns or sets the capture state (integer). Possible values are:
397

Session (object)
Example See the example for Session.Capture

See Also Drive, Folder, and File Access on page 3; Application and Session Features on page 7

Session.Circuit
Syntax Session.Circuit

Description Returns the Circuit object for the session. The Session.Circuit property is intended for use by
external VBA controllers. The predefined Circuit object already exists for use by internal macros.

Example Sub Main
Dim MyCircuit as Object
MyCircuit = Session.Circuit
End Sub

See Also Host Connections on page 5; Application and Session Features on page 7; Objects on page 10

Session.ClearScreen
Syntax Session.ClearScreen

Description Clears the SmarTerm screen. If the current session is text based (VT, ANSI, SCO, DG, or Wyse), it
clears all text pages, resets graphic rendition and character attributes, resets all margins, performs a
soft reset, and moves the cursor to the home position of the first page. If the current session is form-
based (IBM 3270 or IBM 5250), the command clears all input fields.

Example Sub Main
 Session.ClearScreen
End Sub

See Also Application and Session Features on page 7

Session.Close
Syntax Session.Close

Description Closes the SmarTerm session.

Example Sub Main
 Dim nMsg as integer
 nMsg = Session.Echo ("Closing the current session. OK to proceed?", ebYesNo)
 If nMsg = ebYes Then

Value Constant Meaning
0 smlOVERWRITE Overwrite an existing file.
1 smlAPPEND Append to an existing file.
2 smlPROMPTOVAPP Prompt whether to overwrite or append.
398

Session (object)
 Session.Close
 End If
End Sub

See Also Application and Session Features on page 7

Session.Collect (object)
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect

Description Returns an object supporting access to SmarTerm’s Collect feature. The Session.Collect object is
used to extract data from the host-to-terminal data stream. There is one Collect object per-session. Its
methods and properties can be divided into three categories: those used to initialize the wait object,
those used to activate a wait, and those used to check the results of the wait. These categories are as
follows:

Initialization • Session.Collect.Reset

• Session.Collect.TermString

• Session.Collect.TermStringExact

• Session.Collect.Timeout

• Session.Collect.TimeoutMS

• Session.Collect.MaxCharacterCount

• Session.Collect.Consume

Activation • Session.Collect.Start

Results • Session.Collect.Status

• Session.Collect.CollectedCharacters

• Session.Collect.CollectedString

Note The Collect object automatically resets to its default (empty) state the first time any of its properties
is set or any of its methods called after a previous Collect operation has completed.

In certain cases, it may be necessary to use the Lockstep feature to insure that the Collect object is
presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example Sub Main
 Dim Report as String
 Session.Collect.TermString = "EndOfBlock"
 Session.Collect.Timeout = 100
 Session.Collect.Start
 If Session.Collect.Status = smlWAITSUCCESS Then
 MsgBox "CollectedCharacters: " & _
 str$(Session.Collect.CollectedCharacters)
399

Session (object)
 MsgBox "Session.Collect.CollectedString: " & _
 Session.Collect.CollectedString
 Else
 MsgBox "Timeout exceeded"
 End If
End Sub

See Also Character and String Manipulation on page 2; Application and Session Features on page 7; Objects on
page 10

Session.Collect.CollectedCharacters
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.CollectedCharacters

Description Returns the number of characters in the collected string after a timeout condition or termination string
match occurs (integer).

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation on page 2; Application and Session Features on page 7

Session.Collect.CollectedString
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.CollectedString

Description Returns the collected string after a timeout condition or termination string match occurs (string).

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation on page 2; Application and Session Features on page 7

Session.Collect.Consume
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.Consume

Description Returns or sets whether collected characters are presented to the display presentation (boolean). If this
property is set True, the characters collected are not passed on to the display presentation.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features
400

Session (object)
Session.Collect.MaxCharacterCount
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.MaxCharacterCount

Description Returns or sets the maximum number of characters to collect before the collect operation terminates
(integer).

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.Reset
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.Reset

Description Resets the wait object’s properties to their default values. The Collect object automatically resets to
its default (empty) state when any of its properties is set or any of its methods is called after a previous
Collect operation has completed.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.Start
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.Start

Description Returns a status value that indicates the reason that the wait ended (integer). This method activates the
wait object, returning only when the specified conditions have been met. The status of the Collect
operation is returned by the object’s Start method and is also available through its Status property.
The possible values are shown in the table below.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
401

Session (object)
Session.Collect.Status
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.Status

Description Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the Collect operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.TermString
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.TermString

Description Sets a pattern which, if detected in the host to terminal data stream during the course of a collect
operation, terminates it. The comparison is case-insensitive. If case sensitivity is desired, set the
TermStringExact property instead. This property overrides any previously established terminating
pattern. If no terminating pattern is specified, no specific string terminates the collect operation.

Note This property is write-only.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.TermStringExact
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.TermStringExact

Description This property sets a pattern which, if detected in the host to terminal data stream during the course of
a collect operation, terminates it. The comparison is case-sensitive. If case sensitivity is not desired,
set the TermString property instead. This property overrides any previously established terminating
pattern. If no terminating pattern is specified, no specific string terminates the collect operation.

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
402

Session (object)
Note This property is write-only.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.Timeout
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.Timeout

Description Returns or sets the maximum number of seconds allowed for the collect operation (integer).

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Collect.TimeoutMS
VT, SCO, ANSI, and DG sessions only

Syntax Session.Collect.TimeoutMS

Description Sets the maximum number of milliseconds to allow for the collect operation (integer).

Note This property is write-only.

Example See the examples under Session.Collect (object).

See Also Character and String Manipulation; Application and Session Features

Session.Column
Syntax Session.Column

Description Returns or sets where the cursor is placed in the current SmarTerm session window.

Example Sub Main
 Dim CurrentCol as Integer
 CurrentCol = Session.Column
 Session.Column = CurrentCol + 10
End Sub

See Also Application and Session Features

Session.Concealed
VT, SCO, ANSI, and DG sessions only

Syntax Session.Concealed
403

Session (object)
Description Returns or sets the concealed attribute of the display presentation (boolean).

Example Sub Main
 Dim ConcealedState as Boolean
 ConcealedState = Session.Concealed
 Session.Concealed = True
End Sub

See Also Application and Session Features

Session.ConfigInfo
Syntax Session.ConfigInfo (infotype)

Description Returns the requested SmarTerm information (string). infotype specifies the type of information to
return (integer). The possible values are:

Example Sub Main
 Dim StwPath as String
 Dim InstPath as string
 StwPath = Session.ConfigInfo(smlSESSIONPATH)
 Session.Echo "SmarTerm session file is " & StwPath
 InstPath = Session.ConfigInfo(smlINSTALLPATH)
 Session.Echo "SmarTerm installation directory is " & InstPath
End Sub

See Also Application and Session Features

Session.Connected
Syntax Session.Connected

Description Returns a boolean representing the session's connection status. If True, a connection is established.

Example Sub Main
 Dim fConnected as Boolean
 fConnected = Session.Connected
 If fConnected Then
 Session.Echo "You are connected."
 End If
End Sub

See Also Host Connections; Application and Session Features

Value Constant Meaning
0 smlSESSIONPATH Full path of the SmarTerm session (STW) file
2 smlINSTALLPATH Full path to where SmarTerm is installed
404

Session (object)
Session.DialogView
3270 and 5250 sessions only

Syntax Session.DialogView

Description Returns or sets the session's DialogView state (Boolean), allowing you to toggle the DialogView
feature on or off.

Example Sub Main
' This example displays the current DialogView state
' and then toggles it.

 Dim fIsDialogView as Boolean
 Dim strDialogView as String

' Get the current state of DialogView and inform user
 fIsDialogView = Session.DialogView
 If fIsDialogView = TRUE then
 strDialogView = "The emulator is in DialogView mode"
 Else
 strDialogView = "The emulator is in Emulation mode"
 End If

' Now switch modes
 MsgBox strDialogView + " Switching modes..."
 Session.DialogView = Not fIsDialogView
End Sub

See Also User Interaction; Application and Session Features

Session.DoMenuFunction
Syntax Session.DoMenuFunction menuitem$

where menuitem$ is the menu item to trigger (string).

Note The list presented here is complete; the availability of the actual values varies depending on the
capability of the current session type.

Description Triggers a session-based menu action in SmarTerm. Possible values:

ConnectionClearPort FilePrint ToolsFTPDragAndDrop

ConnectionConnect FileSaveSession ToolsHotSpots

ConnectionDisconnect FileSaveSessionAs ToolsKeyboardMaps

ConnectionOnline FileSendMail ToolsMacro

ConnectionProperties PrinterCancel ToolsReceiveFile

ConnectionSendBreak PrinterFlush ToolsReplayCapturedFile

ConnectionStartTrace PrinterPA1 ToolsSendFile

EditClearHistory PrinterPA2 ToolsSmarTermButtons

EditClearScreen PrinterTest ToolsSmartMouse
405

Session (object)
Example Sub Main
 Session.DoMenuFunction "ToolsMacros"
End Sub

See Also Application and Session Features

Session.Echo
VT, SCO, ANSI, and DG sessions only

Syntax Session.Echo text$

where text$ is the text to display (string).

Description Displays text in the window as if it had been sent by the host.

Example Sub Main
 Session.Echo ""About to connect to host"
 Session.Echo "Please be ready to log in<CR><LF>"
End Sub

See Also Application and Session Features; User Interaction

Session.EmulationInfo
Syntax Session.EmulationInfo(infotype)

where infotype specifies the information to return (integer).

Description Returns either the emulation family or the emulation level (string). Possible values are:

Note Calling Session.EmulationInfo(smlEMUFAMILY) will return the string "NVT" if the actual terminal
type is yet to be established.

EditCopy PropertiesEmulation ToolsStartCapture

EditCopyScreenToHistory PropertiesFileTransferProperties ToolsStopCapture

EditCopyTable PropertiesFileTransferProtocol ToolsTriggers

EditCopyToFile PropertiesHardReset ViewDialogView

EditPaste PropertiesResetTerminal ViewHotSpots

EditPasteFromFile PropertiesSessionOptions ViewTerminal

EditSelectScreen PropertiesSoftReset ViewTriggers

EditSelectScreenAndHistory ToolsFTPCommandMode ViewSmarTermButtons

FileClose

Value Constant Meaning
0 smlEMUFAMILY The emulation family.
1 smlEMULEVEL The emulation level.
406

Session (object)
Example Sub Main
 Dim EmulationFamily as String
 Dim EmulationLevel as String
 EmulationFamily = Session.EmulationInfo(smlEMUFAMILY)
 Session.Echo "Your current session type is " & EmulationFamily
 EmulationLevel = Session.EmulationInfo(smlEMULEVEL)
 Session.Echo "Your current operating level is " & EmulationLevel
End Sub

See Also Application and Session Features

Session.EndCapture
VT, SCO, ANSI, and DG sessions only

Syntax Session.EndCapture

Description Stops a capture operation.

Example See the example for Session.Capture.

See Also Drive, Folder, and File Access; Application and Session Features

Session.EventWait (object)
3270 and 5250 sessions only

Syntax Session.EventWait

Description Returns an object supporting access to SmarTerm’s EventWait feature. The Session.EventWait
object is used to pause macro execution pending the receipt or issue of certain events. There is one
EventWait object per-session. Its methods and properties can be divided into three categories: those
used to initialize the wait object, those used to activate a wait, and those used to check the results of
the wait. These categories are as follows:

Initialization • Session.EventWait.EventType

• Session.EventWait.MaxEventCount

• Session.EventWait.Reset

• Session.EventWait.Timeout

• Session.EventWait.TimeoutMS

Activation • Session.EventWait.Start

Results • Session.EventWait.EventCount

• Session.EventWait.Status

The EventWait object automatically resets to its default (empty) state the first time any of its
properties is set or any of its methods called after a previous EventWait operation has completed.
407

Session (object)
In certain cases, it may be necessary to use the Lockstep feature to insure that the EventWait object
is presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example Sub Main
 ' Wait for a PAGERECEIVED event
 Session.Eventwait.EventType = smlPAGERECEIVED
 Session.Eventwait.Start
 ' Wait for a PAGESENT event
 Session.Eventwait.EventType = smlPAGESENT
 Session.Eventwait.Start
 ' Wait for 3 PAGERECEIVED events, or 30 seconds,
 ' whichever comes first.
 Session.Eventwait.EventType = smlPAGERECEIVED
 Session.EventWait.MaxEventCount = 3
 Session.EventWait.Timeout = 30
 Session.Eventwait.Start
 If Session.EventWait.Status = smlWAITTIMEOUT Then
 MsgBox "Timeout exceeded, Total events detected: " & _
 str$(Session.EventWait.EventCount)
 End If
End Sub

See Also Host Connections on page 5; Application and Session Features on page 7; Objects on page 10

Session.EventWait.EventCount
3270 and 5250 sessions only

Syntax Session.EventWait.EventCount

Description Returns the number of events that occurred during the wait period (integer).

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.EventType
3270 and 5250 sessions only

Syntax Session.EventWait.EventType

Description Returns or sets the type of event to wait for (integer). The possible values are:

Example See the examples under Session.EventWait (object).

Value Constant Meaning
1 smlPAGERECEIVED A form has been received from the host.
2 smlPAGESENT A form has been sent to the host.
408

Session (object)
See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.MaxeventCount
3270 and 5250 sessions only

Syntax Session.EventWait.MaxEventCount

Description Returns or sets the maximum number of events to allow to pass while a wait is active (integer).

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.Reset
3270 and 5250 sessions only

Syntax Session.EventWait.Reset

Description Resets the wait object’s properties to their default values. The EventWait object automatically resets
to its default (empty) state when any of its properties is set or any of its methods called after a previous
EventWait operation has completed.

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.Start
3270 and 5250 sessions only

Syntax Session.EventWait.Start

Description Returns a status value that indicates the reason that the wait ended (integer). Activates the wait object,
returning only when the specified conditions have been met. The status of the EventWait operation is
returned by the object’s Start method and is also available through its Status property. The possible
values are shown in the table below.

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXEVENTS Maximum events
-15 smlWAITERROR Miscellaneous error
409

Session (object)
Session.EventWait.Status
3270 and 5250 sessions only

Syntax Session.EventWait.Status

Description Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the EventWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.Timeout
3270 and 5250 sessions only

Syntax Session.EventWait.Timeout

Description Returns or sets the wait object’s timeout value, in seconds (integer).

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.EventWait.TimeoutMS
3270 and 5250 sessions only

Syntax Session.EventWait.TimeoutMS

Description Sets the wait object’s timeout value, in milliseconds (integer).

Example See the examples under Session.EventWait (object).

See Also Host Connections on page 5; Application and Session Features on page 7

Session.FieldEndCol
3270 and 5250 sessions only

Syntax Session.FieldEndCol

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXEVENTS Maximum events
-15 smlWAITERROR Miscellaneous error
410

Session (object)
Description Returns the ending column number (1 based) of the field where the cursor resides. On an unformatted
display, this property always defaults to the number of columns on the display page.

Note This property is read-only.

Example Sub Main
 Dim StartRow as Integer
 Dim StartCol as Integer
 Dim EndRow as Integer
 Dim EndCol as Integer
 Dim CurScn as String
 StartRow = Session.FieldStartRow
 StartCol = Session.FieldStartCol
 EndRow = Session.FieldEndRow
 EndCol = Session.FieldEndCol
 CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
 MsgBox "The entire current field where the cursor is placed " &_
 "is (EBCDIC)" & CurScn
End Sub

See Also Application and Session Features on page 7

Session.FieldEndRow
3270 and 5250 sessions only

Syntax Session.FieldEndRow

Description Returns the ending row number (1 based) of the field where the cursor resides. On an unformatted
display, this property always defaults to the number of lines on the display page.

Note This property is read-only.

Example Sub Main
 Dim StartRow as Integer
 Dim StartCol as Integer
 Dim EndRow as Integer
 Dim EndCol as Integer
 Dim CurScn as String
 StartRow = Session.FieldStartRow
 StartCol = Session.FieldStartCol
 EndRow = Session.FieldEndRow
 EndCol = Session.FieldEndCol
 CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
 MsgBox "The entire current field where the cursor is placed " &_
 "is (EBCDIC)" & CurScn
End Sub

See Also Application and Session Features on page 7
411

Session (object)
Session.FieldModified
5250 sessions only

Syntax Session.FieldModified

Description Returns whether the current field (the field that the cursor is in) has been modified (boolean).
Session.FieldModified returns one of the following values:

Example Sub Main
Dim fModified as Boolean
fModified = Session.FieldModified
If fModified Then
 MsgBox "Field is modified."
End If

Session.FieldStartCol
3270 and 5250 sessions only

Syntax Session.FieldStartCol

Description Returns the beginning column number (1 based) of the field where the cursor resides (integer). On an
unformatted display, this property always has the value of 1. This property is read-only.

Example Sub Main
 Dim StartRow as Integer
 Dim StartCol as Integer
 Dim EndRow as Integer
 Dim EndCol as Integer
 Dim CurScn as String
 StartRow = Session.FieldStartRow
 StartCol = Session.FieldStartCol
 EndRow = Session.FieldEndRow
 EndCol = Session.FieldEndCol
 CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
 MsgBox "The entire current field where the cursor is placed " &_
 "is (EBCDIC)" & CurScn
End Sub

See Also Application and Session Features on page 7

Session.FieldStartRow
3270 and 5250 sessions only

Syntax Session.FieldStartRow

Value Definition
True The field in which the cursor resides has been modified.
False Buffer is not formatted or field is not modified.
412

Session (object)
Description Returns the beginning row number (1 based) of the field where the cursor resides (integer). On an
unformatted display, this property always has the value of 1. This property is read-only.

Example Sub Main
 Dim StartRow as Integer
 Dim StartCol as Integer
 Dim EndRow as Integer
 Dim EndCol as Integer
 Dim CurScn as String
 StartRow = Session.FieldStartRow
 StartCol = Session.FieldStartCol
 EndRow = Session.FieldEndRow
 EndCol = Session.FieldEndCol
 CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
 MsgBox "The entire current field where the cursor is placed " &
 "is (EBCDIC)" & CurScn
End Sub

See Also Application and Session Features on page 7

Session.FieldText
3270 and 5250 sessions only

Syntax Session.FieldText (row, col)

Description Returns the text (in ASCII/ISO-Latin1) from the field containing the specified cursor position. If the
field is numeric, the property returns the text representation of the numbers, including a plus or minus
sign for positive and negative numbers. If the text cannot be returned for some reason, the property
returns an empty string.

Note 5250 hosts respond to this property only if the specified location has been defined as an unprotected
field. Unlike 3270 host applications, screen locations on 5250 hosts are not automatically defined as
fields, but must be defined by the application.

Parameters are:

If the row or column value is less than or equal to 0, the function defaults to the current cursor row or
column, respectively. A row or column value outside the range is truncated to fit within the display.

Note This property is read-only.

Parameter Definition
row The row containing the desired text (integer).
col The column containing the desired text (integer).
413

Session (object)
Example Sub Main
 Dim FieldData as String
 FieldData = Session.FieldText(Session.Row, Session.Column)
 MsgBox "Current field displays " & FieldData
End Sub

Session.FontAutoSize
Syntax Session.FontAutoSize

Description Returns or sets the auto-font-size state of characters displayed in the current SmarTerm session
(boolean). When set True, the font size is set automatically based on the window size.

Example Sub Main
 Dim AutoFontState as Boolean
 AutoFontState = Session.FontAutoSize
 Session.FontAutoSize = True
End Sub

See Also Application and Session Features on page 7

Session.FontHeight
Syntax Session.FontHeight

Description Returns or sets the font height of characters displayed in the current SmarTerm session (integer).

Example Sub Main
 Dim Height as Integer
 Height = Session.FontHeight
 Session.FontHeight = 2 * Height
End Sub

See Also Application and Session Features on page 7

Session.FontWidth
Syntax Session.FontWidth

Description Returns or sets the font width of characters displayed in the current SmarTerm session (integer).

Example Sub Main
 Dim Width as Integer
 Width = Session.FontWidth
 Session.FontWidth = 2 * Width
End Sub

See Also Application and Session Features on page 7

Session.GetMostRecentTriggerName
Syntax Session.GetMostRecentTriggerName
414

Session (object)
Description Returns a string containing the name of the most recently fired trigger. Note that this property is not
cleared when the host clears the matching pattern (retrieved with
Session.GetMostRecentTriggerPattern) from the screen.

Example Sub Main

Dim TriggerName$
TriggerName$ = Session.GetMostRecentTriggerName

If TriggerName$ = "Start Page" Then
 MsgBox "We are on the starting page of the host screen."
End If
End Sub

See Also Application and Session Features on page 7

Session.GetMostRecentTriggerPattern
Syntax Session.GetMostRecentPattern

Description Returns a string containing the the most recently match trigger pattern. Note that this property is not
cleared when the host clears the matching pattern from the screen.

Example Sub Main

Dim TriggerPattern$
TriggerPattern$ = Session.GetMostRecentTriggerPattern

If TriggerPattern$ = "AS/400 Main Menu" Then
 MsgBox "We are on the starting page of the host screen."
End If
End Sub

See Also Application and Session Features on page 7

Session.HotSpotsActive
Syntax Session.HotSpotsActive [= TRUE | FALSE]

Description Returns or sets whether the current HotSpots file is visible or not (Boolean).

Example 'This example toggles the current HotSpots file.
Sub Main
 CurrentFile$ = Session.HotSpotsFileName

' First, see if there's a file to toggle.
 If CurrentFile$ = "" Then
 MsgBox "No HotSpots loaded."

' Now turn it on if it's off, off if it's on.
 Else
 If Session.HotSpotsActive = True Then
 Session.HotSpotsActive = False
 MsgBox "HotSpots " & CurrentFile$ & " now OFF."
 Else
415

Session (object)
 Session.HotSpotsActive = True
 MsgBox "HotSpots " & CurrentFile$ & " now ON."
 End If
 End If
End Sub

See Also Application and Session Features on page 7; User Interaction on page 9

Session.HotSpotsFileName
Syntax Session.HotSpotsFileName [= Filename]

Description Returns the name of the current HotSpots file (string). If you specify a HotSpots file with the Filename
parameter (string), then the program attempts to load that file. This usage is therefore similar to the
Session.SetHotSpotsFile method, except that there is no built-in error-checking.

Filename can specify the complete path to the desired HotSpots file. If no path is specified, the
program looks in the User HotSpot folder.

Example 'This example reports the name of the current HotSpots file.
' If no file is loaded, it loads DEFAULT.HOT
Sub Main
 CurrentFile$ = Session.HotSpotsFileName

 If CurrentFile$ <> "" Then
 MsgBox "Current HotSpots file: ." & CurrentFile$
 Else
 If (Session.HotSpotsFileName = "DEFAULT.HOT")= TRUE Then
 MsgBox "HotSpots DEFAULT.HOT now loaded."
 Else
 MsgBox "No HotSpots available."
 End If
 End If
End Sub

See Also Application and Session Features on page 7; User Interaction on page 9

Session.InitialMouseCol
Syntax Session.InitialMouseCol

Description Returns the mouse's column position at the time a macro was started (integer).

Session.InitialMouseCol and Session.InitialMouseRow contain the text column and row
(respectively) that the mouse pointer was over when the script was started. If the mouse pointer is
outside of the configuration window, the values are clipped to within the window.

The value within this property is only meaningful when accessed from an internal macro. When
accessed through an external OLE Automation controller, the value returned will be the one
established when the last internal macro was executed.
416

Session (object)
Example Sub Main
 Dim StartX as Integer
 Dim StartY as Integer
 StartX = Session.InitialMouseCol
 StartY = Session.InitialMouseRow
 Msgbox "Initial mouse position was Row: " & str(StartY) & " Col: " & str(StartX)
End Sub

See Also Application and Session Features on page 7

Session.InitialMouseRow
Syntax Session.InitialMouseRow

Description Returns the mouse's row position at the time a macro was started (integer).

Session.InitialMouseCol and Session.InitialMouseRow contain the text column and row
(respectively) that the mouse pointer was over when the script was started. If the mouse pointer is
outside of the configuration window, the values are clipped to within the window.

The value within this property is only meaningful when accessed from an internal macro. When
accessed through an external OLE Automation controller, the value returned will be the one
established when the last internal macro was executed.

Example Sub Main
 Dim StartX as Integer
 Dim StartY as Integer
 StartX = Session.InitialMouseCol
 StartY = Session.InitialMouseRow
 Msgbox "Initial mouse position was Row: " & str(StartY) & " Col: " & str(StartX)
End Sub

See Also Application and Session Features on page 7

Session.InsertMode
3270 and 5250 sessions only

Syntax Session.InsertMode

Description Returns True if the terminal is currently in insert mode (Boolean).

Example Sub Main
 Dim InsertMode as Boolean
 InsertMode = Session.InsertMode
 If InsertMode = TRUE Then
 MsgBox "You are in insert mode."
 End If
End Sub
417

Session (object)
Session.InterpretControls
VT, SCO, ANSI, and DG sessions only

Syntax Session.InterpretControls

Description Returns or sets whether control characters are interpreted or displayed in the current SmarTerm
session (boolean)

Example Sub Main
 Dim ControlState as Boolean
 ControlState = Session.InterpretControls
 Session. InterpretControls = True
End Sub

Session.Inverse
VT, SCO, ANSI, and DG sessions only

Syntax Session.Inverse

Description Returns or sets the inverse attribute of the current session's display presentation (boolean).

Example Sub Main
 Dim Inverse State as Boolean
 InverseState = Session.Inverse
 Session.Inverse = True
End Sub

See Also Application and Session Features on page 7)

Session.IsFieldMark
3270 sessions only

Syntax Session.IsFieldMark(row, col)

Description Returns True if the cursor position containing the specified row and column is the beginning of a field
(a field mark); returns False in all other cases (boolean). Parameters are:

Example Sub Main
 Dim Fieldmark as Boolean

 Fieldmark = Session.IsFieldMark(4,11)
 If Fieldmark = True Then
 MsgBox "You are at the beginning of a field"
 End If
End Sub

Parameter Description
row The row to test (integer).
col The column to test (integer)
418

Session (object)
Session.IsNumeric
3270 and 5250 sessions only

Syntax Session.IsNumeric(row, col)

Description Returns True if the specified character position is within a numeric field (boolean). Parameters are:

Example Sub Main
 Dim IsNum as Boolean

 IsNum = Session.IsNumeric(Session.Row, Session.Column)
 If IsNum = True Then
 MsgBox "Cursor is in a numeric field"
 End If
End Sub

Session.IsProtected
3270 and 5250 sessions only

Syntax Session.IsProtected(row, col)

Description Returns an indication of whether the specified character position is within a protected field (integer).
Parameters are:

Returns 0 if the specified cursor position is in an unprotected field; returns -1 if the position is a field
mark or an unprotected field; returns 1 in all other cases. If row or col is less than or equal to 0, the
function defaults to the current cursor row or column, respectively. A row or column outside the range
is truncated to fit within the display.

Example Sub Main
 Dim IsProtected as Integer
' Is there a protected field at row 11, column 4?
 IsProtected = Session.IsProtected(11, 4)
 If IsProtected = 1 Then
 MsgBox "Row 11, Column 4 is a protected field"
 End If
End Sub

Parameter Description
row The row to test (integer).
col The column to test (integer)

Parameter Description
row The row to test (integer).
col The column to test (integer)
419

Session (object)
Session.KeyboardLocked
3270 and 5250 sessions only

Syntax Session.KeyboardLocked

Description Returns the state of the keyboard in SmarTerm (integer). Evaluates to 0 if the keyboard is unlocked;
it evaluates to non-zero for lock conditions. If the lock was the result of an error (alphabetic character
in a numeric field, protected field, field overflow, or “Prog” error), the value is less than 0. If the lock
is the result of a system command or function key, the value is greater than 0.

Example Sub Main
 Dim KeyboardLocked as Integer
 Dim UserMessage as string
 KeyboardLocked = Session.KeyboardLocked
 if KeyboardLocked = 0 Then
 UserMessage = "Keyboard is unlocked."
 Elseif KeyboardLocked > 0 Then
 UserMessage = "Keyboard locked from a command or key."
 Else
 UserMessage = "Keyboard locked from field overflow."
 End If
 MsgBox UserMessage

End Sub

Session.KeyWait (object)
Syntax Session.KeyWait

Description Returns an object supporting access to SmarTerm’s KeyWait feature.

The Session.KeyWait object is used to wait for specific keystrokes or mouse button clicks to be
entered. There is one KeyWait object per-session. Its methods and properties can be divided into three
categories: those used to initialize the wait object, those used to activate a wait, and those used to check
the results of the wait. These categories are as follows:

Initialization Session.KeyWait.KeyCode
 Session.KeyWait.KeyType
 Session.KeyWait.Timeout
 Session.KeyWait.TimeoutMS
 Session.KeyWait.MaxKeyCount
 Session.KeyWait.Reset

Activation Session.KeyWait.Start

Results Session.KeyWait.Status
 Session.KeyWait.Value
 Session.KeyWait.KeyCount
420

Session (object)
The KeyWait object automatically resets to its default (empty) state the first time any of its properties
is set or any of its methods called after a previous KeyWait operation has completed.

Example Sub Main
 ' Wait for any key, using the Reset method to insure the following defaults:
 ' KeyType = smlKEYWCOUNT
 ' MaxKeyCount = 0
 Session.KeyWait.Reset
 Session.KeyWait.Start
 ' Wait for any key, but give up after 5 seconds
 Session.KeyWait.Timeout = 5
 Session.KeyWait.Start
 If Session.KeyWait.Status = smlWAITTIMEOUT Then
 Session.Echo "Tired of waiting"
 Else
 Session.Echo "Detected keystroke: " & str$(Session.Keywait.Value)
 End If
 ' Wait for either an 'a' or an 'A'
 Session.KeyWait.KeyCode = asc("A")
 Session.KeyWait.KeyType = smlKEYWNONEXACT
 Session.KeyWait.Start
' Wait for an 'A'
 Session.KeyWait.KeyCode = asc("A")
 Session.KeyWait.KeyType = smlKEYWEXACT
 Session.KeyWait.Start
 ' Wait for three keystrokes
 Session.KeyWait.KeyType = smlKEYWCOUNT
 Session.KeyWait.MaxKeyCount = 3
 Session.KeyWait.Start
 ' Wait for scancode 33 (the 'F' key on US keyboards)
 Session.KeyWait.KeyCode = 33
 Session.KeyWait.KeyType = smlKEYWSCAN
 Session.KeyWait.Start
 ' Wait for DEC key 101
 Session.KeyWait.KeyCode = 101
 Session.KeyWait.KeyType = smlKEYWDECKEY
 Session.KeyWait.Start
 ' Wait for virtual key 69
 Session.KeyWait.KeyCode = 69
 Session.KeyWait.KeyType = smlKEYWVIRTUAL
 Session.KeyWait.Start
 ' Wait for the click of a mouse button
 Session.KeyWait.KeyType = smlKEYWBUTTON
 Session.KeyWait.Start
 Select Case Session.KeyWait.Value
 Case 1
 Session.Echo "Detected left mouse button"
 Case 2
 Session.Echo "Detected middle mouse button"
 Case 3
 Session.Echo "Detected right mouse button"
 End Select
End Sub

See Also Host Connections on page 5; Application and Session Features on page 7; Objects on page 10
421

Session (object)
Session.KeyWait.KeyCode
Syntax Session.KeyWait.KeyCode

Description Returns or sets the KeyCode value to wait for (integer).

Note Be sure to also set the KeyType property to qualify the KeyCode value.

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.KeyCount
Syntax Session.KeyWait.KeyCount

Description Returns the number of keys detected by the wait object before a return was made from the Start
method (integer).

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.KeyType
Syntax Session.KeyWait.KeyType

Description Returns or sets the type of key to wait for (integer). This property qualifies the value set within the
KeyCode property. The possible values are:

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.MaxKeyCount
Syntax Session.KeyWait.MaxKeyCount

Value Constant Meaning
1 smlKEYWEXACT Non-case folded character/ASCII code
2 smlKEYWNONEXACT Non-case folded character/ASCII code
3 smlKEYWSCAN PC scan code
4 smlKEYWVIRTUAL Virtual key code (Windows specific)
5 smlKEYWDECKEY Emulation specific key code (DECKEY in PSL)
6 smlKEYWBUTTON Mouse button
7 smlKEYWCOUNT Any key (Use the count)
422

Session (object)
Description Returns or sets the maximum number of keys to wait for before returning from the Start method
(integer).

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.Reset
Syntax Session.KeyWait.Reset

Description Resets the wait object’s properties to their default values. The KeyWait object automatically resets to
its default (empty) state when any of its properties is set or any of its methods called after a previous
KeyWait operation has completed.

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.Start
Syntax Session.KeyWait.Start

Description Returns a status value that indicates the reason that the wait ended (integer). Activates the wait object,
returning only when the specified conditions have been met. The status of the KeyWait operation is
returned by the object’s Start method and is also available through its Status property. The possible
values are shown in the table below.

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.Status
Syntax Session.KeyWait.Status

Description Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the KeyWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
423

Session (object)
Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.Timeout
Syntax Session.KeyWait.Timeout

Description Returns or sets the wait object’s timeout value, in seconds (integer). The default value is 0, which
means that no timeout will occur.

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.TimeoutMS
Syntax Session.KeyWait.TimeoutMS

Description Sets the wait object’s timeout value, in milliseconds (integer). The default value is 0, which means that
no timeout will occur.

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.KeyWait.Value
Syntax Session.KeyWait.Value

Description Returns the keystroke value that caused the Start method to return (integer).

Example See the examples under Session.KeyWait (object).

See Also Application and Session Features on page 7

Session.Language
Syntax Session.Language

Description Returns or sets a language for the session (integer). Possible values are:

Value Constant Meaning
1 smlWAITSUCCESS Successful match
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
424

Session (object)
See Also Application.InstalledLanguages
Application.StartupLanguage

Example Sub Main
 Dim Language as Integer
 Language = Session.Language
 If Language <> smlENGLISH Then
 MsgBox "Switching the current language to English"
 Session.Lanugage = smlENGLISH
 End If
End Sub

See Also Application and Session Features on page 7

Session.LoadKeyboardMap
Syntax Session.KeyboardMap keymapname$

where keymapname$ is the name of the keyboard map to load (string).

Description Loads a keyboard map and returns the operation's completion status (boolean). To load the default
keyboard map, specify the string "".

Example Sub Main
 If Session.LoadKeyboardMap("Keymap1") = FALSE Then
 Session.Echo "Error loading Keymap1, restoring default."
 Session.LoadKeyboardMap "<DEFAULT>"
 End If
End Sub

See Also Application and Session Features on page 7

Session.LoadSmarTermButtons
Syntax Session.LoadSmarTermButtons palettename

where palettename is the name of the SmarTerm Buttons palette to load (string).

Description Loads and displays a SmarTerm Buttons palette and returns the operation’s completion status
(boolean). This palette name is optional. If you omit it, the palette associated with the session is
loaded.

Value Constant Meaning

1031 smlGERMAN German.
1033 smlENGLISH English.
1036 smlFRENCH French.
1034 smlSPANISH Spanish.
425

Session (object)
Example Sub Main
 If Session.LoadSmarTermButtons("c:\SmarTerm\Buttons\toolbar.bpx") = FALSE Then
 MsgBox "Error loading SmarTerm Buttons"
 End If
End Sub

See Also Application and Session Features on page 7; User Interaction on page 9

Session.LockStep (object)
Syntax Session.LockStep

Description Activates the LockStep state to regulate emulator data flow for the Collect, EventWait, and
StringWait features (object). The Session.Collect, Session.EventWait, and
Session.StringWait features are useful when you need to synchronize macro operations with host
operations. For example, the macro below uses StringWait to automate the process of connecting to
a host:

 ' A login macro, without LockStep
 Sub Main
 Session.StringWait.MatchString "Username: "
 Session.StringWait.Start
 Session.Send "MyName" + Chr$(13)
 Session.StringWait.MatchString "Password: "
 Session.StringWait.Start
 Session.Send "MyPassword" + Chr$(13)
 End Sub

Certain timing problems can, however, prevent a macro such as this from operating reliably. If the
host's responsiveness is significantly better than that of your local machine, it would be possible for
the Session.Send "MyName" + Chr$(13) statement to elicit the "Password: " prompt from the host
before the subsequent macro statement, the StringWait, has been executed. Some, or all, of the
"Password:" string's characters could be processed through the emulator before the StringWait
feature has a chance to begin watching for this string.

The LockStep feature addresses this timing problem. Here is the login macro again, with LockStep
included:

 ' A login macro, with LockStep
 Sub Main
 Dim LockSession as Object
 Set LockSession = Session.LockStep
 LockSession.Start
 Session.StringWait.MatchString "Username: "
 Session.StringWait.Start
 Session.Send "MyName" + Chr$(13)
 Session.StringWait.MatchString "Password: "
 Session.StringWait.Start
 Session.Send "MyPassword" + Chr$(13)
 Set LockSession = Nothing
 End Sub
426

Session (object)
When the LockStep state is active, data arriving from the host is not processed by the emulator until
any EventWait, StringWait or Collect macro statements have had a chance to parse that data for
match strings. EventWait, StringWait and Collect are 'privileged' against the LockStep state to
support synchronized data collection.

To instigate the LockStep state, it is necessary to assign the return value from Session.LockStep to
an object pointer and to then use this object point to call the LockStep object’s Start method. Calling
the Start method without its optional parameter starts a LockStep state that persists until it is
explicitly deactivated. It is also possible to supply a parameter to this method that specifies the number
of seconds that the LockStep state should remain in effect. For example, the statements below will
activate a LockStep state for 12 seconds:

 Dim L as Object
 Set L = Session.LockStep
 L.Start 12

This state remains in effect until either the Reset method is called, the object pointer is assigned the
special value of Nothing, the object variable goes out of scope, or the macro is halted (e.g. by
terminating a debugging session). Note that it will not work to access the Start method directly, you
must assign the return value of Session.LockStep to an object variable and then access the Start
method through that object variable.

As an example of how LockStep is important for use with Session.Collect, consider the case where
it is necessary for your macro to watch for a "StartOfMessage" tag from the host, and then collect all
subsequent data until an "EndOfMessage" tag is detected. Without LockStep, this would look like:

 '! Collect after StringWait, no LockStep
 Sub Main
 Session.StringWait.MatchString "StartOfMessage"
 Session.StringWait.Start
 Session.Collect.TermString = "EndOfMessage"
 Session.Collect.Start
 End Sub

Without the LockStep feature, the emulator may process the first portion of the message data before
the Collect statement is executed. To prevent data loss, LockStep can be applied as follows:

 '! Collect after StringWait, with LockStep
 Sub Main
 Dim L as Object
 Set L = Session.LockStep
 L.Start
 Session.StringWait.MatchString "StartOfMessage"
 Session.StringWait.Start
 Session.Collect.TermString = "EndOfMessage"
 Session.Collect.Start
 L.Reset
 End Sub

Example See the examples in the Comments section above.
427

Session (object)
See Also Host Connections on page 5; Application and Session Features on page 7; Objects on page 10

Session.LockStep.Reset
Syntax Session.LockStep.Reset

Description Deactivates a LockStep state.

Example See the examples shown for Session.LockStep (object).

See Also Application and Session Features on page 7

Session.LockStep.Start
Syntax Session.LockStep.Start [seconds]

where seconds is the number of seconds that the LockStep state should last (optional) (integer).

Description Activates a LockStep state. To instigate a LockStep state, it is necessary to assign the return value from
Session.LockStep to an object pointer and to then use this object point to call the LockStep object’s
Start method. Calling the Start method without its optional parameter starts a LockStep state that
persists until it is explicitly deactivated. It is also possible to supply a parameter to this method that
specifies the number of seconds that the LockStep state should remain in effect.

Note It will not work to access the Start method directly. You must assign the return value of
Session.LockStep to an object variable and then access the Start method through that object variable.

Example See the examples shown for Session.LockStep (object).

See Also Application and Session Features on page 7

Session.MouseCol
Not available for Wyse sessions

Syntax Session.MouseCol

Description Returns the column of the current mouse position in SmarTerm's session window (integer).

Example Sub Main
 Dim mr as Integer
 Dim mc as Integer

 mr = Session.MouseRow
 mc = Session.MouseCol
 MsgBox "Mouse cursor is on Row: " & Str(mr) & " Column: " & Str(mc)
End Sub

See Also Application and Session Features on page 7
428

Session (object)
Session.MouseRow
Not available for Wyse sessions

Syntax Session.MouseRow

Description Returns the row of the current mouse position (integer).

Example Sub Main
 Dim mr as Integer
 Dim mc as Integer

 mr = Session.MouseRow
 mc = Session.MouseCol
 MsgBox "Mouse cursor is on Row: " & Str(mr) & " Column: " & Str(mc)
End Sub

See Also Application and Session Features on page 7

Session.NativeScreenText
3270 and 5250 sessions only

Syntax Session.NativeScreenText(startrow, startcol, endrow, endcol)

Description Returns the specified screen text from SmarTerm’s terminal window, in EBCDIC (string). Parameters
are:

If any parameter has a value of 0, the row or column used is either the first or last (start and end
respectively). Field marks are replaced by null characters. Any values out of bounds are truncated to
the end of the display buffer.

Example Sub Main
 Dim strText as String
' Read screen from row 4, column 11 through row 5, column 20
 strText = Session.NativeScreenText(4, 11, 5, 20)
End Sub

See Also Application and Session Features on page 7

Session.Normal
Syntax Session.Normal

Parameter Description
startrow The starting row of the text to retrieve.
startcol The starting column of the text to retrieve.
Endrow The ending row of the text to retrieve.
Endcol The ending column of the text to retrieve.
429

Session (object)
VT, SCO, ANSI, and DG sessions only
Description Returns or sets the normal attribute of SmarTerm's display presentation (boolean)

Example Sub Main
 Dim NormState as Boolean
 NormState = Session.Normal
 Session.Normal = True
End Sub

See Also Application and Session Features on page 7

Session.Online
Syntax Session.Online

Description Returns or sets the status of the session's online state (boolean).

Example Sub Main
 Dim OnLineState as Boolean
 OnLineState = Session.OnLine
 If OnLineState = FALSE Then
 Session.Echo "Cannot continue because you are offline"
 Session.Online = TRUE
 End If
End Sub

Session.Page
VT and SCO sessions only

Syntax Session.Page

Description Returns or sets the current page in SmarTerm's active session type (integer).

Example Sub Main
 Dim PageNumber as Integer
 PageNumber = Session.Page
 Session.Page = PageNumber + 1
End Sub

See Also Application and Session Features on page 7

Session.ReplayCaptureFile
Syntax Session.ReplayCaptureFile "<captured filename and path>"

Description Replays the specified SmarTerm capture file. The filename parameter must have quotes around it. If
no file name is specified, the Replay captured file dialog is opened. The filename parameter may also
contain the path to the file. If no path is specified, SmarTerm looks in the SmarTerm transfer folder.
If the path/filename does not exist, the Session.ReplayCaptureFile command is ignored.

Examples Brings up the Replay captured file dialog:
430

Session (object)
Session.ReplayCaptureFile ""

Replays the file capture called file.cap. It assumes the file is in the SmarTerm transfer folder:

Session.ReplayCaptureFile "file.cap"

Replays the file file.cap located in c:\temp:

Session.ReplayCaptureFile "c:\temp\file.cap"

See Also Application and Session Features on page 7

Session.Row
Syntax Session.Row

Description Returns or sets where the cursor is placed in the active SmarTerm session window (integer).

Example Sub Main
 Dim CurrentRow as Integer
 CurrentRow = Session.Row
 Session.Row = CurrentRow + 1
End Sub

See Also Application and Session Features on page 7

Session.ScreenText
Syntax Session.ScreenText(row, column, page, chars)

Description Returns the specified screen text from SmarTerm’s terminal window (string). Parameters are:

Example Sub Main
 Dim ScnText as String

 ScnText = Session.ScreenText(4, 11, 1, 12)
 Session.Echo ScnText
End Sub

See Also Application and Session Features on page 7

Session.ScreenToFile
Syntax Session.ScreenToFile(filename$)

Parameter Description
row The row of the text to retrieve.
column The column of the text to retrieve.
page The page of the text to retrieve.
chars The number of characters to retrieve.
431

Session (object)
where filename$ is the name of the file in which to write the screen data (string).

Description Returns the completion status of the screen capture (boolean). This method captures all text pages and
places them in the ASCII text file named with filename$. Each time this method is called with the
same filename, the previous file is overwritten.

Example Sub Main
 Dim RetVal as Boolean
 RetVal = Session.ScreenToFile("scntext.txt")
 If RetVal = False Then
 Session.Echo "An Error Occurred"
 End If
End Sub

See Also Drive, Folder, and File Access on page 3; Application and Session Features on page 7

Session.SelectScreenAtCoords
Syntax Session.SelectScreenAtCoords(top%, left%, bottom%, right%)

Description Selects the text within the boundaries set by top%, left%, bottom%, and right%. If the selection is
successful this method returns True. Otherwise, it returns False.

Note This method is not supported in graphics mode emulation.

Example 'This example sets the selection and reports its success
Sub Main
 SelectedText = Session.SelectScreenAtCoords(0, 0, 10, 10)
 If SelectedText Then
 ScnText$ = Session.ScreenText(0,0,1,10)
 MsgBox("Selected text: " & ScnText$)
 Else
 MsgBox("Nothing to select.")
 End If
End Sub

See Also Application and Session Features on page 7

Session.SelectionEndColumn
Syntax Session.SelectionEndRow

Description Returns or sets the ending column of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartRow, Session.SelectionStartColumn, and

Parameter Description
top% The top row of the text to select.
left% The left column of the text to select.
bottom% The bottom row of the text to select.
right% The right column of the text to select.
432

Session (object)
Session.SelectionEndRow. The text selection is not marked until all four elements have been set so
as to define a valid selection. If there is no selection, or if the four elements define an invalid selection
box, this property returns -1.

Note This method is not supported in graphics mode emulation.

Example 'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
 MsgBox("Selecting entire screen.")
 Session.SelectionStartRow = 0
 Session.SelectionStartColumn = 0
 Session.SelectionEndRow = Session.TotalRows
 Session.SelectionEndColumn = Session.TotalColumns
End Sub

See Also Application and Session Features on page 7

Session.SelectionEndRow
Syntax Session.SelectionEndRow

Description Returns or sets the ending row of the selection (integer). This property is an element of the quartet that
also includes Session.SelectionStartRow, Session.SelectionStartColumn, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set
so as to define a valid selection. If there is no selection, or if the four elements define an invalid
selection box, this property returns -1.

Note This method is not supported in graphics mode emulation.

Example 'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
 MsgBox("Selecting entire screen.")
 Session.SelectionStartRow = 0
 Session.SelectionStartColumn = 0
 Session.SelectionEndRow = Session.TotalRows
 Session.SelectionEndColumn = Session.TotalColumns
End Sub

See Also Application and Session Features on page 7

Session.SelectionStartColumn
Syntax Session.SelectionStartColumn

Description Returns or sets the starting column of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartRow, Session.SelectionEndRow, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set
so as to define a valid selection. If there is no selection, or if the four elements define an invalid
selection box, this property returns -1.
433

Session (object)
Note This method is not supported in graphics mode emulation.

Example 'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
 MsgBox("Selecting entire screen.")
 Session.SelectionStartRow = 0
 Session.SelectionStartColumn = 0
 Session.SelectionEndRow = Session.TotalRows
 Session.SelectionEndColumn = Session.TotalColumns
End Sub

See Also Application and Session Features on page 7

Session.SelectionStartRow
Syntax Session.SelectionStartRow

Description Returns or sets the starting row of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartColumn, Session.SelectionEndRow, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set
so as to define a valid selection. If there is no selection, or if the four elements define an invalid
selection box, this property returns -1.

Note This method is not supported in graphics mode emulation.

Example 'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
 MsgBox("Selecting entire screen.")
 Session.SelectionStartRow = 0
 Session.SelectionStartColumn = 0
 Session.SelectionEndRow = Session.TotalRows
 Session.SelectionEndColumn = Session.TotalColumns
End Sub

See Also Application and Session Features on page 7

Session.SelectionRectangular
Syntax Session.SelectionRectangular

Description Returns or sets whether or not the selection is rectangular (Boolean). If this property is True, the
selection is rectangular, selecting a block of text. If the property is False, the selection is linear,
selecting text line by line.

Note This method is not supported in graphics mode emulation.

Example 'This example toggles the selection between rectangular and
' linear, regardless of the current setting.
Sub Main
 RectSel = Session.SelectionRectangular
434

Session (object)
 If RectSel Then
 MsgBox("Selection is rectangular. Changing to linear.")
 Else
 MsgBox("Selection is linear. Changing to rectangular.")
 End If
 RectSel = Not RectSel
End Sub

See Also Application and Session Features on page 7

Session.SelectionType
Syntax Session.SelectionType

Description Returns the status of the selection (integer). If Session.SelectionType is 0 (zero), then there is no
selection. If it is 1, then the selection is text.

Note This method is not supported in graphics mode emulation.

Example 'This displays the setting of the selection type.
Sub Main
 fSel= Session.SelectScreenAtCoords(0,0,10,10)
 If Session.SelectionType = 0 Then
 MsgBox("Nothing selected.")
 Else
 MsgBox("Something selected.")
 End If
End Sub

See Also Application and Session Features on page 7

Session.Send
Syntax Session.Send text$

where text$ is the text to send (string).

Description Sends text to the host. 8-bit to 7-bit control mapping is performed before the string is sent when
operating in a 7-bit controls environment.

Note IBM 3270 and 5250 session do not support the use of key mnemonics (such as <F1>) with this
command. To send keystrokes to an IBM 3270 or 5250 host, use Session.SendKey.

Example Sub Main
 Session.Send "Mail" & Chr$(13)
 Session.Send "Read NewMail<CR><LF>"
End Sub

See Also Character and String Manipulation on page 2; Application and Session Features on page 7;
Session.SendKey on page 436
435

Session (object)
Session.SendKey
3270 and 5250 sessions only

Syntax Session.SendKey key$

where key$ is a special SmarTerm function to send (string).

Description Sends a special code to the host. Supported functions are marked with an X in the following table.

Function 3270 Support 5250 Support
ALTCURSOR X
ATTN X X
BLINKCURSOR X
BLUE X
BS X X
BTAB X X
CLEAR X X
CLICK X
CURSORDOWN X X
CURSORLEFT X X
CURSORRIGHT X X
CURSORUP X X
DELETE X X
DELETEWORD X
DUP X X
ENTER X X
ERASEEOF X
ERASEFIELD X
ERASEINPUT X X
EXTSEL X
FIELDCOLOR X
FIELDHILIGHT X
FM X
FTAB X X
GREEN X
HOME X X
INSERT X X
NEWLINE X X
436

Session (object)
Example Sub Main
 Session.SendKey "CURSORDOWN"
End Sub

See Also Application and Session Features on page 7

Session.SendLiteral
Syntax Session.SendLiteral text$

where text$ is the text to send (string).

Description Sends text to the host without character translation. The string expression is sent to the host
untranslated. 8-bit to 7-bit control mapping is performed before the string is sent when operating in a
7-bit controls environment.

Example Sub Main
 Session.SendLiteral "Read Newmail"
End Sub

See Also Application and Session Features on page 7

Session.SetFontSize
Syntax Session.SetFontSize width% height%

Description Sets the font size of the characters appearing in the SmarTerm session window. Parameters are:

PA1 X
PA2 X
PA3 X
PF1 through PF24 X X
PINK X
RED X
REVERSE X
SELATTR X
SYSREQ X X
TNRESET X X
TREQ X X
TURQ X
UNDERSCORE X
WHITE X
YELLOW X

Function 3270 Support 5250 Support
437

Session (object)
If either the width or height parameter is set to 0, the auto-fontsize state will be established.

Example Sub Main
 Session.SetFontSize 6, 10
End Sub

See Also Application and Session Features on page 7

Session.SetHotSpotsFile
Syntax Session.SetHotSpotsFile(Filename)

Description Loads the HotSpot file specified with Filename (string), returning TRUE if successful, FALSE if the
specified file could not be found or if it contains an error. If you specify an empty string, this method
unloads the current HotSpot file.

Filename can specify the complete path to the desired HotSpots file. If no path is specified, the
program looks in the User HotSpot folder.

If Session.SetHotSpotsFile returns FALSE, the original HotSpots file should remain loaded.
However, your code should always check, as shown in the example below.

Example 'This example loads the HotSpot file 3270_A.HOT.
Sub Main
 FileToLoad$= "3270_A.HOT"

' Check to see if we need to load the file.
 If Session.HotSpotsFileName <> FileToLoad$ Then

' Now load the file, checking for success
 If Session.SetHotSpotsFile(FileToLoad$)= TRUE Then

' Success!
 MsgBox FileToLoad$ & " now loaded."

' Uh-oh, didn't work. Determine whether anything is loaded
' and tell user.
 Else
 MsgBox "Unable to load " & FileToLoad$
 CurrentFile$= Session.HotSpotsFileName
 If CurrentFile$ <> "" Then
 MsgBox CurrentFile$ & " still loaded."
 Else
 MsgBox "No HotSpots loaded."
 End If
 End If
 End If
End Sub

Parameter Definition
width% The font width (integer).
height% The font height (integer)
438

Session (object)
See Also Application and Session Features on page 7; User Interaction on page 9

Session.StringWait (object)
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait

Description Returns an object supporting access to SmarTerm’s StringWait feature. The Session.StringWait
object is used to wait for specific data to arrive from the host. There is one StringWait object per-
session. Its methods and properties can be divided into three categories: those used to initialize the
wait object, those used to activate a wait, and those used to check the results of the wait. These
categories are as follows:

Initialization Session.StringWait.Reset
Session.StringWait.MatchString
Session.StringWait.MatchStringExact
Session.StringWait.MatchStringEx
Session.StringWait.Timeout
Session.StringWait.TimeoutMS
Session.StringWait.MaxCharacterCount

Activation Session.StringWait.Start

Results Session.StringWait.Status

The StringWait object automatically resets to its default (empty) state the first time any of its
properties is set or any of its methods called after a previous StringWait operation has completed.

In certain cases, it may be necessary to use the Lockstep feature to insure that the StringWait object
is presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example Sub Main
 ' Simple StringWait -- a single match string
 Session.StringWait.MatchString "Login: "
 Session.StringWait.Start
 if Session.StringWait.Status = 1 Then
 Session.Echo "Match string detected"
 End If
 ' Multiple match strings -- where the order of the
 ' MatchString calls define the ordinals.
 Dim MatchOrdinal as integer
 Session.StringWait.MatchString "One"
 Session.StringWait.MatchString "Two"
 Session.StringWait.MatchString "Three"
 MatchOrdinal = Session.StringWait.Start
 Select Case MatchOrdinal
 Case 1
 Session.Echo "Detected a One"
 Case 2
439

Session (object)
 Session.Echo "Detected a Two"
 Case 3
 Session.Echo "Detected a Three"
 End Select
 ' Using MatchStringEx, a timeout, and a max character count
 Session.StringWait.MatchStringEx "One", TRUE, 3
 Session.StringWait.MatchStringEx "Two", FALSE, 5
 Session.StringWait.Timeout = 25
 Session.StringWait.MaxCharacterCount = 10
 MatchOrdinal = Session.StringWait.Start
 Select Case MatchOrdinal
 Case 3
 Session.Echo "Detected a One"
 Case 5
 Session.Echo "Detected a Two"
 Case smlWAITTIMEOUT
 Session.Echo "Timeout expired"
 Case smlWAITMAXCHARS
 Session.Echo "Max characters exceeded"
 End Select
End Sub

See Also Character and String Manipulation on page 2; Application and Session Features on page 7; Objects on
page 10

Session.StringWait.MatchString
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.MatchString(pattern_string)

where pattern_string is the string to register for match detection.

Description Registers a match pattern with the StringWait object. When the StringWait operation is started,
using its Start method, it will be terminated when a match is detected with a registered string in the
host-to-terminal data stream. Returns an integer that indicates the ordinal value associated with the
registered string.

The comparison is case-insensitive. If case sensitivity is desired, use the MatchStringExact method
instead. The value returned by the method is the ordinal number that will be returned by the Start
method (and subsequently, the Status property) if this is the pattern which terminates the StringWait
operation. Note that it is not necessary to record this ordinal if you take advantage of the fact that the
first pattern string registered will be ordinal 1, the second will be ordinal 2, etc.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.MatchStringEx
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.MatchStringEx(pattern_string, case_sense, ordinal)
440

Session (object)
Description Registers a match pattern with the StringWait object. When the StringWait operation is started,
using its Start method, it will be terminated when a match is detected with a registered string in the
host-to-terminal data stream. Returns an integer that indicates the ordinal value associated with the
registered string. Parameters are:

Multiple match patterns can share a single ordinal value. The value returned by the method is the
ordinal number that will be returned by the Start method (and subsequently, the Status property) if
this is the pattern which terminates the StringWait operation. Note that it is not necessary to record
this ordinal since the value returned will be that specified as the "ordinal" entry parameter.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.MatchStringExact
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.MatchStringExact(pattern_string)

where pattern_string is the string to register for match detection.

Description Registers a match pattern with the StringWait object. When the StringWait operation is started,
using its Start method, it will be terminated when a match is detected with a registered string in the
host-to-terminal data stream. Returns an integer that indicates the ordinal value associated with the
registered string.

The comparison is case-sensitive. If case insensitivity is desired, use the MatchString method instead.
The value returned by the method is the ordinal number that will be returned by the Start method (and
subsequently, the Status property) if this is the pattern which terminates the StringWait operation.
Note that it is not necessary to record this ordinal if you take advantage of the fact that the first pattern
string registered will be ordinal 1, the second will be ordinal 2, etc.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Parameter Description
pattern_string The string to register for match detection (string).
case_sense The comparison is case-sensitive if the second parameter is True (boolean).
Ordinal The ordinal value of the match pattern is specified by the third parameter. If

this is <= 0, the ordinal value of the string is set to one greater than the largest
ordinal value assigned so far (integer).
441

Session (object)
Session.StringWait.MaxCharacterCount
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.MaxCharacterCount

Description Sets the maximum number of characters to StringWait before the StringWait operation terminates.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.Reset
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.Reset

Description Resets the wait object’s properties to their default values. The StringWait object automatically resets
to its default (empty) state when any of its properties is set or any of its methods called after a previous
StringWait operation has completed.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.Start
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.Start

Description Returns a status value that indicates the reason that the wait ended (integer). This method activates the
wait object, returning only when the specified conditions have been met. The status of the StringWait
operation is returned by the object’s Start method and is also available through its Status property.
The possible values are shown in the table below.

The value returned in the case of a match is the ordinal corresponding to the string which was matched.
This ordinal is determined by the method chosen to register the match strings. When either the
MatchString or MatchStringExact methods are used, the ordinal is determined by the sequence of
the calls made to these methods. When the MatchStringEx method is used, the ordinal is determined

Value Constant Meaning
>=1 N/A Ordinal indicating successful match (see below)
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
442

Session (object)
by the caller, as an entry parameter to the method call. See the Comments for these methods for further
details.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.Status
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.Status

Description Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the StringWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

The value returned in the case of a match is the ordinal corresponding to the string which was matched.
This ordinal is determined by the method chosen to register the match strings. When either the
MatchString or MatchStringExact methods are used, the ordinal is determined by the sequence of
the calls made to these methods. When the MatchStringEx method is used, the ordinal is determined
by the caller, as an entry parameter to the method call. See the Comments for these methods for further
details.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.StringWait.Timeout
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.Timeout

Description Sets the maximum number of seconds to allow for the StringWait operation. This property is read-
write.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Value Constant Meaning
>=1 N/A Ordinal indicating successful match (see below)
-1 smlWAITTIMEOUT Timeout
-2 smlWAITMAXCHARS Maximum characters
-15 smlWAITERROR Miscellaneous error
443

Session (object)
Session.StringWait.TimeoutMS
VT, SCO, ANSI, and DG sessions only

Syntax Session.StringWait.TimeoutMS

Description Sets the maximum number of milliseconds to allow for the StringWait operation. This property is
read-write.

Example See the examples under Session.StringWait (object).

See Also Application and Session Features on page 7

Session.TotalColumns
Syntax Session.TotalColumns

Description Returns the total number of columns available in the active SmarTerm session (integer).

Example Sub Main
 Dim Cols as Integer
 Cols = Session.TotalColumns
 If Cols <> 132 Then
 Session.Echo "This application will not run correctly unless " & _
 "you are in 132 column mode"
 End If
End Sub

See Also Application and Session Features on page 7

Session.TotalPages
Syntax Session.TotalPages

Description Returns the total number of pages available in the active session (integer).

Example Sub Main
 Dim Pages as Integer
 Pages = Session.TotalPages
 Session.Echo "This emulation type supports " & Pages & " pages."
End Sub

See Also Application and Session Features on page 7

Session.TotalRows
Syntax Session.TotalRows

Description Returns the total number of rows available in the active session (integer).

Example Sub Main
 Dim Rows as Integer
 Rows = Session.TotalRows
444

Session (object)
 If Rows <> 24 Then
 Session.Echo "Please set number of rows to 24"
 End If
End Sub

See Also Application and Session Features on page 7

Session.Transfer
Syntax Session.Transfer

Description Returns the Transfer object for the session. The Session.Transfer property is intended for use by
external VBA controllers. The predefined Transfer object exists for use by internal macros.

Example Dim MyTransfer as Object
MyTransfer = Session.Transfer

Session.TransferProtocol
Syntax Session.TransferProtocol(protocolname)

Description Sets the file transfer protocol in the active SmarTerm session, returning the operation’s completion
status (boolean). protocolname is the name of the new file transfer protocol to establish (string).
Possible values are:

FTP
KERMIT
XMODEM
YMODEM
ZMODEM
IND$FILE

Example Sub Main
 Dim RetVal as Boolean
 RetVal = Session.TransferProtocol("XMODEM")
 If RetVal Then
 Session.Echo "Protocol set to XMODEM"
 Else
 Session.Echo "Unable to set protocol to XMODEM"
 End If
End Sub

See Also File Transfer on page 2; Application and Session Features on page 7; Objects on page 10

Session.TranslateBinary
Syntax Session.TranslateBinary

Description Returns or sets whether character translation is applied by file transfers of binary files (boolean).

Note This property does not apply to IND$FILE transfers, or to text file transfers such as those with the
Session.Capture, Session.TransmitFile, or Session.TransmitFileUntranslated methods.
445

Session (object)
Example Sub Main
 Session.TranslateBinary = True
 Transfer.SendFile "ToHost.txt"
End Sub

See Also File Transfer on page 2; Application and Session Features on page 7

Session.TranslateText
Syntax Session.TranslateText

Description Returns or sets whether character translation from the host format to the PC format is applied by
Session.Capture and Session.TransmitFile (boolean).

Note This property does not apply to IND$FILE, where all translation is done in ANSI or ASCII. Neither
does it affect the translation of character mnemonics to actual characters (such as "<CR>" to a carriage
return), which is handled by the choice of the Session.Transmit method (translated) or the
Session.TransmitFileUntranslated method (not translated).

Example Sub Main
 Session.TranslateText = True
 Session.TransmitFile "ToHost.txt"
End Sub

See Also File Transfer on page 2; Application and Session Features on page 7

Session.TransmitFile
Syntax Session.TransmitFile(filename$)

where filename$ is the name of the file to send to the host (string).

Description Returns the operation’s completion status (boolean). Sends the specified ASCII file to the host,
translating character mnemonics into the actual characters (such as "<CR>" to a carriage return). If
you do not want this character translation to occur, use the Session.TransmitFileUntranslated
method.

Note The translation of characters from PC format to host format is controlled by the setting of the
Session.TranslateText property.

Example Sub Main
 Dim RetVal as Boolean
 'Create the file on a VAX host.
 Session.Send "create DataFile.Txt<CR>"
 Sleep 2000
 'Start sending the file.
 RetVal = Session.TransmitFile("<path to valid text file>")
 If RetVal = True Then
 Session.Send "^Z"
 Else
 Session.Send "^Y"
446

Session (object)
 Session.Echo "An error occurred transmitting the file."
 End If
End Sub

See Also File Transfer on page 2; Application and Session Features on page 7

Session.TransmitFileUntranslated
Syntax Session.TransmitFileUntranslated(filename$)

where filename$ is the name of the file to send to the host (string).

Description Returns the operation’s completion status (boolean). Sends the specified ASCII file to the host without
translating character mnemonics into the actual characters (such as "<CR>" to a carriage return). If
you do want this character translation to occur, use the Session.TransmitFile method.

Note The translation of characters from PC format to host format is controlled by the setting of the
Session.TranslateText property.

Example Sub Main
 Dim RetVal as Boolean
 'Create the file on a VAX host.
 Session.Send "create DataFile.Txt<CR>"
 Sleep 2000
 'Start sending the file.
 RetVal = Session.TransmitUntranslated("c:\DataFile.Txt")
 If RetVal = True Then
 Session.Send "^Z"
 Else
 Session.Send "^Y"
 Session.Echo "An error occurred transmitting the file."
 End If
End Sub

See Also File Transfer on page 2; Application and Session Features on page 7

Session.TriggersActive
Syntax Session.TriggersActive

Description Sets or returns the state of the Triggers feature (Boolean). If set to TRUE then Triggers are active; if
set to FALSE then Triggers are turned off.

Example Sub Main

If Session.TriggersActive = TRUE Then Then
 MsgBox "Triggers now on. Turning Triggers off."
 Session.TriggersActive = FALSE
Else
MsgBox "Triggers now off. Turning Triggers on."
 Session.TriggersActive = TRUE
End If

End Sub
447

Session (object)
See Also Application and Session Features on page 7

Session.TypeFile
VT, SCO, ANSI, and DG sessions only

Syntax Session.TypeFile(filename$)

where filename$ is the name of the file to send to the display (string).

Description Returns the operation’s completion status (boolean). Displays file’s contents on the screen as if it had
been sent by the host.

Example Sub Main
 Dim RetVal as Boolean
 RetVal = Session.TypeFile("c:\DataFile.Txt")
 If RetVal = False Then
 Session.Echo "An error occurred"
 End If
End Sub

Session.Underline
VT, SCO, ANSI, and DG sessions only

Syntax Session.Underline

Description Returns or sets the underline attribute of the display presentation (boolean)

Example Sub Main
 Dim Underline State as Boolean
 Underline State = Session.Underline
 Session.Underline = True
End Sub

See Also Application and Session Features on page 7

Session.UnloadSmarTermButtons
Syntax Session.UnloadSmarTermButtons

Description Unloads and hides a palette associated with the session and returns the operation’s completion status
(boolean).

Example Sub Main
 If Session.UnloadSmarTermButtons = FALSE Then
 MsgBox "Error unloading SmarTerm Buttons"
 End If
End Sub

See Also Application and Session Features on page 7; User Interaction on page 9
448

Set
Session.Visible
Syntax Session.Visible

Description Returns or sets the visible state of the SmarTerm session (boolean). This property can be used to make
a SmarTerm session invisible.

Example Sub Main
 Dim Visible as Boolean
 Visible = Session.Visible
 Session.Visible = False
End Sub

See Also Application and Session Features on page 7

Session.WindowState
Syntax Session.WindowState

Description Returns or sets a SmarTerm session's window state (integer). Possible values are:

Example Sub Main
 Dim WinState as Integer
 WinState = Session.WindowState
 If WinState = smlMINIMIZE Then
 Session.WindowState = smlMAXIMIZE
 End If
End Sub

See Also Application and Session Features on page 7

Set
Syntax 1 Set object_var = object_expression

Syntax 2 Set object_var = New object_type

Syntax 3 Set object_var = Nothing

Description Assigns a value to an object variable.

Syntax 1
The first syntax assigns the result of an expression to an object variable. This statement does not
duplicate the object being assigned but rather copies a reference of an existing object to an object
variable.

Value Constant Meaning

0 smlMINIMIZE The window is minimized.
1 smlRESTORE The window is restored.
2 smlMAXIMIZE The window is maximized.
449

SetAttr
The object_expression is any expression that evaluates to an object of the same type as the
object_var.

With data objects, Set performs additional processing. When the Set is performed, the object is
notified that a reference to it is being made and destroyed. For example, the following statement
deletes a reference to object A, then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2
In the second syntax, the object variable is being assigned to a new instance of an existing object type.
This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (i.e., the Sub or Function in which
the variable is declared ends), the object is destroyed.

Syntax 3
The reserved keyword Nothing is used to make an object variable reference no object. At a later time,
the object variable can be compared to Nothing to test whether the object variable has been
instantiated:

Set a = Nothing
 :
If a Is Nothing Then Beep

Example Sub Main
 Dim document As Object
 Dim page As Object
 Set document = GetObject("c:\resume.doc")
 Set page = Document.ActivePage
 Session.Echo page.name
End Sub

See Also Objects on page 10

SetAttr
Syntax SetAttr pathname, attributes

Description Changes the attribute pathname to the given attribute. A runtime error results if the file cannot be
found. The SetAttr statement accepts the following named parameters:

Parameter Description
pathname String containing the name of the file.
Attributes Integer specifying the new attribute of the file.
450

Sgn
The attributes parameter can contain any combination of the following values:

The attributes can be combined using the + operator or the binary Or operator.

Example Sub Main
 Open "test.dat" For Output Access Write As #1
 Close
 Session.Echo "The current file attribute is: " & GetAttr("test.dat")
 SetAttr "test.dat",ebReadOnly Or ebSystem
 Session.Echo "The file attribute was set to: " & GetAttr("test.dat")
End Sub

See Also Drive, Folder, and File Access on page 3

Sgn
Syntax Sgn(number)

Description Returns an Integer indicating whether a number is less than, greater than, or equal to 0. Returns 1 if
number is greater than 0. Returns 0 if number is equal to 0. Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null, then a runtime error is
generated. Empty is treated as 0.

Example Sub Main
 a% = -100
 b% = 100
 c% = a% * b%
 Select Case Sgn(c%)
 Case -1
 Session.Echo "The product is negative " & Sgn(c%)
 Case 0
 Session.Echo "The product is 0 " & Sgn(c%)
 Case 1
 Session.Echo "The product is positive " & Sgn(c%)
 End Select
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Constant Value Includes
ebNormal 0 Turns off all attributes
ebReadOnly 1 Read-only files
ebHidden 2 Hidden files
ebSystem 4 System files
ebVolume 8 Volume label
ebArchive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes
451

Shell
Shell
Syntax Shell(pathname [,windowstyle])

Description Executes another application, returning the task ID if successful. The Shell statement accepts the
following named parameters:

A runtime error is generated if windowstyle is not one of the above values.

An error is generated if unsuccessful running pathname.

The Shell command runs programs asynchronously: the statement following the Shell statement will
execute before the child application has exited. The next statement may run even before the child
application has finished loading.

The Shell function returns a value suitable for activating the application using the AppActivate
statement.

This function returns a global process ID that can be used to identify the new process. The Shell
function does not support file associations (i.e., setting pathname to "sample.txt" will not execution
Notepad).

When specifying long filenames as parameters, you may have to enclose the parameters in double
quotes. For example, to run WordPad, passing it a file called "Sample Document", you would use the
following statement:

r = Shell("WordPad ""Sample Document""")

Parameter Description
pathname String containing the name of the application and any parameters.
Windowstyle Optional integer specifying the state of the application window after execution. It

can be any of the following values:
ebHide Application is hidden.
ebNormalFocus Application is displayed in default position with the

focus.
ebMinimizedFocus Application is minimized with the focus (this is the

default).
ebMaximizedFocus Application is maximized with the focus.
ebNormalNoFocus Application is displayed in default position without

the focus.
ebMinimizedNoFocus Application is minimized without the focus
452

Sin
Example Sub Main
 id = Shell("clock.exe",1)
 AppActivate "Clock"
 Sleep(2000)
 AppClose "Clock"
End Sub

See Also Operating System Control on page 9

Sin
Syntax Sin(number)

Description Returns a Double value specifying the sine of number. The number parameter is a Double specifying
an angle in radians.

Example Sub Main
 c# = Sin(Pi / 4)
 Session.Echo "The sine of 45 degrees is: " & c#
End Sub

See Also Tan; Cos; Atn.

Single (data type)
Syntax Single

Description Used to declare variables capable of holding real numbers with up to seven digits of precision. Single
variables are used to hold numbers within the following ranges:

The type-declaration character for Single is !.

Storage
Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing within a structure,
singles require 4 bytes of storage. When used with binary or random files, 4 bytes of storage is
required.

Each single consists of the following:

• A 1-bit sign

• An 8-bit exponent

Sign Range
Negative -3.402823E38 <= single <= -1.401298E-45
Positive 1.401298E-45 <= single <= 3.402823E38
453

Sleep
• A 24-bit mantissa

See Also Numeric, Math, and Accounting Functions on page 5

Sleep
Syntax Sleep milliseconds

Description Causes the macro to pause for a specified number of milliseconds. The milliseconds parameter is a
Long in the following range:

0 <= milliseconds <= 2,147,483,647

Example Sub Main
 Msg.Open "Waiting 2 seconds",0,False,False
 Sleep(2000)
 Msg.Close
End Sub

Under Windows, the accuracy of the system clock is modulo 55 milliseconds. The value of
milliseconds will, in the worst case, be rounded up to the nearest multiple of 55. In other words, if
milliseconds is 1, it will be rounded to 55 in the worst case.

See Also Macro Control and Compilation on page 6

Sln
Syntax Sln(cost, salvage, life)

Description Returns the straight-line depreciation of an asset assuming constant benefit from the asset. The Sln of
an asset is found by taking an estimate of its useful life in years, assigning values to each year, and
adding up all the numbers. The formula used to find the Sln of an asset is as follows:

(Cost - Salvage Value) / Useful Life

The Sln function requires the following named parameters:

The unit of time used to express the useful life of the asset is the same as the unit of time used to
express the period for which the depreciation is returned.

Parameter Description
cost Double representing the initial cost of the asset.
Salvage Double representing the estimated value of the asset at the end of its useful

life.
Life Double representing the length of the asset's useful life.
454

Space, Space$
Example This example calculates the straight-line depreciation of an asset that cost $10,000.00 and has a
salvage value of $500.00 as scrap after ten years of service life.

Sub Main
 dep# = Sln(10000.00,500.00,10)
 Session.Echo "The annual depreciation is: " & Format(dep#,"Currency")
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Space, Space$
Syntax Space[$](number)

Description Returns a string containing the specified number of spaces. Space$ returns a String, whereas Space
returns a String variant. The number parameter is an Integer between 0 and 32767.

Example Sub Main
 ln$ = Space$(10)
 Session.Echo "Hello" & ln$ & "over there."
End Sub

See Also Character and String Manipulation on page 2

Spc
Syntax Spc(numspaces)

Description Prints out the specified number of spaces. This function can only be used with the Print and Print#
statements. The numspaces parameter is an Integer specifying the number of spaces to be printed. It
can be any value between 0 and 32767. If a line width has been specified (using the Width statement),
then the number of spaces is adjusted as follows:

numspaces = numspaces Mod width

If the resultant number of spaces is greater than width – print_position, then the number of spaces is
recalculated as follows:

numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line length.
Furthermore, with a large value for column and a small line width, the file pointer will never advance
more than one line.

Example Sub Main
 Viewport.Open
 Print "I am"; Spc(20); "20 spaces apart!"
 Sleep (10000) 'Wait 10 seconds.
 Viewport.Close
End Sub
455

SQLBind
See Also Character and String Manipulation on page 2; Drive, Folder, and File Access on page 3

SQLBind
Syntax SQLBind(connectionnum, array [,column])

Description Specifies which fields are returned when results are requested using the SQLRetrieve or
SQLRetrieveToFile function. The following table describes the named parameters to the SQLBind
function:

This function returns the number of bound columns on the connection. If no columns are bound, then
0 is returned. If there are no pending queries, then calling SQLBind will cause an error (queries are
initiated using the SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

There is a trappable runtime error if SQLBind fails. Additional error information can then be retrieved
using the SQLError function.

Example This example binds columns to data.

Sub Main
 Dim columns() As Variant
 id& = SQLOpen("dsn=SAMPLE",,3)
 t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 i% = SQLBind(id&,columns,3)
 i% = SQLBind(id&,columns,1)
 i% = SQLBind(id&,columns,2)
 i% = SQLBind(id&,columns,6)
 For x = 0 To (i% - 1)
 Session.Echo columns(x)
 Next x
 id& = SQLClose(id&)
End Sub

Parameter Description
connectionnum Long parameter specifying a valid connection.
Array Any array of variants. Each call to SQLBind adds a new column number (an inte-

ger) in the appropriate slot in the array. Thus, as you bind additional columns, the
array parameter grows, accumulating a sorted list (in ascending order) of bound
columns. If array is fixed, then it must be a one-dimensional variant array with
sufficient space to hold all the bound column numbers. A runtime error is gener-
ated if array is too small. If array is dynamic, then it will be resized to exactly
hold all the bound column numbers.

Column Optional long parameter that specifies the column to which to bind data. If this
parameter is omitted, all bindings for the connection are dropped.
456

SQLClose
See Also SQL Access on page 11

SQLClose
Syntax SQLClose(connectionnum)

Description Closes the connection to the specified data source. The unique connection ID (connectionnum) is a
Long value representing a valid connection as returned by SQLOpen. After SQLClose is called, any
subsequent calls made with the connectionnum will generate runtime errors.

The SQLClose function returns 0 if successful; otherwise, it returns the passed connection ID and
generates a trappable runtime error. Additional error information can then be retrieved using the
SQLError function.

The compiler automatically closes all open SQL connections when either the macro or the application
terminates. You should use the SQLClose function rather than relying on the compiler to automatically
close connections in order to ensure that your connections are closed at the proper time.

Example Sub Main
 id& = SQLOpen("dsn=SAMPLE",,3)
 id& = SQLClose(id&)
End Sub

See Also SQL Access on page 11

SQLError
Syntax SQLError(resultarray, connectionnum)

Description Retrieves driver-specific error information for the most recent SQL functions that failed. This function
is called after any other SQL function fails. Error information is returned in a two-dimensional array
(resultarray). The following table describes the named parameters to the SQLError function:

Each array entry in the resultarray parameter describes one error. The three elements in each array
entry contain the following information:

Parameter Description
resultarray Two-dimensional variant array, which can be dynamic or fixed. If the array is

fixed, it must be (x,3), where x is the number of errors you want returned. If x is
too small to hold all the errors, then the extra error information is discarded. If x is
greater than the number of errors available, all errors are returned, and the empty
array elements are set to empty. If the array is dynamic, it will be resized to hold
the exact number of errors.

Connectionnum Optional long parameter specifying a connection ID. If this parameter is omitted,
error information is returned for the most recent SQL function call.
457

SQLExecQuery
For example, to retrieve the ODBC text error message of the first returned error, the array is referenced
as:

resultarray(0,2)

The SQLError function returns the number of errors found.

There is a runtime error if SQLError fails. (You cannot use the SQLError function to gather additional
error information in this case.)

Example Sub Main
 Dim a() As Variant
 On Error Goto Trap
 id& = SQLOpen("",,4)
 id& = SQLClose(id&)
 Exit Sub
Trap:
 rc% = SQLError(a)
 If (rc%) Then
 For x = 0 To (rc% - 1)
 Session.Echo "The SQLState returned was: " & a(x,0)
 Session.Echo "The native error code returned was: " & a(x,1)
 Session.Echo a(x,2)
 Next x
 End If
End Sub

SQLExecQuery
Syntax SQLExecQuery(connectionnum, querytext)

Description Executes an SQL statement query on a data source. This function is called after a connection to a data
source is established using the SQLOpen function. The SQLExecQuery function may be called multiple
times with the same connection ID, each time replacing all results. The following table describes the
named parameters to the SQLExecQuery function:

Element Value
(entry,0) The ODBC error state, indicated by a long containing the error class and subclass.
(entry,1) The ODBC native error code, indicated by a long.
(entry,2) The text error message returned by the driver. This field is string type.

Parameter Description
connectionnum Long identifying a valid connected data source. This parameter is returned by the

SQLOpen function.
Querytext String specifying an SQL query statement. The SQL syntax of the string must

strictly follow that of the driver.
458

SQLGetSchema
The return value of this function depends on the result returned by the SQL statement:

There is a runtime error if SQLExecQuery fails. Additional error information can then be retrieved
using the SQLError function.

Example Sub Main
 Dim s As String
 Dim qry As Long
 Dim a() As Variant
 On Error Goto Trap
 id& = SQLOpen("dsn=SAMPLE", s$, 3)
 qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 Session.Echo "There are " & qry & " columns in the result set."
 id& = SQLClose(id&)
 Exit Sub
Trap:
 rc% = SQLError(a)
 If (rc%) Then
 For x = 0 To (rc% - 1)
 Session.Echo "The SQLState returned was: " & a(x,0)
 Session.Echo "The native error code returned was: " & a(x,1)
 Session.Echo a(x,2)
 Next x
 End If
End Sub

See Also SQL Access on page 11

SQLGetSchema
Syntax SQLGetSchema(connectionnum, typenum, [, [resultarray] [, qualifiertext]])

Description Returns information about the data source associated with the specified connection. The following
table describes the named parameters to the SQLGetSchema function:

SQL Statement Value
SELECT...FROM The value returned is the number of columns returned by the SQL state-

ment
DELETE,INSERT,UPDATE The value returned is the number of rows affected by the SQL statement

Parameter Description
connectionnum Long parameter identifying a valid connected data source. This parameter is

returned by the SQLOpen function.
459

SQLGetSchema
Typenum Integer parameter specifying the results to be returned. The following are the
values for this parameter:

1: Returns a one-dimensional array of available data sources. The array is
returned in the resultarray parameter.2: Returns a one-dimensional array of
databases (either directory names or database names, depending on the driver)
associated with the current connection. The array is returned in the resultarray
parameter.

3: Returns a one-dimensional array of owners (user IDs) of the database
associated with the current connection. The array is returned in the resultarray
parameter.

4: Returns a one-dimensional array of table names for a specified owner and
database associated with the current connection. The array is returned in the
resultarray parameter.

5: Returns a two-dimensional array (n by 2) containing information about a
specified table. The first element contains the column name. The second element
contains the data type of the column

6: Returns a string containing the ID of the current user.

7: Returns a string containing the name (either the directory name or the database
name, depending on the driver) of the current database.

8: Returns a string containing the name of the data source on the current
connection.
9: Returns a string containing the name of the DBMS of the data source on the
current connection (e.g., "FoxPro 2.5" or "Excel Files").

10: Returns a string vontaining the name of the server for the data source.

11: Returns a string containing the owner qualifier used by the data source (e.g.,
"owner," "Authorization ID," "Schema").

Parameter Description
460

SQLGetSchema
There is a runtime error if SQLGetSchema fails. Additional error information can then be retrieved
using the SQLError function.

If you want to retrieve the available data sources (where typenum = 1) before establishing a
connection, you can pass 0 as the connectionnum parameter. This is the only action that will execute
successfully without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to retrieve the requested
information. Some database drivers do not support these calls and will therefore cause the
SQLGetSchema function to fail.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 Dim dsn() As Variant
 numdims% = SQLGetSchema(0,1,dsn)
 If (numdims%) Then
 mesg = "Valid data sources are:" & crlf

Typenum
(cont).

12: Returns a string containing the table qualifier used by the data source (e.g.,
"table," "file").

13: Returns a string containing the database qualifier used by the data source
(e.g., "database," "directory").

14: Returns a string containing the procedure qualifier used by the data source
(e.g., "database procedure," "stored procedure," "procedure").

Resultarray Optional variant array parameter. This parameter is only required for action
values 1, 2, 3, 4, and 5. The returned information is put into this array. If
resultarray is fixed and it is not the correct size necessary to hold the requested
information, then SQLGetSchema will fail. If the array is larger than required,
then any additional elements are erased. If resultarray is dynamic, then it will
be redimensioned to hold the exact number of elements requested.

qualifiertext Optional string parameter required for actions 3, 4, or 5. The values are as
follows:

3: The qualifiertext parameter must be the name of the database represented
by ID.

4: The qualifiertext parameter specifies a database name and an owner name.
The syntax for this string is: DatabaseName.OwnerName

5: The qualifiertext parameter specifies the name of a table on the current
connection.

Parameter Description
461

SQLOpen
 For x = 0 To numdims% - 1
 mesg = mesg & dsn(x) & crlf
 Next x
 Else
 mesg = "There are no available data sources."
 End If
 Session.Echo mesg
End Sub

See Also SQL Access on page 11

SQLOpen
Syntax SQLOpen(connectionstr [, [outputref] [, driverprompt]])

Description Establishes a connection to the specified data source, returning a Long representing the unique
connection ID. This function connects to a data source using a login string (connectionstr) and
optionally sets the completed login string (outputref) that was used by the driver. The following table
describes the named parameters to the SQLOpen function:

The SQLOpen function will never return an invalid connection ID. The following example establishes
a connection using the driver's login dialog:

id& = SQLOpen("",,1)

The compiler returns 0 and generates a trappable runtime error if SQLOpen fails. Additional error
information can then be retrieved using the SQLError function.

Parameter Description
connectionstr String expression containing information required by the driver to connect to the

requested data source. The syntax must strictly follow the driver's SQL syntax.
Outputref Optional string variable that will receive a completed connection string returned

by the driver. If this parameter is missing, then no connection string will be
returned.

Driverprompt Integer expression specifying any of the following values:
The driver's login dialog is always displayed.

The driver's dialog is only displayed if the connection string does not contain
enough information to make the connection. This is the default behavior.

The driver's dialog is only displayed if the connection string does not contain
enough information to make the connection. dialog options that were passed as
valid parameters are dimmed and unavailable.

The driver's login dialog is never displayed.
462

SQLRequest
Before you can use any SQL statements, you must set up a data source and relate an existing database
to it. This is accomplished using the odbcadm.exe program.

Example Sub Main
 Dim s As String
 id& = SQLOpen("dsn=SAMPLE",s$,3)
 Session.Echo "The completed connection string is: " & s$
 id& = SQLClose(id&)
End Sub

See Also SQL Access on page 11

SQLRequest
Syntax SQLRequest(connectionstr, querytext, resultarray [, [outputref] [, [driverprompt] [,

colnameslogical]]])

Description Opens a connection, runs a query, and returns the results as an array. The SQLRequest function takes
the following named parameters:

There is a runtime error if SQLRequest fails. Additional error information can then be retrieved using
the SQLError function.

The SQLRequest function performs one of the following actions, depending on the type of query being
performed:

Parameter Description
connectionstr String specifying the connection information required to connect to the data

source.
Querytext String specifying the query to execute. The syntax of this string must strictly

follow the syntax of the ODBC driver.
Resultarray Array of variants to be filled with the results of the query. The resultarray

parameter must be dynamic: it will be resized to hold the exact number of
records and fields.

Outputref Optional string to receive the completed connection string as returned by the
driver.

Driverprompt Optional integer specifying the behavior of the driver's dialog.
Colnameslogical Optional boolean specifying whether the column names are returned as the

first row of results. The default is False.

Type of Query Action
SELECT The SQLRequest function fills resultarray with the results of the

query, returning a long containing the number of results placed in the
array. The array is filled as follows (assuming an x by y query):
463

SQLRetrieve
Example Sub Main
 Dim a() As Variant
 l& = SQLRequest("dsn=SAMPLE;","Select * From c:\sample.dbf",a,,3,True)
 For x = 0 To Ubound(a)
 For y = 0 To l - 1
 Session.Echo a(x,y)
 Next y
 Next x
End Sub

SQLRetrieve
Syntax SQLRetrieve(connectionnum, resultarray[, [maxcolumns] [, [maxrows] [,

[colnameslogical] [, fetchfirstlogical]]]])

Description Retrieves the results of a query. This function is called after a connection to a data source is
established, a query is executed, and the desired columns are bound. The following table describes the
named parameters to the SQLRetrieve function:

(record 1,field 1)
(record 1,field 2)
:
(record 1,field y)
(record 2,field 1)
(record 2,field 2)
:
(record 2,field y)
:
:
(record x,field 1)
(record x,field 2)
:
(record x,field y)

INSERT, DELETE, UPDATE The SQLRequest function erases resultarray and returns a long
containing the number of affected rows.

Type of Query Action

Parameter Description
connectionnum Long identifying a valid connected data source with pending query results.
Resultarray Two-dimensional array of variants to receive the results. The array has x

rows by y columns. The number of columns is determined by the number of
bindings on the connection.
464

SQLRetrieve
This function returns a long specifying the number of rows available in the array.

There is a runtime error if SQLRetrieve fails. Additional error information is placed in memory.

Example Sub Main
 Dim a() As Variant
 Dim b() As Variant
 Dim c() As Variant
 On Error Goto Trap
 id& = SQLOpen("DSN=SAMPLE",,3)
 qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf"")
 i% = SQLBind(id&,b,3)
 i% = SQLBind(id&,b,1)
 i% = SQLBind(id&,b,2)
 i% = SQLBind(id&,b,6)
 l& = SQLRetrieve(id&,c)
 For x = 0 To Ubound(c,2)
 For y = 0 To l& - 1
 Session.Echo c(x,y)
 Next y
 Next x
 id& = SQLClose(id&)
 Exit Sub
Trap:
 rc% = SQLError(a)
 If (rc%) Then
 For x = 0 To (rc% - 1)
 Session.Echo "The SQLState returned was: " & a(x,0)
 Session.Echo "The native error code returned was: " & a(x,1)
 Session.Echo a(x,2)

Maxcolumns Optional integer expression specifying the maximum number of columns to
be returned. If maxcolumns is greater than the number of columns bound,
the additional columns are set to empty. If maxcolumns is less than the num-
ber of bound results, the rightmost result columns are discarded until the
result fits.

Maxrows Optional integer specifying the maximum number of rows to be returned. If
maxrows is greater than the number of rows available, all results are
returned, and additional rows are set to empty. If maxrows is less than the
number of rows available, the array is filled, and additional results are
placed in memory for subsequent calls to SQLRetrieve.

Colnameslogical Optional boolean specifying whether column names should be returned as
the first row of results. The default is False.

Fetchfirstlogical Optional boolean expression specifying whether results are retrieved from
the beginning of the result set. The default is False.
Before you can retrieve the results from a query, you must:
Initiate a query by calling the SQLExecQuery function
Specify the fields to retrieve by calling the SQLBind function.

Parameter Description
465

SQLRetrieveToFile
 Next x
 End If
End Sub

See Also SQL Access on page 11

SQLRetrieveToFile
Syntax SQLRetrieveToFile(connectionnum, destination [, [colnameslogical] [,

columndelimiter]])

Description Retrieves the results of a query and writes them to the specified file. The following table describes the
named parameters to the SQLRetrieveToFile function:

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function.

This function returns the number of rows written to the file. A runtime error is generated if there are
no pending results or if the compiler is unable to open the specified file.

There is a runtime error if SQLRetrieveToFile fails. Additional error information may be placed in
memory for later use with the SQLError function.

Example Sub Main
 Dim a() As Variant
 Dim b() As Variant
 On Error Goto Trap
 id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
 t& = SQLExecQuery(id&, "Select * From c:\sample.dbf"")
 i% = SQLBind(id&,b,3)
 i% = SQLBind(id&,b,1)
 i% = SQLBind(id&,b,2)
 i% = SQLBind(id&,b,6)
 l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")
 id& = SQLClose(id&)
 Exit Sub
Trap:
 rc% = SQLError(a)
 If (rc%) Then
 For x = 0 To (rc-1)
 Session.Echo "The SQLState returned was: " & a(x,0)

Parameter Description
connectionnum Long specifying a valid connection ID.
Destination String specifying the file where the results are written.
Colnameslogical Optional boolean specifying whether the first row of results returned are the

bound column names. By default, the column names are not returned.
Columndelimiter Optional string specifying the column separator. A tab (Chr$(9)) is used as

the default.
466

Sqr
 Session.Echo "The native error code returned was: " & a(x,1)
 Session.Echo a(x,2)
 Next x
 End If
End Sub

See Also SQL Access on page 11

Sqr
Syntax Sqr(number)

Description Returns a Double representing the square root of number. The number parameter is a Double greater
than or equal to 0.

See Also This example calculates the square root of the numbers from 1 to 10 and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 For x = 1 To 10
 sx# = Sqr(x)
 mesg = mesg & Format(x,"Fixed") & " - " & Format(sx#,"Fixed") & crlf
 Next x
 Session.Echo mesg
End Sub

Stop
Syntax Stop

Description Suspends execution of the current macro, returning control to the debugger.

Example Sub Main
 For x = 1 To 10
 z = Random(0,10)
 If z = 0 Then Stop
 y = x / z
 Next x
End Sub

See Also Macro Control and Compilation on page 6

Str, Str$
Syntax Str[$](number)

Description Returns a string representation of the given number. The number parameter is any numeric expression
or expression convertible to a number. If number is negative, then the returned string will contain a
leading minus sign. If number is positive, then the returned string will contain a leading space.
467

StrComp
Singles are printed using only 7 significant digits. Doubles are printed using 15–16 significant digits.

These functions only output the period as the decimal separator and do not output thousands
separators. Use the CStr, Format, or Format$ function for this purpose.

Example Sub Main
 x# = 100.22
 Session.Echo "The string value is: " + Str(x#)
End Sub

See Also Character and String Manipulation on page 2

StrComp
Syntax StrComp(string1,string2 [,compare])

Description Returns an Integer indicating the result of comparing the two string arguments. One of the following
values is returned:

The StrComp function accepts the following parameters:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This string is UPPERCASE and lowercase"
 b$ = "This string is uppercase and lowercase"

Value Description
0 string1 = string2
1 string1 > string2
–1 string1 < string2
Null string1 or string2 is null

Parameter Description
string1 First string to be compared, which can be any expression convertible to a string.
string2 Second string to be compared, which can be any expression convertible to a

string.
Compare Optional integer specifying how the comparison is to be performed. It can be

either of the following values:
0 Case-sensitive comparison
1 Case-insensitive comparison

If compare is not specified, then the current Option Compare setting is used. If
no Option Compare statement has been encountered, then Binary is used (i.e.,
string comparison is case-sensitive).
468

StrConv
 c$ = "This string"
 d$ = "This string is uppercase and lowercase characters"
 abc = StrComp(a$,b$,0)
 mesg = mesg & "a and c (sensitive) : " & Format(abc,"True/False") & crlf
 abi = StrComp(a$,b$,1)
 mesg = mesg & "a and b (insensitive): " & Format(abi,"True/False") & crlf
 aci = StrComp(a$,c$,1)
 mesg = mesg & "a and c (insensitive): " & Format(aci,"True/False") & crlf
 bdi = StrComp(b$,d$,1)
 mesg = mesg & "b and d (sensitive) : " & Format(bdi,"True/False") & crlf
 Session.Echo mesg
End Sub

See Also Character and String Manipulation on page 2; Keywords, Data Types, Operators, and Expressions on
page 4

StrConv
Syntax StrConv(string, conversion)

Description Converts a string based on a conversion parameter. The StrConv function takes the following named
parameters:

The conversion parameter can be any combination of the following constants:

Parameter Description
string A string expression specifying the string to be converted.
Conversion An integer specifying the types of conversions to be performed.

Constant Value Description
ebUpperCase 1 Converts string to uppercase.
ebLowerCase 2 Converts string to lowercase.
ebProperCase 3 Capitalizes the first letter of each word.
ebWide 4 Converts narrow characters to wide characters. This constant is sup-

ported on Japanese locales only.
ebNarrow 8 Converts wide characters to narrow characters. This constant is sup-

ported on Japanese locales only.
ebKatakana 16 Converts Hiragana characters to Katakana characters. This constant is

supported on Japanese locales only.
469

String (data type)
A runtime error is generated when an unsupported conversion is requested. For example, the ebWide
and ebNarrow constants can only be used on an MBCS platform.

The following groupings of constants are mutually exclusive and therefore cannot be specified at the
same time:

ebUpperCase, ebLowerCase, ebProperCase
ebWide, ebNarrow
ebUnicode, ebFromUnicode

Many of the constants can be combined. For example, ebLowerCase Or ebNarrow.

When converting to proper case (i.e., the ebProperCase constant), the following are seen as word
delimiters: tab, linefeed, carriage-return, formfeed, vertical tab, space, null.

Example Sub Main
 a = InputBox("Type any string:")
 Session.Echo "Upper case: " & StrConv(a,ebUpperCase)
 Session.Echo "Lower case: " & StrConv(a,ebLowerCase)
 Session.Echo "Proper case: " & StrConv(a,ebProperCase)
End Sub

See Also Character and String Manipulation on page 2

String (data type)
Syntax String

Description Capable of holding a number of characters. Strings are used to hold sequences of characters, each
character having a value between 0 and 255. Strings can be any length up to a maximum length of
32767 characters. Strings can contain embedded nulls, as shown in the following example:

s$ = "Hello" + Chr$(0) + "there" 'String with embedded null

The length of a string can be determined using the Len function. This function returns the number of
characters that have been stored in the string, including unprintable characters.

The type-declaration character for string is $.

ebHiragana 32 Converts Katakana characters to Hiragana characters. This constant is
supported on Japanese locales only.

ebUnicode 64 Converts string from MBCS to UNICODE. (This constant can only be
used on Windows NT, which supports UNICODE.)

ebFromUnicode 128 Converts string from UNICODE to MBCS. (This constant can only be
used on Windows NT, which supports UNICODE.)

Constant Value Description
470

String, String$
String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for storage of the
string depends on the size of its content. The following statements declare a variable-length string and
assign it a value of length 5:

Dim s As String
s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration:

Dim s As String * 20
s = "Hello" 'String length = 20 with spaces to end of string.

When a string expression is assigned to a fixed-length string, the following rules apply:

• If the string expression is less than the length of the fixed-length string, then the fixed-length string
is padded with spaces up to its declared length.

• If the string expression is greater than the length of the fixed-length string, then the string expres-
sion is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as when passing
structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as described in the
following table:

See Also Character and String Manipulation on page 2; Keywords, Data Types, Operators, and Expressions on
page 4

String, String$
Syntax String[$](number, character)

Declared Stored
In structures In the same data area as that of the structure. Local structures are on the stack;

public structures are stored in the public data space; and private structures are
stored in the private data space. Local structures should be used sparingly as
stack space is limited.

In arrays In the global string space along with all the other array elements.
In local routines On the stack. The stack is limited in size, so local fixed-length strings should be

used sparingly.
471

Sub...End Sub
Description Returns a string of length number consisting of a repetition of the specified filler character. String$
returns a String, whereas String returns a String variant. These functions take the following named
parameters:

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This string will appear underlined."
 b$ = String$(Len(a$),"=")
 Session.Echo a$ & crlf & b$
End Sub

See Also Character and String Manipulation on page 2

Sub...End Sub
Syntax [Private | Public] [Static] Sub name[(arglist)]

 [statements]
End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are allowed):

[Optional] [ByVal | ByRef] parameter[()] [As type]

Note that a comment line must immediately follow the initial Sub line. This line is intended to identify
who created the macro and when. The comment line format is:

'! Macro created by name on date.

You must at least include a '! line.

Description Declares a subroutine. The Sub statement has the following parts:

Parameter Description
number Integer specifying the number of repetitions.
Character Integer specifying the character code to be used as the filler character. If character is

greater than 255 (the largest character value), then the compiler converts it to a valid
character using the following formula: character Mod 256. If character is a string,
then the first character of that string is used as the filler character.

Part Description
Private Indicates that the subroutine being defined cannot be called from other macros in other

modules.
Public Indicates that the subroutine being defined can be called from other macros in other

modules. If the Private and Public keywords are both missing, then Public is assumed.
Static Recognized by the compiler but currently has no effect.
472

Sub...End Sub
A subroutine terminates when one of the following statements is encountered:

End Sub
Exit Sub

Subroutines can be recursive.

Passing Parameters to Subroutines
Parameters are passed to a subroutine either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the ByRef keyword, then any
modifications to that passed parameter within the subroutine change the value of that variable in the
caller. If the parameter is declared using the ByVal keyword, then the value of that variable cannot be
changed in the called subroutine. If neither the ByRef nor the ByVal keyword is specified, then the
parameter is passed by reference.

Name Name of the subroutine, which must follow naming conventions:
Must start with a letter.

May contain letters, digits, and the underscore character (_). Punctuation and type-
declaration characters are not allowed. The exclamation point (!) can appear within
the name as long as it is not the last character.

Must not exceed 80 characters in length.
Optional Keyword indicating that the parameter is optional. All optional parameters must be of

type variant. Furthermore, all parameters that follow the first optional parameter must
also be optional. If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine whether an optional parame-
ter was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.
ByRef Keyword indicating that the parameter is passed by reference. If neither the ByVal nor

the ByRef keyword is given, then ByRef is assumed.
Parameter Name of the parameter, which must follow the same naming conventions as those

used by variables. This name can include a type-declaration character, appearing in
place of As type.

Type Type of the parameter (i.e., integer, string, and so on). Arrays are indicated with paren-
theses. For example, an array of integers is declared:

Sub Test(a() As Integer)End Sub

Part Description
473

Sub...End Sub
You can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserSub:

UserSub 10,12,(j)

Optional Parameters
You can skip parameters when calling subroutines, as shown in the following example:

Sub Test(a%,b%,c%)
End Sub

Sub Main
 Test 1,,4 'Parameter 2 was skipped.
End Sub

You can skip any parameter with the following restrictions:

• The call cannot end with a comma. For instance, using the above example, the following is not
valid:

 Test 1,,

The call must contain the minimum number of parameters as required by the called subroutine. For
instance, using the above example, the following are invalid:

 Test ,1 'Only passes two out of three required parameters.
 Test 1,2 'Only passes two out of three required parameters.

When you skip a parameter in this manner, the compiler creates a temporary variable and passes this
variable instead. The value of this temporary variable depends on the data type of the corresponding
parameter in the argument list of the called subroutine, as described in the following table:

Within the called subroutine, you will be unable to determine whether a parameter was skipped unless
the parameter was declared as a variant in the argument list of the subroutine. In this case, you can use
the IsMissing function to determine whether the parameter was skipped:

Value Data Type
0 Integer, long, single, double, currency
Zero-length string String
Nothing Object (or any data object)
Error Variant
December 30, 1899 Date
False Boolean
474

Switch
Sub Test(a,b,c)
 If IsMissing(a) Or IsMissing(b) Then Exit Sub
End Sub

Example Sub Main
 r! = 10
 PrintArea r!
End Sub
Sub PrintArea(r as single)
 area! = (r! ^ 2) * Pi
 Session.Echo "The area of a circle with radius " & r! & " = " & area!
End Sub

See Also Macro Control and Compilation on page 6

Switch
Syntax Switch(condition1,expression1 [,condition2,expression2 ...

[,condition7,expression7]])

Description Returns the expression corresponding to the first True condition. The Switch function evaluates each
condition and expression, returning the expression that corresponds to the first condition (starting
from the left) that evaluates to True. Up to seven condition/expression pairs can be specified. A
runtime error is generated it there is an odd number of parameters (i.e., there is a condition without a
corresponding expression). The Switch function returns null if no condition evaluates to True.

Example wd = Weekday(date)
strwd = switch(wd=1, "Sunday", wd=2, "Monday", wd=3, "Tuesday",
 wd=4, "Wednesday", wd=5, "Thursday", _
 wd=6, "Friday", wd=7, "Saturday")
Session.Echo "Today is " & strwd
End Sub

See Also Macro Control and Compilation on page 6

SYD
Syntax SYD(cost, salvage, life, period)

Description Returns the sum of years' digits depreciation of an asset over a specific period of time. The SYD of an
asset is found by taking an estimate of its useful life in years, assigning values to each year, and adding
up all the numbers. The formula used to find the SYD of an asset is as follows:

(Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following named parameters:
475

SYD
To receive accurate results, the parameters life and period must be expressed in the same units. If
life is expressed in terms of months, for example, then period must also be expressed in terms of
months.

Example In this example, an asset that cost $1,000.00 is depreciated over ten years. The salvage value is
$100.00, and the sum of the years' digits depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 For x = 1 To 10
 dep# = SYD(1000,100,10,x)
 mesg = mesg & "Year: " & x & " Dep: " & Format(dep#,"Currency") & crlf
 Next x
 Session.Echo mesg
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Parameter Description
cost Double representing the initial cost of the asset.
Salvage Double representing the estimated value of the asset at the end of its useful life.
Life Double representing the length of the asset's useful life.
Period Double representing the period for which the depreciation is to be calculated. It can-

not exceed the life of the asset.
476

T

Tab
Syntax Tab (column)

Description Prints the number of spaces necessary to reach a given column position.

Note This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position to which to advance. It
can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the number of spaces is
calculated as:

column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are printed on the
next line.

If a line width is specified (using the Width statement), then the column position is adjusted as follows
before applying the above two rules:

column = column Mod width

The Tab function is useful for making sure that output begins at a given column position, regardless
of the length of the data already printed on that line.

Example Sub Main
 Viewport.Open
 Print "Column1";Tab(10);"Column2";Tab(20);"Column3"
 Print Tab(3);"1";Tab(14);"2";Tab(24);"3"
 Sleep(10000) 'Wait 10 seconds.
 Viewport.Close
End Sub
477

Tan
See Also Drive, Folder, and File Access on page 3

Tan
Syntax Tan(number)

Description Returns a Double representing the tangent of number. The number parameter is a Double value given
in radians.

Example Sub Main
 c# = Tan(Pi / 4)
 Session.Echo "The tangent of 45 degrees is: " & c#
End Sub

See Also Numeric, Math, and Accounting Functions on page 5

Text
Syntax Text x,y,width,height,title$ [,[.Identifier] [,[FontName$] [,[size] [,style]]]]

Description Defines a text control within a dialog template. The text control only displays text; the user cannot set
the focus to a text control or otherwise interact with it. The text within a text control word-wraps. Text
controls can be used to display up to 32K of text. The Text statement accepts the following
parameters:

Parameter Description
x, y Integer positions of the control (in dialog units) relative to the upper left corner of

the dialog.
width, height Integer dimensions of the control in dialog units.
title$ String containing the text that appears within the text control. This text may con-

tain an ampersand character to denote an accelerator letter, such as "&Save" for
Save. Pressing this accelerator letter sets the focus to the control following the
Text statement in the dialog template.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). If this parameter is omitted, then the first two
words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If this param-
eter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text control. If this parame-
ter is omitted, then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text control. This can be
any of the following values:
ebRegular Normal font (i.e., neither bold nor italic)
478

TextBox
Accelerators are underlined, and the Alt+letter accelerator combination is used.

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
 CancelButton 80,32,40,14
 OKButton 80,8,40,14
 Text 4,8,68,44,"This text is displayed in the dialog."
End Dialog

See Also User Interaction on page 9

TextBox
Syntax TextBox x,y,width,height,.Identifier [,[isMultiline] [,[FontName$] [,[size]

[,style]]]]

Description Defines a single or multiline text-entry field within a dialog template. The TextBox statement requires
the following parameters:

ebBold Bold font
ebItalic Italic font
ebBoldItalic Bold-italic font. If this parameter is omitted, then ebRegular is

used.

Parameter Description

Parameter Description
x, y Integer position of the control (in dialog units) relative to the upper left corner of

the dialog.
width, height Integer dimensions of the control in dialog units.
.Identifier Name by which this control can be referenced by statements in a dialog function

(such as DlgFocus and DlgEnable). This parameter also creates a string variable
whose value corresponds to the content of the text box. This variable can be
accessed using the syntax

DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 = single-line;
1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If this
parameter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If this
parameter is omitted, then the default size for the default font of the dialog is
used.

style Style of the font used for display of the text within the text box control. This can
be any of the following values:
479

TextBox
If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the user types
into a multiline field, pressing the Enter key creates a new line rather than selecting the default button.

The isMultiLine parameter also specifies whether the text box is read-only and whether the text-box
should hide input for password entry. To specify these extra parameters, you can form the
isMultiLine parameter by ORing together the following values:

For example, the following statement creates a read-only multiline text box:

TextBox 10,10,80,14,.TextBox1,1 Or &H8000

The TextBox statement can only appear within a dialog template (i.e., between the Begin Dialog and
End Dialog statements).

When the dialog is created, the .Identifier variable is used to set the initial content of the text box.
When the dialog is dismissed, the variable will contain the new content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a multiline text box is the
default memory limit specified by Windows 98/Me.

Example Begin Dialog UserDialog3 81,64,128,60,"Untitled"
 CancelButton 80,32,40,14
 OKButton 80,8,40,14
 TextBox 4,8,68,44,.TextBox1,1
End Dialog

See Also User Interaction on page 9

ebRegular Normal font (i.e., neither bold nor italic)
ebBold Bold font
ebItalic Italic font
ebBoldItalic Bold-italic font. If this parameter is omitted, then ebRegular is

used.

Parameter Description

Value Meaning
0 Text box is single-line.
1 Text box is multi-line.
&H8000 Text box is read-only.
&H4000 Text box is password-entry.
480

Time, Time$ (functions)
Time, Time$ (functions)
Syntax Time[$][()]

Description Returns the system time as a String or as a Date variant. The Time$ function returns a string that
contains the time in a 24-hour time format, whereas Time returns a Date variant. To set the time, use
the Time/Time$ statements.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 oldtime$ = Time$
 mesg = "Time was: " & oldtime$ & crlf
 Time$ = "10:30:54"
 mesg = mesg & "Time set to: " & Time$ & crlf
 Time$ = oldtime$
 mesg = mesg & "Time restored to: " & Time$
 Session.Echo mesg
End Sub

See Also Time and Date Access on page 10

Time, Time$ (statements)
Syntax Time[$] = newtime

Description Sets the system time to the time contained in the specified string. The Time$ statement requires a string
variable in one of the following formats:

HH
HH:MM
HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59.

The Time statement converts any valid expression to a time, including string and numeric values.
Unlike the Time$ statement, Time recognizes many different time formats, including 12-hour times.

Note You may not have permission to change the time, causing runtime error 70 to be generated.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
 oldtime$ = Time$
 mesg = "Time was: " & oldtime$ & crlf
 Time$ = "10:30:54"
 mesg = mesg & "Time set to: " & Time$ & crlf
 Time$ = oldtime$
 mesg = mesg & "Time restored to: " & Time$
 Session.Echo mesg
End Sub

See Also Time and Date Access on page 10
481

Timer
Timer
Syntax Timer

Description Returns a Single representing the number of seconds that have elapsed since midnight.

Example Sub Main
 start& = Timer
 Session.Echo "Click the OK button, please."
 total& = Timer - start&
 Session.Echo "The elapsed time was: " & total& & " seconds."
End Sub

See Also Time and Date Access on page 10

TimeSerial
Syntax TimeSerial(hour, minute, second)

Description Returns a Date variant representing the given time with a date of zero. The TimeSerial function
requires the following named parameters:

Example Sub Main
 start# = TimeSerial(10,22,30)
 finish# = TimeSerial(10,35,27)
 dif# = Abs(start# - finish#)
 Session.Echo "The time difference is: " & Format(dif#, "hh:mm:ss")
End Sub

See Also Time and Date Access on page 10

TimeValue
Syntax TimeValue(time)

Description Returns a Date variant representing the time contained in the specified string argument. This function
interprets the passed time parameter looking for a valid time specification. The time parameter can
contain valid time items separated by time separators such as colon (:) or period (.). Time strings can
contain an optional date specification, but this is not used in the formation of the returned value. If a
particular time item is missing, then it is set to 0. For example, the string "10 pm" would be interpreted
as "22:00:00."

Parameter Description
hour Integer between 0 and 23.
Minute Integer between 0 and 59.
Second Integer between 0 and 59.
482

Transfer (object)
Example Sub Main
 t1$ = "10:15"
 t2# = TimeValue(t1$)
 Session.Echo "The TimeValue of " & t1$ & " is: " & t2#
End Sub

See Also Time and Date Access on page 10

Transfer (object)
The Transfer object is the current transfer method in use by the active session. With the Transfer
object you control or have access to those properties of SmarTerm that relate to file transfer, such as
generic File menu commands and any settings that appear on the Properties>File Transfer Properties
dialog (which vary depending on the transfer method). You can also access methods that relate to the
details of host connection (which also vary depending on the transfer method).

Note For macro commands dealing with data capture from the host, see the methods and properties of the
Session object.

All methods and properties unique to a given transfer method are prefixed with the name of the
transfer method, such as Transfer.FTPHostName. As of this version of SmarTerm, the supported file
transfer methods are FTP, IND$FILE, Kermit, XModem, YModem, and ZModem. However, because
ZModem handles so many file transfer issues automatically, there are no unique Transfer properties
or methods for it.

Transfer.Command
Kermit and FTP file transfer protocols only

Syntax Transfer.Command(commandtext$)

where commandtext$ is the command to execute (string).

Description Allows commands to be sent to the current SmarTerm file transfer method, returning the command’s
completion status (Boolean).

Example Sub Main
 Dim RetVal as Boolean
 RetVal = Transfer.Command("cwd /pub/samples")
 If RetVal = False Then
 GoTo ErrorHandler
 End If
 RetVal = Transfer.Command("lcd c:\incoming")
 If RetVal = False Then
 GoTo ErrorHandler
 End If
 RetVal = Transfer.Command("mget file1 file2")
 If RetVal = False Then
 GoTo ErrorHandler
 End If
 End
483

Transfer (object)
 ErrorHandler:
 Session.Echo "An error occurred, stopping the macro."
 End
End Sub

See Also File Transfer on page 2

Transfer.FTPAutoConnect
Syntax Transfer.FTPAutoConnect

Description Returns or sets whether an FTP connection should be established automatically (boolean).

Example Sub Main
 Dim AutoConnect as Boolean
 AutoConnect = Transfer.FTPAutoConnect
 Transfer.FTPAutoConnect = True
End Sub

See Also File Transfer on page 2

Transfer.FTPConfirmDeleteFiles
Syntax Transfer.FTPConfirmDeleteFiles

Description Returns or sets whether or not FTP will display a dialog confirming the potential deletion of a file
(Boolean). If set to TRUE (the default), and the macro detects that a file will be deleted, then the macro
pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro deletes the
file without confirmation.

Note There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example 'This example deletes files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
 Transfer.FTPConfirmDeleteFiles = FALSE
 MsgBox "File will be deleted without warning!"
 Transfer.Command("mdel *.*")
Else
 MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also File Transfer on page 2

Transfer.FTPConfirmRemoveFolders
Syntax Transfer.FTPConfirmRemoveFolders
484

Transfer (object)
Description Returns or sets whether or not FTP will display a dialog confirming the potential removal of a folder
(Boolean). If set to TRUE (the default), and the macro detects that a folder will be removed, then the
macro pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro
removes the folder without confirmation.

Note There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example 'This example removes folders via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
 Transfer.FTPConfirmRemoveFolders = FALSE
 MsgBox "Folders will be removed without warning!"
 Transfer.Command("rmdir .")
Else
 MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also File Transfer on page 2

Transfer.FTPConfirmReplaceFiles
Syntax Transfer.FTPConfirmReplaceFiles

Description Returns or sets whether or not FTP will display a dialog confirming the potential replacement of a file
(Boolean). If set to TRUE (the default), and the macro detects that a file will be replaced, then the
macro pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro
replaces the file without confirmation.

Note There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example 'This example replaces files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

|If Transfer.Command("dir") = TRUE Then
 Transfer.FTPConfirmReplaceFiles = FALSE
 MsgBox "File will be replaced without warning!"
 Transfer.Command("mget *.*")
Else
 MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also File Transfer on page 2
485

Transfer (object)
Transfer.FTPConfirmTransferFiles
Syntax Transfer.FTPConfirmTransferFiles

Description Returns or sets whether or not FTP will display a dialog confirming file transfer (Boolean). If set to
TRUE, and the macro detects that a file will be transfered, then the macro pauses until the user
responds to the confirmation dialog. If set to FALSE (the default), then the macro transfers the file
without confirmation.

Note There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example 'This example transfers files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
 Transfer.FTPConfirmTransferFiles = FALSE
 MsgBox "File will be transfered without warning!"
 Transfer.Command("mput *.*")
Else
 MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also File Transfer on page 2

Transfer.FTPConfirmTransferFolders
Syntax Transfer.FTPConfirmTransferFolders

Description Returns or sets whether or not FTP will display a dialog confirming folder transfer (Boolean).

Note This property is included in support of future capabilities. FTP is not currently able to transfer folders.

See Also File Transfer on page 2

Transfer.FTPDeleteIncompleteFiles
Syntax Transfer.FTPDeleteIncompleteFiles

Description Returns or sets whether or not FTP will delete incomplete files (boolean). If set to true (default), the
macro will tell ftp to delete incomplete files. If set to false, then FTP will not delete incomplete files.

See Also File Transfer on page 2

Example Sub Main
486

Transfer (object)
'! This example downloads a file from a remote host using FTP
 Transfer.FTPHostName = "ftp.host.com"
 Transfer.FTPUserName = "User"
 Transfer.FTPUserPassword = "Password"
 Transfer.Command "Lcd 'c:\'"
 Transfer.Command "Type binary"
 Transfer.FTPDeleteIncompleteFiles=False
 Transfer.Command "Get SomeFile.dat"
 Transfer.Command "Quit"
End Sub

Transfer.FTPHostName
Telnet sessions only

Syntax Transfer.FTPHostName

Description Returns or sets the FTP host name (string).

Example Sub Main
 Dim HostName as String
 HostName = Transfer.FTPHostName
 If HostName <> "ftp.host.com" Then
 Session.Echo "Using the ftp.host.com FTP site"
 Transfer.FTPHostName = "ftp.host.com"
 End If
End Sub

See Also File Transfer on page 2

Transfer.FTPSecureCompression
Syntax Transfer.FTPSecureCompression

Description Returns or sets whether SFTP supports data compression over the SSH connection (Boolean). If set to
FALSE (the default), the client will not negotiate data compression with the server. If set to TRUE,
the client will negotiate data compression with the server. If the server supports it and requests it, the
data will be compressed.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2

Transfer.FTPSecureFirstTimeWarningsOff
Syntax Transfer.FTPSecureFirstTimeWarningsOff

Description Returns or sets whether to display initial warnings when first connecting to a host (Boolean). The
warnings would say that the host ID key was not found on the client. If this is FALSE (default), a
487

Transfer (object)
warning is displayed and the user is asked whether to continue. If this is TRUE, no warning is provided
and the ID key is automatically saved to the sftp/known_hosts2 folder.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2

Transfer.FTPSecurePortNumber
Syntax Transfer.FTPSecurePortNumber = ”22”

Description Returns or sets the TCP/IP port number for the SFTP connection (string). The default, “22”, is
standard for both SSH and SFTP.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2

Transfer.FTPSecureSocksEnabled
Syntax Transfer.FTPSecureSocksEnables

Description Returns or sets whether SFTP will use a SOCKS server to connect to the SFTP server (boolean).
Setting this to FALSE (default) will not use the SOCKS protocol for connecting. Setting this to TRUE
will use the SOCKS protocol and Secure Socks settings specified.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2

Transfer.FTPSecureSocksPortNumber
Syntax Transfer.FTPSecureSocksPortNumber = “1080”

Description Returns or sets the TCP/IP port number to be used with the SOCKS server (string). The default,
“1080”, is standard for SOCKS servers.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2
488

Transfer (object)
Transfer.FTPSecureSocksServerName
Syntax Transfer.FTPSecureSocksServerName = “MySocksServer”

Description Returns or sets the name of the current Socks Server (string). This is blank by default.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example See the example for Transfer.FTPUseSecureFTP

See Also File Transfer on page 2

Transfer.FTPUserName
Telnet sessions only

Syntax Transfer.FTPUserName

Description Returns or sets the FTP user name (string).

Example Sub Main
 Dim UserName as String
 UserName = Transfer.FTPUserName
 If UserName <> "anonymous" Then
 Session.Echo "Using an anonymous login for this host."
 Transfer.FTPUserName = "anonymous"
 End If
End Sub

See Also File Transfer on page 2

Transfer.FTPUserPassword
Telnet sessions only

Syntax Transfer.FTPUserPassword

Description Returns or sets the FTP user password (string).

Example Sub Main
 Dim Password as String
 Password = Transfer.FTPUserPassword
 If Password = "" Then
 Transfer.FTPUserPassword = "jarngy49"
 End If
End Sub

See Also File Transfer on page 2

Transfer.FTPUseSecureFTP
Syntax Transfer.FTPUseSecureFTP
489

Transfer (object)
Description Returns or sets whether to use SFTP transfer method (boolean). If this is set to FALSE (default), a
standard FTP connection is established and the FTP Secure commands are not used. If this is set to
TRUE, an SFTP connection is established using the SFTP command settings as well as other FTP
commands.

To change the default value, this setting needs to be set prior to establishing the SFTP connection. For
SFTP commands to work correctly, FTP confirmation prompts should be disabled. Because of the
structure of SFTP, these should be disabled after establishing the SFTP connection.

Example Sub testsftp
Dim bRet as Boolean 'Generic Return Boolean
'Enable compression prior to connecting.
'All other SFTP settings will remain at
'default values.
Transfer.FTPSecureCompression = True

'Establish the SFTP connection.
Transfer.FTPUseSecureFTP = True
Transfer.FTPHostName = "127.0.0.1"
Transfer.FTPUserName = "sftp_user"
Transfer.FTPUserPassword = "sftp_password"
bRet = Transfer.Command("pwd")

'Disable confirmations
Transfer.FTPConfirmDeleteFiles = False
Transfer.FTPConfirmReplaceFiles = False
Transfer.FTPConfirmTransferFiles = False
Transfer.FTPConfirmTransferFolders = False
Transfer.FTPConfirmRemoveFolders = False

'Transfer Files
bRet = Transfer.Command("put file1.txt")
bRet = Transfer.Command("get file2.bmp")
'Shut down SFTP session
bRet = Transfer.Command("quit")
End Sub

See Also File Transfer on page 2

Transfer.INDFILEAdditionalCommands
3270 and 5250 sessions only

Syntax Transfer.INDFILEAdditionalCommands

Description Returns or sets the additional syntax to be added to a given IND$FILE command (string).

Example Sub Main
 Dim Commands as string
 Commands = Transfer.INDFILEAdditionalCommands
 Transfer.INDFILEAdditionalCommands = “Quiet”
End Sub

See Also File Transfer on page 2
490

Transfer (object)
Transfer.INDFILEEnableCRLFHandling
3270 and 5250 sessions only

Syntax Transfer.INDFILEEnableCRLFHandling

Description Returns or sets the CRLF (carriage return / line feed) processing for the selected file format (boolean).
Possible values:

Example Sub Main
 Dim CRLF as boolean
 CRLF = Transfer.INDFILEEnableCRLFHandling
 Transfer.INDFILEEnableCRLFHandling = True
End Sub

See Also File Transfer on page 2

Transfer.INDFILEHostEnvironment
3270 and 5250 sessions only

Syntax Transfer.INDFILEHostEnvironment

Description Returns or sets the host system environment (string). Possible values are:

Example Sub Main
 Dim HostEnv as string
 HostEnv = Transfer.INDFILEHostEnvironment
 Transfer.INDFILEHostEnvironment = "CICS"
 MsgBox "The Previous Host Environment was: " & HostEnv
End Sub

See Also File Transfer on page 2

Value Definition
True Strip CRLF from each line of a file sent to the host, and add CRLF to each line received

from the host.
False Use the default processing for the selected file format.

Value Definition
CICS MVS/CICS
CMS VM/CMS
TSO MVS/TSO
491

Transfer (object)
Transfer.INDFILELocalFileFormat
3270 and 5250 sessions only

Syntax Transfer.INDFILELocalFileFormat

Description Returns or sets the format of the local file (string). Possible values:

This property is supported where an extended terminal type is in use.

Example Sub Main
 Dim FileFormat as string
 FileFormat = Transfer.INDFILELocalFileFormat
 Transfer.INDFILELocalFileFormat = "Binary"
End Sub

See Also File Transfer on page 2

Transfer.INDFILELogicalRecordLength
3270 and 5250 sessions only

Syntax Transfer.INDFILELogicalRecordLength

Description Returns or sets the length of the set of data considered to be a logical record (integer). This number
can be between 0 and 32761.

Example Sub Main
 Dim LogicalRecordLength as integer
 LogicalRecordLength = Transfer.INDFILELogicalRecordLength
 Transfer.INDFILELogicalRecordLength = 255
End Sub

See Also File Transfer on page 2

Transfer.INDFILEPacketSize
3270 and 5250 sessions only

Syntax Transfer.INDFILEPacketSize

Description Returns or sets the IND$FILE packet-size setting (integer). The default is 8Kb, which most hosts
support; the number can be from 1 to 32Kb. Larger packet size means faster transfer. However, if you

Value Definition
ASCII Character translation is based on the current local system language. ASCII is the DOS

standard format.
ANSI Character translation is based on the character set selected in your session. ANSI is the

Windows standard format.
Binary The transfer takes place without character translation.
492

Transfer (object)
specify a value larger than your host supports, your session will be disconnected. This property is
supported with extended mode terminal types.

Example Sub Main
 Dim PktSize as integer
 PktSize = Transfer.INDFILEPacketSize
 Transfer.INDFILEPacketSize = 16
End Sub

See Also File Transfer on page 2

Transfer.INDFILEPromptBeforeOverwrite
3270 and 5250 sessions only

Syntax Transfer.INDFILEPromptBeforeOverwrite

Description Returns or sets whether the user sees a prompt before a host-to-local transfer overwrites any existing
files of the same name (boolean). Possible values:

Example Sub Main
 Dim Prompt as boolean
 Prompt = Transfer.INDFILEPromptBeforeOverwrite
 Transfer.INDFILEPromptBeforeOverwrite = True
End Sub

See Also File Transfer on page 2

Transfer.INDFILERecordFormat
3270 and 5250 sessions only

Syntax Transfer.INDFILERecordFormat

Description Returns or sets the record format of the file on the host (string). Possible values:

Value Definition
True Prompt before overwriting existing files.
False Overwrite without prompting.

Value Definition
Default Accepts the host file's record format.
Fixed Specifies that all records in the host file are the same length.
Undefined Accepts that the host file's records are of undefined or unknown length.
Variable Specifies that records in the host file can be of different lengths.
493

Transfer (object)
Example Sub Main
 Dim RecordFormat as string
 RecordFormat = Transfer.INDFILERecordFormat
 Transfer.INDFILERecordFormat = "Variable"
End Sub

See Also File Transfer on page 2

Transfer.INDFILEResponseTimeout
3270 and 5250 sessions only

Syntax Transfer.INDFILEResponseTimeout

Description Returns or sets the amount of time SmarTerm should wait for the host to respond to each IND$FILE
command sent. The timeout range is 10 to 600 seconds; the default is 40 seconds (integer).

Example Sub Main
 Dim Response as integer
 Response = Transfer.INDFILEResponseTimeout
 Transfer.INDFILEResponseTimeout = 20
End Sub

See Also File Transfer on page 2

Transfer.INDFILEStartupTimeout
3270 and 5250 sessions only

Syntax Transfer.INDFILEStartupTimeout

Description Returns or sets the amount of time SmarTerm should wait for an initial response from the host before
a startup attempt fails. The timeout range is 10 to 600 seconds; the default is 40 seconds (integer).

Example Sub Main
 Dim Startup as integer
 Startup = Transfer.INDFILEStartupTimeout
 Transfer.INDFILEStartupTimeout = 20
End Sub

See Also File Transfer on page 2

Transfer.INDFILETSOAllocationUnits
3270 and 5250 sessions only

Syntax Transfer.INDFILETSOAllocationUnits

Description Returns or sets the unit in which space is to be allocated (string). Possible values are:
494

Transfer (object)
This property is supported in the TSO host environment only.

Example Sub Main
 Dim Allocation as string
 Allocation = Transfer.INDFILETSOAllocationUnits
 Transfer.INDFILETSOAllocationUnits = "Blocks"
End Sub

See Also File Transfer on page 2

Transfer.INDFILETSOAUPrimary
3270 and 5250 sessions only

Syntax Transfer.INDFILETSOAUPrimary

Description Returns or sets the number of units to be allocated (integer). The unit is defined in
Transfer.INDFILETSOAllocationUnits.

This property is supported in the TSO host environment only.

Example Sub Main
 Dim AUPrimary as integer
 AUPrimary = Transfer.INDFILETSOAUPrimary
 Transfer.INDFILETSOAUPrimary = 2000
End Sub

See Also File Transfer on page 2

Transfer.INDFILETSOAUSecondary
3270 and 5250 sessions only

Syntax Transfer.INDFILETSOAUSecondary

Description Returns or sets the number of units to be allocated if the Primary number of units is exceeded (integer).
The unit is defined in Transfer.INDFILETSOAllocationUnits.

This property is supported in the TSO host environment only.

Value Definition
Blocks Subdivision of a track.
Tracks Path associated with a single read/write head as the data medium moves past it.
Cylinders Set of all tracks that can be accessed without repositioning the access mechanism.
None not in use
495

Transfer (object)
Example Sub Main
 Dim AUSecondary as integer
 AUSecondary = Transfer.INDFILETSOAUSecondary
 Transfer.INDFILETSOAUSecondary = 15
End Sub

See Also File Transfer on page 2

Transfer.INDFILETSOAverageBlockSize
3270 and 5250 sessions only

Syntax Transfer.INDFILETSOAverageBlockSize

Description Returns or sets the size of an average block, rather than having the host determine it (integer). Relevant
only when Allocation Units is set to Block. Possible values are between 0 and 32760.

This property is supported in the TSO host environment only. It applies to all file formats.

Example Sub Main
 Dim AvBlock as integer
 AvBlock = Transfer.INDFILETSOAverageBlockSize
 TRANSFER.INDFILETSOAverageBlockSize = 6200
 End Sub

See Also File Transfer on page 2

Transfer.INDFILETSOBlockSize
3270 and 5250 sessions only

Syntax Transfer.INDFILETSOBlockSize

Description Returns or sets the number of bytes to be allocated per block. This number can be between 0 and
32760. For fixed records, block size must be an even multiple of the logical record length. For variable
records, block size must be equal to or greater than the largest record, plus 8 (integer).

This property is supported in the TSO host environment only.

Example Sub Main
 Dim BlockSize as integer
 BlockSize = Transfer.INDFILETSOBlockSize
 Transfer.INDFILETSOBlockSize = 6160
End Sub

See Also File Transfer on page 2

Transfer.KermitCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.KermitCheckSumType
496

Transfer (object)
Description Returns or sets the Kermit checksum-type setting. Possible values are:

"onebyte"
"twobyte"
"threebytecrc"

Example Sub Main
 Dim CheckSum as String
 CheckSum = Transfer.KermitCheckSumType
 Transfer.KermitCheckSumType = "threebytecrc"
End Sub

See Also File Transfer on page 2

Transfer.KermitDuplicateFileWarning
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.KermitDuplicateFileWarning

Description Returns or sets the Kermit duplicate-file-warning state (boolean).

Example Sub Main
 Dim DupWarn as Boolean
 DupWarn = Transfer.KermitDuplicateFileWarning
 Transfer.KermitDuplicateFileWarning = True
End Sub

See Also File Transfer on page 2

Transfer.KermitPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.KermitReceivePacketSize

Description Returns or sets the Kermit send and receive packet-size setting (integer). Possible values for this
property are: 94, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192.

Example Sub Main
 Dim PktSize as Integer
 PktSize = Transfer.KermitPacketSize
 Transfer.KermitPacketSize = 1024
End Sub

See Also File Transfer on page 2

Transfer.ProtocolName
Syntax Transfer.ProtocolName

Description Returns the name of the current file transfer protocol (string). Transfer.ProtocolName returns one of
the following values:
497

Transfer (object)
XMODEM
YMODEM
ZMODEM
KERMIT
FTP
IND$FILE

Example Sub Main
 Dim XferName as String
 XferName = Transfer.ProtocolName
 Session.Echo "The current file transfer protocol is " & XferName
End Sub

See Also File Transfer on page 2

Transfer.ReceiveFile
Syntax Transfer.ReceiveFile(pcfilename$)

where pcfilename$ is the name of the file on the PC (string).

Description Invokes a receive file transfer in the active SmarTerm session, returning the command’s completion
status (boolean).

Example Sub Main
 Dim RetVal as Boolean
 'Change protocol to Kermit
 RetVal = Session.TransferProtocol("KERMIT")
 If RetVal = FALSE Then
 Goto ErrorHandler
 End IF

 'Start Transfer
 Session.Send "kermit" & Chr$(13)
 Session.Send "send filename.txt" & Chr$(13)
 sleep 2
 RetVal = Transfer.ReceiveFile("filename.txt")
 If RetVal = False Then
 Goto ErrorHandler
 End If
 End
 ErrorHandler:
 Session.Echo "The file transfer failed."
 End
End Sub

See Also File Transfer on page 2

Transfer.ReceiveFileAs
Syntax Transfer.ReceiveFileAs(hostfilename, pcfilename)

Hostfilename is the name of the file on the host and Pcfilename is the name of the file after transfer
to the PC.
498

Transfer (object)
Description Invokes a receive file transfer in the active SmarTerm session, returning the completion status of the
file transfer (boolean).

Example 'This example downloads a file to a PC using IND$FILE
Sub Main
'!
 Dim RetVal as Boolean
 'Change protocol to IND$FILE
 RetVal = Session.TransferProtocol("IND$FILE")
 If RetVal = FALSE Then
 Goto ErrorHandler
 End IF

 'Start Transfer
 RetVal = Transfer.ReceiveFileAs("hostexec.bak", "c:\autoexec.bat")
 If RetVal = False Then
 Goto ErrorHandler
 End If
 End
 ErrorHandler:
 msgbox "The file transfer failed."
 End
End Sub

See Also File Transfer on page 2

Transfer.SendFile
Syntax Transfer.SendFile(pcfilename$)

where pcfilename$ is the name of the file on the PC (string).

Description Invokes a send file transfer, returning the completion status of the file transfer (boolean).

Example Sub Main
 Dim RetVal as Boolean
 'Change protocol to YMODEM
 RetVal = Session.TransferProtocol("YMODEM")
 If RetVal = FALSE Then
 Goto ErrorHandler
 End IF

 'Start Transfer
 Session.Send "rb" & Chr$(13)
 sleep 2
 RetVal = Transfer.SendFile("c:\autoexec.bat")
 If RetVal = False Then
 Goto ErrorHandler
 End If
 End
 ErrorHandler:
 Session.Echo "The file transfer failed."
 End
End Sub
499

Transfer (object)
See Also File Transfer on page 2

Transfer.SendFileAs
Syntax Transfer.SendFileAs(pcfilename, hostfilename)

Pcfilename is the name of the file on the PC and hostfilename is the name of the file after transfer
to the host.

To receive a file from the host, replace the send syntax in the example below with the receive syntax
from above.

Description Invokes a send file transfer in the active SmarTerm session, returning the completion status of the file
transfer (boolean).

Example 'This example uploads a file to a host using IND$FILE
Sub Main
'!
 Dim RetVal as Boolean
 'Change protocol to IND$FILE
 RetVal = Session.TransferProtocol("IND$FILE")
 If RetVal = FALSE Then
 Goto ErrorHandler
 End IF

 'Start Transfer
 Session.Send "rb" & chr$(13)
 sleep 2
 RetVal = Transfer.SendFileAs("c:\autoexec.bat", "hostexec.bak")
 If RetVal = False Then
 Goto ErrorHandler
 End If
 End
 ErrorHandler:
 msgbox "The file transfer failed."
 End
End Sub

See Also File Transfer on page 2

Transfer.Setup
Syntax Transfer.Setup setupstring$

where setupstring$ is the string containing the setup specifications (string).

Description Sets file transfer parameters in SmarTerm.

Note This method is provided primarily for the support of PSL scripts.
500

Transfer (object)
The syntax of the string expression is identical between file transfer methods, although meaning varies
somewhat. Specify setup options one at a time with their own Transfer.Setup statements, or more
than one at a time, if you keep all options and settings within the quotation marks, separating the setup
statements with commas:

Transfer.Setup "streaming = yes,checksumtype = crc16,packetsize = 128"

FTP transfers
Host name
HostName= legal FTP host name or IP address
Transfer.Setup "hostname = unixbox"
User name
UserName= legal FTP user name
Transfer.Setup "username = jpenn"
Password
UserPassword= legal FTP password
Transfer.Setup "userpassword = mahler8"
Autoconnect
Autoconnect= 1
Autoconnect= 0
Transfer.Setup "autoconnect = 1"

KERMIT transfers
Discard partial file
DiscardPartialFile= YES | NO
Transfer.Setup "discardpartialfile = yes"
Duplicate file warning
DuplicateFileWarning= YES | NO
Transfer.Setup "duplicatefilewarning = yes"
Checksum type
ChecksumType= OneByte | TwoByte | ThreeByteCRC
Transfer.Setup "checksumtype = threebytecrc"
Send packet size
SendPacketSize= 94 | 1024 | 2048 | 3072 | 4096 | 5120 | 6144 | 7168 | 8192
TRANSFER SETUP "sendpacketsize = 64"
Receive packet size
ReceivePacketSize= 94 | 1024 | 2048 | 3072 | 4096 | 5120 | 6144 | 7168 | 8192
TRANSFER SETUP "receivepacketsize = 512"

XMODEM, YMODEM, and ZMODEM transfers
Packet size
PacketSize= 128 | 1024
Transfer.Setup "packetsize = 128"
Checksum type
ChecksumType= SIMPLE | CRC16
Transfer.Setup "checksumtype = crc16"
Streaming
Streaming= YES | NO
Transfer.Setup "streaming = no"

See Also File Transfer on page 2
501

Transfer (object)
Transfer.XMODEMCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.XMODEMCheckSumType

Description Returns or sets the XMODEM-checksum-type setting (string). Transfer.XMODEMCheckSumType
accepts or returns one of the following strings: "simple" or "crc16".

Example Sub Main
 Dim CheckSum as String
 CheckSum = Transfer.XMODEMCheckSumType
 Transfer.XMODEMCheckSumType = "crc16"
End Sub

See Also File Transfer on page 2

Transfer.XMODEMPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.XMODEMPacketSize

Description Returns or sets the XMODEM-packet-size setting (integer). Transfer.XMODEMPacketSize accepts or
returns either 128 or 1024.

Example Sub Main
 Dim PktSize as Integer
 PktSize = Transfer.XMODEMPacketSize
 Transfer.XMODEMPacketSize = 1024
End Sub

See Also File Transfer on page 2

Transfer.XMODEMStreaming
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.XMODEMStreaming

Description Returns or sets a the XMODEM-streaming-mode setting (boolean).

Example Sub Main
 Dim Streaming as Boolean
 Streaming = Transfer.XMODEMStreaming
 Transfer.XMODEMStreaming = False
End Sub

See Also File Transfer on page 2
502

Transfer (object)
Transfer.YMODEMCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.YMODEMCheckSumType

Description Returns or sets the YMODEM-checksum-type setting (string). Transfer.YMODEMCheckSumType
accepts or returns one of the following strings: "simple" or "crc16".

Example Sub Main
 Dim CheckSum as String
 CheckSum = Transfer.YMODEMCheckSumType
 Transfer.YMODEMCheckSumType = "crc16"
End Sub

See Also File Transfer on page 2

Transfer.YMODEMPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.YMODEMPacketSize

Description Returns or sets the YMODEM-packet-size setting (integer). Transfer.YMODEMPacketSize accepts or
returns either 128 or 1024.

Example Sub Main
 Dim PktSize as Integer
 PktSize = Transfer.YMODEMPacketSize
 Transfer.YMODEMPacketSize = 1024
End Sub

See Also File Transfer on page 2

Transfer.YMODEMStreaming
VT, ANSI, SCO, and DG sessions only

Syntax Transfer.YMODEMStreaming

Description Returns or sets the YMODEM-streaming-mode setting (boolean).

Example Sub Main
 Dim Streaming as Boolean
 Streaming = Transfer.YMODEMStreaming
 Transfer.YMODEMStreaming = True
End Sub

See Also File Transfer on page 2
503

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
Syntax Trim[$](string)

LTrim[$](string)
RTrim[$](string)

Description Returns a copy of the passed string expression (string) with leading and/or trailing spaces removed.

Trim returns a copy of the passed string expression (string) with both the leading and trailing spaces
removed. LTrim returns string with the leading spaces removed, and RTrim returns string with the
trailing spaces removed.

Trim$, LTrim$, and RTrim$ return a String, whereas Trim, LTrim, and RTrim return a String variant.

Null is returned if string is Null.

Examples This first example uses the Trim$ function to extract the nonblank part of a string and display it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 text$ = " This is text "
 tr$ = Trim$(text$)
 Session.Echo "Original =>" & text$ & "<=" & crlf & _
 "Trimmed =>" & tr$ & "<="
End Sub

This second example displays a right-justified string and its LTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = " <= This is a right-justified string"
 b$ = LTrim$(a$)
 Session.Echo a$ & crlf & b$
End Sub

This third example displays a left-justified string and its RTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
 a$ = "This is a left-justified string. "
 b$ = RTrim$(a$)
 Session.Echo a$ & "<=" & crlf & b$ & "<="
End Sub

Type
Syntax Type username

 variable As type
 variable As type
504

Type
 variable As type
 :
End Type

Description Creates a structure definition that can then be used with the Dim statement to declare variables of that
type. The username field specifies the name of the structure that is used later with the Dim statement.
Within a structure definition appear field descriptions in the format:

variable As type

where variable is the name of a field of the structure, and type is the data type for that variable. Any
fundamental data type or previously declared user-defined data type can be used within the structure
definition (structures within structures are allowed). Only fixed arrays can appear within structure
definitions.

The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as fixed-length. Fixed-
length strings are stored within the structure itself rather than in the string space. For example, the
following structure will always require 62 bytes of storage:

Type Person
 FirstName As String * 20
 LastName As String * 40
 Age As Integer
End Type

Note Fixed-length strings within structures are size-adjusted upward to an even byte boundary. Thus, a
fixed-length string of length 5 will occupy 6 bytes of storage within the structure.

Example This example displays the use of the Type statement to create a structure representing the parts of a
circle and assign values to them.

Type Circ
 mesg As String
 rad As Integer
 dia As Integer
 are As Double
 cir As Double
End Type'!
 Dim circle As Circ
 circle.rad = 5
 circle.dia = c
Sub Main
ircle.rad * 2
 circle.are = (circle.rad ^ 2) * Pi
 circle.cir = circle.dia * Pi
 circle.mesg = "The area of the circle is: " & circle.are
 Session.Echo circle.mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
505

TypeName
TypeName
Syntax TypeName(varname)

Description Returns the type name of the specified variable. The returned string can be any of the following:

If varname is an array, then the returned string can be any of the above strings follows by a empty
parenthesis. For example, "Integer()" would be returned for an array of integers.

If varname is an expression, then the expression is evaluated and a String representing the resultant
data type is returned.

If varname is a collection, then TypeName returns the name of that object collection.

Example Sub Foo(a As Variant)
 If VarType(a) <> ebInteger Then
 Session.Echo "Foo does not support " & TypeName(a) & " variables"
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Returned String Returned If varname Is
"String" A string.
Objecttype A data object variable. In this case, objecttype is the name of the specific

object type.
"Integer" An integer.
"Long" A long.
"Single" A single.
"Double" A double.
"Currency" A currency value.
"Date" A date value.
"Boolean" A boolean value.
"Error" An error value.
"Empty" An uninitialized variable.
"Null" A variant containing no valid data.
"Object" A data or OLE automation object.
"Unknown" An unknown type of OLE automation object.
"Nothing" An uninitialized object variable.
class A specific type of OLE automation object. In this case, class is the name of the

object as known to OLE.
506

TypeOf
TypeOf
Syntax TypeOf objectvariable Is objecttype

Description Returns True if objectvariable is the specified type; False otherwise. This function is used within
the If...Then statement to determine if a variable is of a particular type. This function is particularly
useful for determining the type of OLE automation objects.

Example Sub Main
 Dim a As Object
 Set a = CreateObject("Excel.Application")
 If TypeOf a Is "Application" Then
 Session.Echo "We have an Application object."
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
507

TypeOf
508

U

UBound
Syntax UBound(ArrayVariable() [,dimension])

Description Returns an Integer containing the upper bound of the specified dimension of the specified array
variable. The dimension parameter is an integer that specifies the desired dimension. If not specified,
then the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an array returned by an
OLE Automation method or property:

UBound(object.property [,dimension])

UBound(object.method [,dimension])

Examples Sub Main
 Dim a(5 To 12)
 Dim b(2 To 100, 9 To 20)
 uba = UBound(a)
 ubb = UBound(b,2)
 Session.Echo "The upper bound of a is: " & uba & _
 " The upper bound of b is: " & ubb
'This example uses Lbound and Ubound to dimension a dynamic
'array to hold a copy of an array redimmed by the FileList
'statement.
Dim fl$()
FileList fl$,"*"
count = Ubound(fl$)
If ArrayDims(a) Then
 Redim nl$(Lbound(fl$) To Ubound(fl$))
 For x = 1 To count
 nl$(x) = fl$(x)
 Next x
 Session.Echo "The last element of the new array is: " & nl$(count)
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4
509

UCase, UCase$
UCase, UCase$
Syntax UCase[$](string)

Description Returns the uppercase equivalent of the specified string. UCase$ returns a String, whereas UCase
returns a String variant. Null is returned if string is Null.

Example Sub Main
 a1$ = "this string was lowercase, but was converted."
 a2$ = UCase$(a1$)
 Session.Echo a2$
End Sub

See Also Character and String Manipulation on page 2

Unlock
See Lock, Unlock; Drive, Folder, and File Access on page 3.

User-Defined Types (topic)
User-defined types (UDTs) are structure definitions created using the Type statement. UDTs are
equivalent to C language structures.

Declaring Structures
The Type statement is used to create a structure definition. Type declarations must appear outside the
body of all subroutines and functions within a macro and are therefore global to an entire macro. Once
defined, a UDT can be used to declare variables of that type using the Dim, Public, or Private
statement. The following example defines a rectangle structure:

Type Rect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
 :
Sub Main
 Dim r As Rect
 :
 r.left = 10
 End Sub

Any fundamental data type can be used as a structure member, including other user-defined types.
Only fixed arrays can be used within structures.
510

User-Defined Types (topic)
Copying Structures
UDTs of the same type can be assigned to each other, copying the contents. No other standard
operators can be applied to UDTs.

Dim r1 As Rect
Dim r2 As Rect
 :
r1 = r2

When copying structures of the same type, all strings in the source UDT are duplicated and references
are placed into the target UDT.

The LSet statement can be used to copy a UDT variable of one type to another:

LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the two structures
determines how many bytes get copied.

Passing Structures
UDTs can be passed both to user-defined routines and to external routines, and they can be assigned.
UDTs are always passed by reference. Since structures are always passed by reference, the ByVal
keyword cannot be used when defining structure arguments passed to external routines (using
Declare). The ByVal keyword can only be used with fundamental data types such as Integer and
String.

Note Passing structures to external routines actually passes a far pointer to the data structure.

Size of Structures
The Len function can be used to determine the number of bytes occupied by a UDT:

Len(udt_variable_name)

Since strings are stored in the compiler's data space, only a reference (currently, 2 bytes) is stored
within a structure. Thus, the Len function may seem to return incorrect information for structures
containing strings.
511

V

Val
Syntax Val(string)

Description Converts a given string expression to a number. The string parameter can contain any of the
following:

• Leading minus sign (for nonhexadecimal or octal numbers only)

• Hexadecimal number in the format &Hhexdigits

• Octal number in the format &Ooctaldigits

• Floating-point number, which can contain a decimal point and an optional exponent

Spaces, tabs, and line feeds are ignored.

If string does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first nonnumeric character.

The Val function always returns a double-precision floating-point value. This value is forced to the
data type of the assigned variable.

Example Sub Main
 a$ = InputBox$("Enter anything containing a number", _
 "Enter Number")
 b# = Val(a$)
 Session.Echo "The value is: " & b#
End Sub

See Also Character and String Manipulation on page 2
513

Variant (data type)
Variant (data type)
Syntax Variant

Description Used to declare variables that can hold one of many different types of data. During a variant's
existence, the type of data contained within it can change. Variants can contain any of the following
types of data:

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of data contained
within the variant.

Variant is the default data type. If a variable is not explicitly declared with Dim, Public, or Private,
and there is no type-declaration character (i.e., #, @, !, %, or &), then the variable is assumed to be
Variant.

Determining the Subtype of a Variant
The following functions are used to query the type of data contained within a variant:

Type of Data Data Types
Numeric Integer, long, single, double, boolean, date, currency.
Logical Boolean.
Dates and times Date.
String String.
Object Object.
No valid data A variant with no valid data is considered null.
Uninitialized An uninitialized variant is considered empty.

Function Description
VarType Returns a number representing the type of data contained within the variant.
IsNumeric Returns True if a variant contains numeric data. The following are considered

numeric: integer, long, single, double, date, boolean, currency. If a variant con-
tains a string, this function returns True if the string can be converted to a number. If
a variant contains an object whose default property is numeric, then IsNumeric
returns True.

IsObject Returns True if a variant contains an object.
514

Variant (data type)
Assigning to Variants
Before a Variant has been assigned a value, it is considered empty. Thus, immediately after
declaration, the VarType function will return ebEmpty. An uninitialized variant is 0 when used in
numeric expressions and is a zero-length string when used within string expressions.

A Variant is Empty only after declaration and before assigning it a value. The only way for a Variant
to become Empty after having received a value is for that variant to be assigned to another Variant
containing Empty, for it to be assigned explicitly to the constant Empty, or for it to be erased using the
Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in all subsequent
operations involving that variant, the variant will behave like the type of data it contains.

Operations on Variants
Normally, a Variant behaves just like the data it contains. One exception to this rule is that, in
arithmetic operations, variants are automatically promoted when an overflow occurs. Consider the
following statements:

Dim a As Integer,b As Integer,c As Integer
Dim x As Variant,y As Variant,z As Variant
a% = 32767
b% = 1
c% = a% + b% 'This will overflow.
x = 32767
y = 1
z = x + y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving Integer variables overflows because the result (32768)
overflows the legal range for integers. With Variant variables, on the other hand, the addition operator
recognizes the overflow and automatically promotes the result to a Long.

Adding Variants
The + operator is defined as performing two functions: when passed strings, it concatenates them;
when passed numbers, it adds the numbers.

IsNull Returns True if a variant contains no valid data.
IsEmpty Returns True if a variant is uninitialized.
IsDate Returns True if a variant contains a date. If the variant contains a string, then this

function returns True if the string can be converted to a date. If the variant contains an
object, then this function returns True if the default property of that object can be
converted to a date.

Function Description
515

Variant (data type)
With variants, the rules are complicated because the types of the variants are not known until
execution time. If you use +, you may unintentionally perform the wrong operation.

It is recommended that you use the & operator if you intend to concatenate two String variants. This
guarantees that string concatenation will be performed and not addition.

Variants That Contain No Data
A Variant can be set to a special value indicating that it contains no valid data by assigning the
Variant to Null:

Dim a As Variant
a = Null

The only way that a Variant becomes Null is if you assign it as shown above.

The Null value can be useful for catching errors since its value propagates through an expression.

Variant Storage
Variants require 16 bytes of storage internally:

• A 2-byte type

• A 2-byte extended type for data objects

• 4 bytes of padding for alignment

• An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not write 16 bytes. With
variants, a 2-byte type is written, followed by the data (2 bytes for Integer and so on).

Disadvantages of Variants
The following list describes some disadvantages of variants:

• Using variants is slower than using the other fundamental data types (i.e., Integer, Long, Single,
Double, Date, Object, String, Currency, and Boolean). Each operation involving a Variant re-
quires examination of the variant's type.

• Variants require more storage than other data types (16 bytes as opposed to 8 bytes for a Double,
2 bytes for an Integer, and so on).

• Unpredictable behavior. You may write code to expect an Integer variant. At runtime, the variant
may be automatically promoted to a Long variant, causing your code to break.
516

VarType
Passing Nonvariant Data to Routines Taking Variants
Passing nonvariant data to a routine that is declared to receive a variant by reference prevents that
variant from changing type within that routine. For example:

Sub Foo(v As Variant)
 v = 50 'OK.
 v = "Hello, world." 'Get a type-mismatch error here!
End Sub

Sub Main
 Dim i As Integer
 Foo i 'Pass an integer by reference.
End Sub

In the above example, since an Integer is passed by reference (meaning that the caller can change the
original value of the Integer), the caller must ensure that no attempt is made to change the variant's
type.

Passing Variants to Routines Taking Nonvariants
Variant variables cannot be passed to routines that accept nonvariant data by reference, as
demonstrated in the following example:

Sub Foo(i as Integer)
End Sub

Sub Main
 Dim a As Variant
 Foo a 'Compiler gives type-mismatch error here.
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

VarType
Syntax VarType(varname)

Description Returns an Integer representing the type of data in varname. The varname parameter is the name of
any Variant. The following table shows the different values that can be returned by VarType:

Value Constant Data Type
0 ebEmpty Uninitialized
1 ebNull No valid data
2 ebInteger Integer
3 ebLong Long
4 ebSingle Single
5 ebDouble Double
517

VarType
When passed an object, the VarType function returns the type of the default property of that object. If
the object has no default property, then either ebObject or ebDataObject is returned, depending on
the type of variable.

Example Sub Main
 Dim v As Variant
 v = 5& 'Set v to a Long.
 If VarType(v) = ebInteger Then
 Session.Echo "v is an Integer."
 ElseIf VarType(v) = ebLong Then
 Session.Echo "v is a Long."
 End If
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

6 ebCurrency Currency
7 ebDate Date
8 ebString String
9 ebObject OLE Automation object
10 ebError User-defined error
11 ebBoolean Boolean
12 ebVariant Variant (not returned by this function)
13 ebDataObject Non-OLE Object

Value Constant Data Type
518

W - X - Y

Weekday
Syntax Weekday(date [,firstdayofweek])

Description Returns an Integer value representing the day of the week given by date. Sunday is 1, Monday is 2,
and so on.

The firstdayofweek parameter, if specified, can be any of the following constants.

Example Sub Main
 Dim a$(7)
 a$(1) = "Sunday"
 a$(2) = "Monday"
 a$(3) = "Tuesday"
 a$(4) = "Wednesday"

Parameter Description
date Any expression representing a valid date.
Firstdayofweek Indicates the first day of the week. If omitted, then Sunday is

assumed (i.e., the constant ebSunday described below).

Constant Value Description
ebUseSystem 0 Use the system setting for firstdayofweek.
ebSunday 1 Sunday (the default)
ebMonday 2 Monday
ebTuesday 3 Tuesday
ebWednesday 4 Wednesday
ebThursday 5 Thursday
ebFriday 6 Friday
ebSaturday 7 Saturday
519

While...Wend
 a$(5) = "Thursday"
 a$(6) = "Friday"
 a$(7) = "Saturday"
Reprompt:
 bd = InputBox$("Please enter your birthday.","Enter Birthday")
 If Not(IsDate(bd)) Then Goto Reprompt
 dt = DateValue(bd)
 dw = WeekDay(dt)
 Session.Echo "You were born on day " & dw & ", which was a " & a$(dw)
End Sub

See Also Time and Date Access on page 10

While...Wend
Syntax While condition

 [statements]
Wend

Description Repeats a statement or group of statements while a condition is True. The condition is initialized and
then checked at the top of each iteration through the loop. Due to errors in program logic, you can
inadvertently create infinite loops in your code. When you're running a macro within the macro editor,
you can break out of an infinite loop by pressing Ctrl+Break.

Example Sub Main
 x% = 0
 count% = 0
 While x% <> 1 And count% < 500
 x% = Rnd(1)
 If count% > 1000 Then
 Exit Sub
 Else
 count% = count% + 1
 End If
 Wend
 Session.Echo "The loop executed " & count% & " times."
End Sub

See Also Macro Control and Compilation on page 6

Width#
Syntax Width# filenumber, width

Description Specifies the line width for sequential files opened in either Output or Append mode. The Width#
statement requires the following named parameters:

Parameter Description
filenumber Integer used to refer to the open file—the number passed to the Open statement.
Width Integer between 0 to 255 inclusive specifying the new width. If width is 0, then no

maximum line length is used.
520

Word$
When a file is initially opened, there is no limit to line length. This command forces all subsequent
output to the specified file to use the specified value as the maximum line length.

The Width statement affects output in the following manner: if the column position is greater than 1
and the length of the text to be written to the file causes the column position to exceed the current line
width, then the data is written on the next line.

The Width statement also affects output of the Print command when used with the Tab and Spc
functions.

Example Sub Main
 Width #1,80
End Sub

See Also Drive, Folder, and File Access on page 3

Word$
Syntax Word$(text$,first[,last])

Description Returns a String containing a single word or sequence of words between first and last. The Word$
function requires the following parameters:

Words are separated by any nonalphanumeric characters such as spaces, tabs, end-of-lines, and
punctuation. Embedded null characters are treated as regular characters.

If first is greater than the number of words in text$, then a zero-length string is returned.

If last is greater than the number of words in text$, then all words from first to the end of the text
are returned.

Example Sub Main
 s$ = "My surname is Williams; Stuart is my given name."
 c$ = Word$(s$,5,6)
 Session.Echo "The extracted name is: " & c$
End Sub

See Also Character and String Manipulation on page 2

Parameter Description
text$ String from which the sequence of words will be extracted.
First Integer specifying the index of the first word in the sequence to return. If last is not

specified, then only that word is returned.
Last Integer specifying the index of the last word in the sequence to return. If last is spec-

ified, then all words between first and last will be returned, including all spaces,
tabs, and end-of-lines that occur between those words.
521

WordCount
WordCount
Syntax WordCount(text$)

Description Returns an Integer representing the number of words in the specified text. Words are separated by
spaces, tabs, and end-of-lines. Embedded null characters are treated as regular characters.

Example Sub Main
 s$ = "My surname is Williams; Stuart is my given name."
 i% = WordCount(s$)
 Session.Echo "'" & s$ & "' has " & i% & " words."
End Sub

See Also Character and String Manipulation on page 2

Write#
Syntax Write [#]filenumber [,expressionlist]

Description Writes a list of expressions to a given sequential file. The file referenced by filenumber must be
opened in either Output or Append mode. The filenumber parameter is an Integer used to refer to
the open file—the number passed to the Open statement. The following summarizes how variables of
different types are written:

The Write statement outputs variables separated with commas. After writing each expression in the
list, Write outputs an end-of-line.

The Write statement can only be used with files opened in Output or Append mode.

Example Sub Main
 Open "test.dat" For Output Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Write #1,x,r%

Data Type Description
Any numeric type Written as text. There is no leading space, and the period is always used as

the decimal separator.
String Written as text, enclosed within quotes.
Empty No data is written.
Null Written as #NULL#.
Boolean Written as #TRUE# or #FALSE#.
Date Written using the universal date format:

#YYYY-MM-DD HH:MM:SS#

User-defined errors Written as #ERROR ErrorNumber#, where ErrorNumber is the value of the
user-defined error. The word ERROR is not translated.
522

WriteIni
 Next x
 Close
 Open "test.dat" For Input Access Read As #1
 For x = 1 To 10
 Input #1,a%,b%
 mesg = mesg & "Record " & a% & ": " & b% & Basic.Eoln$
 Next x
 Session.Echo mesg
 Close
End Sub

See Also Drive, Folder, and File Access on page 3

WriteIni
Syntax WriteIni section$,ItemName$,value$[,filename$]

Description Writes a new value into an INI file. The WriteIni statement requires the following parameters:

If filename$ is not specified, the win.ini file is used.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

Example Sub Main
 WriteIni "Extensions","txt", _
 "c:\windows\notepad.exe ^.txt","win.ini"
End Sub

See Also Drive, Folder, and File Access on page 3

Xor
Syntax result = expression1 Xor expression2

Description Performs a logical or binary exclusion on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical exclusion is performed as follows:

Parameter Description
section$ String specifying the section that contains the desired variables, such as "Win-

dows." Section names are specified without the enclosing brackets.
ItemName$ String specifying which item from within the given section you want to change. If

ItemName$ is a zero-length string (""), then the entire section specified by sec-
tion$ is deleted.

value$ String specifying the new value for the given item. If value$ is a zero-length
string (""), then the item specified by ItemName$ is deleted from the INI file.

Filename$ String specifying the name of the INI file.
523

Year
If either expression is Null, then Null is returned.

Binary Exclusion
If the two expressions are Integer, then a binary exclusion is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long, and a binary exclusion is
then performed, returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary representations of
the two expressions according to the following table:

Example Sub Main
 For x = -1 To 0
 For y = -1 To 0
 z = x Xor y
 mesg = mesg & Format(x,"True/False") & " Xor "
 mesg = mesg & Format(y,"True/False") & " = "
 mesg = mesg & Format(z,"True/False") & Basic.Eoln$
 Next y
 Next x
 Session.Echo mesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 4

Year
Syntax Year(date)

Description Returns the year of the date encoded in the specified date parameter. The value returned is between
100 and 9999 inclusive. The date parameter is any expression representing a valid date.

If expression1 is and expression2 is then the result is
True True False
True False True
False True True
False False False

If bit in expression1 is and bit in expression2 is the result is
1 1 0
0 1 1
1 0 1
0 0 0
524

Year
Example Sub Main
 tdate$ = Date$
 tyear! = Year(DateValue(tdate$))
 Session.Echo "The current year is: " & tyear$
End Sub

See Also Time and Date Access on page 10
525

PSL Equivalents for Methods and
Properties

This table is provided for users of earlier SmarTerm versions, which relied on the Persoft Script
Language (PSL). PSL has been replaced by the SmarTerm macro language, which is substantially
similar to Visual Basic, but tailored for the SmarTerm user.

This table, like all the reference material in this book, is available in online help.

‰ Where the Macro Language side says "Not a one-for-one replacement," more than a single line of code
is required to accomplish the translation.

PSL Macro Language
ABS Abs

AND And

ANSWER Not a one-for-one replacement.

APPKEYBOARDMAP Session.LoadKeyboardMap

ASC Asc

ATEOF Eof

AUXKEYBOARDMAP Session.KeyboardMap

BUFFERFORMATTED Session.BufferFormatted

BUFFERMODIFIED Session.BufferModified

BUTTONPALETTE Session.LoadSmarTermButtons

BUTTONPALETTE Session.UnloadSmarTermButtons

CAPTURE Session.Capture

CAPTURE SETUP Session.CaptureFileHandling

CHAIN Not a one-for-one replacement.

CHDIR ChDir

CHDRIVE ChDrive
527

CHR$ Chr$

CIRCUIT CONNECT Circuit.Connect

CIRCUIT DISCONNECT Circuit.Disconnect

CIRCUIT SETUP Circuit.Setup

CLOSE Close

CLS Session.ClearScreen

CMDLINE Application.CommandLine

COLLECT Session.Collect.Start

COLLECT Session.Collect.Status

COLLECT Session.Collect.CollectedCharacters

COLLECT Session.Collect.Consume

COLLECT Session.Collect.MaxCharacterCount

COLLECT Session.Collect.TermString

COLLECT Session.Collect.Reset

COLLECT Session.Collect.TimeoutMS

COLLECT Session.Collect.Timeout

COLLECT Session.Collect.TermStringExact

COLLECT Session.Collect

COLUMN Session.Column

CONNECTED Session.Connected

CURDIR$ CurDir$

CURMOUSEX Session.MouseCol

CURMOUSEY Session.MouseRow

DATE$ Date$

DDE _ ASSIGN DDEPoke

DDE _ COMMAND DDEExecute

DDE _ CONNECT, NEXTDDECHAN DDEInitiate

DDE _ DISCONNECT DDETerminate

DDE _ FETCH DDERequest

DDESTATUS Not a one-for-one replacement.

DIAL Circuit.Connect (Modem Connection)

DIM Dim

ECHO Session.Echo

EMULATION$ Session.EmulationInfo

ENDCAPTURE Session.EndCapture

ENVIRON$ Environ$

ERRORBOX MsgBox

ESCREEN$ Session.NativeScreenText

EXECUTE Shell

EXIT Exit Sub

PSL Macro Language
528

FIELD$ Session.FieldText

FIELDENDCOL Session.FieldEndCol

FIELDENDROW Session.FieldEndRow

FIELDMODIFIED Session.FieldModified

FIELDSTARTCOL Session.FieldStartCol

FIELDSTARTROW Session.FieldStartRow

FILEEXISTS FileExists

FILEOPEN FileAttr

FILEPOS Loc

FILESELECT$ SaveFilename

FILESELECT$ OpenFilename

FLISTBOX$ SelectBox

FUNCTION Session.DoMenuFunction

GETPROFILE$ ReadIni$

GOSUB GoSub

GOTO Goto

HANGUP Circuit.Disconnect (Modem Connection)

HEX$ Hex$

IF..THEN..ELSEIF..ELSE..ENDIF If..Then..ElseIf..Else..End If

IN3270 Session.EmulationInfo(0)

INPUT Input#

INPUT Line Input#

INPUT$ InputBox

INPUT$ AskPassword$

INSERTMODE Session.InsertMode

INSTR InStr

INVOKE Invoke

ISDDEOPEN Not a one-for-one replacement.

ISFIELDMARK Session.IsFieldMark

ISNUMERIC Session.IsNumeric

ISPROTECTED Session.IsProtected

KEYBOARDLOCKED Session.KeyboardLocked

KEYWAIT Session.Keywait.Reset

KEYWAIT Session.Keywait.KeyType

KEYWAIT Session.Keywait.Start

KEYWAIT Session.Keywait.Value

KEYWAIT Session.Keywait

KEYWAIT Session.Keywait.KeyCount

KEYWAIT Session.Keywait.MaxKeyCount

KEYWAIT Session.Keywait.KeyCode

PSL Macro Language
529

KEYWAIT Session.Keywait.Status

KEYWAIT Session.Keywait.TimeOutMS

KEYWAIT Session.Keywait.TimeOut

LCASE$ Lcase$

LEFT$ Left$

LEN Len

LET Let

LISTBOX$ SelectBox

LTRIM$ Ltrim$

MAXIMIZE Session.WindowState = 2

MCICMD Mci

MESSAGEBOX MsgBox (statement)

MID$ Mid$

MINIMIZE Session.WindowState = 0

MOUSEX Session.InitialMouseCol

MOUSEY Session.InitialMouseRow

NEGATE Not

NEXTDDECHAN Not a one-for-one replacement.

NEXTFILENO FreeFile

NOT Not

OKBOX MsgBox

OPEN Open

OR Or

PAGE Session.Page

PAUSE Sleep

PLAYWAVE Not a one-for-one replacement.

POSITION Seek

PRINT Print#

PRODUCT$ Application.Product

PUTPROFILE WriteIni

RESTORE Session.WindowState = 1

RETURN Return

RIGHT$ Right$

ROW Session.Row

RTRIM$ Rtrim$

SCREEN$ Session.ScreenText

SELECTWAIT Session.StringWait.Status

SELECTWAIT Session.StringWait.MaxCharacterCount

SELECTWAIT Session.StringWait.TimeoutMS

SELECTWAIT Session.StringWait.Timeout

PSL Macro Language
530

SELECTWAIT Session.StringWait.MatchStringExact

SELECTWAIT Session.StringWait.MatchString

SELECTWAIT Session.StringWait.Start

SELECTWAIT Session.StringWait.Reset

SELECTWAIT Session.StringWait

SEND Session.Send

SEND +keyword Session.SendKey

SEND BINARY Circuit.SendRawToHost

SEND LITERAL Session.SendLiteral

SEND NORMAL Session.Send

SET / RESET BLINK Session.Blink

SET / RESET BOLD Session.Bold

SET / RESET CONCEALED Session.Concealed

SET / RESET CRITICAL Session.Lockstep

SET / RESET FLASHICON Application.FlashIcon

SET / RESET INTERPRET Session.InterpretControls

SET / RESET INVERSE Session.Inverse

SET / RESET KEYABORT Not a one-for-one replacement.

SET / RESET LOCAL Session.Online

SET / RESET NORMAL Session.Normal

SET / RESET ONLINE Session.Online

SET / RESET UNDERLINE Session.Underline

SET / RESET WRAP Session.Autowrap

SETFONTSIZE Session.SetFontSize

SETTITLE Session.Caption

SHARE Public

SNAPALL Session.ScreenToFile

STATUS Not a one-for-one replacement.

STCONFIG Session.ConfigInfo

STOP End

STR$ Str$

STRING$ String$

SYSTEMTICKS Timer * 1000

TERMINATE [SESSION] Session.Close

TERMINATE ALL Application.Quit

TIME$ Time$

TRANSFER COMMAND Transfer.Command

TRANSFER PROTOCOL Session.TransferProtocol

TRANSFER RECEIVEFILE Transfer.ReceiveFile

TRANSFER SENDFILE Transfer.SendFile

PSL Macro Language
531

TRANSFER SETUP Transfer.Setup

TRANSLATEBINARY Session.TranslateBinary

TRANSLATETEXT Session.TranslateText

TRANSMIT Session.TransmitFile

TYPE Session.TypeFile

UCASE$ Ucase$

USERHELP Application.UserHelpFile

USERHELP Application.UserHelpMenu

VAL Val

VERSION Application.Version

VERSION$ Application.Version

WAITFOR Session.EventWait.EventType

WAITFOR Session.EventWait.Value

WAITFOR Session.EventWait.EventCount

WAITFOR Session.EventWait.Status

WAITFOR Session.EventWait.Abort

WAITFOR Session.EventWait.Start

WAITFOR Session.EventWait.Reset

WAITFOR Session.EventWait.TimeOut

WAITFOR Session.EventWait.MaxEventCount

WAITFOR Session.EventWait

WAITFOR Session.EventWait.TimeoutMS

WARNINGLEVEL Circuit.SuppressConnectErrorDialog

WHILE/WEND While .. Wend

WINSTATE Session.WindowState

XOR Xor

PSL Macro Language
532

Error Messages

This section contains listings of all the runtime errors. It is divided into two subsections, the first
describing error messages compatible with "standard" Basic as implemented by Microsoft Visual
Basic and the second describing error messages specific to the macro compiler.

A few error messages contain placeholders which are replaced to form the completed runtime error
message. These placeholders appear in the following list as the italicized word placeholder.

Visual Basic Compatible error messages
Error Number Error Message
3 Return without GoSub
5 Invalid procedure call
6 Overflow
7 Out of memory
9 Subscript out of range
10 This array is fixed or temporarily locked
11 Division by zero
13 Type mismatch
14 Out of string space
18 User interrupt occurred
19 No Resume
20 Resume without error
26 Dialog needs End Dialog or push button
28 Out of stack space
35 Sub or Function not defined
48 Error in loading DLL
533

Visual Basic Compatible error messages
49 Bad DLL calling convention
51 Internal error
52 Bad file name or number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O error
58 File already exists
59 Bad record length
61 Disk full
62 Input past end of file
63 Bad record number
64 Bad file name
67 Too many files
68 Device unavailable
70 Permission denied
71 Disk not ready
74 Can't rename with different drive
75 Path/File access error
76 Path not found
91 Object variable or With block variable not set
93 Invalid pattern string
94 Invalid use of Null
139 Only one user dialog may be up at any time
140 Dialog control identifier does not match any current control
141 The placeholder statement is not available on this dialog control type
143 The dialog control with the focus may not be hidden or disabled
144 Focus may not be set to a hidden or disabled control
150 Dialog control identifier is already defined
163 This statement can only be used when a user dialog is active
260 No timer available
281 No more DDE channels
282 No foreign application responded to a DDE initiate
283 Multiple applications responded to a DDE initiate

Error Number Error Message
534

Visual Basic Compatible error messages
285 Foreign application won't perform DDE method or operation
286 Timeout while waiting for DDE response
287 User pressed Escape key during DDE operation
288 Destination is busy
289 Data not provided in DDE operation
290 Data in wrong format
291 Foreign application quit
292 DDE conversation closed or changed
295 Message queue filled; DDE message lost
298 DDE requires ddeml.dll
380 Invalid property value
423 Property or method not found
424 Object required
429 OLE Automation server can't create object
430 Class doesn't support OLE Automation
431 OLE Automation server cannot load file
432 File name or class name not found during OLE Automation operation
438 Object doesn't support this property or method
440 OLE Automation error
442 Connection to type library or object library for remote process has been lost.

Press OK for dialog to remove reference.
443 Object does not have a default value
445 Object doesn't support this action
446 Object doesn't support named arguments
447 Object doesn't support current locale setting
448 Named argument not found
449 Argument not optional
450 Wrong number of arguments or invalid property assignment
451 Object not a collection
452 Invalid ordinal
453 Specified DLL function not found
454 Code resource not found
455 Code resource lock error
460 Invalid Clipboard format
481 Invalid picture

Error Number Error Message
535

Compiler-Specific error messages
Compiler-Specific error messages

520 Can't empty clipboard
521 Can't open clipboard
600 Set value not allowed on collections
601 Get value not allowed on collections
603 ODBC - SQLAllocEnv failure
604 ODBC - SQLAllocConnect failure
608 ODBC - SQLFreeConnect error
610 ODBC - SQLAllocStmt failure
3129 Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE',

'SELECT', or 'UPDATE'
3146 ODBC - call failed
3148 ODBC - connection failed
3276 Invalid database ID

Number Error Message
800 Incorrect Windows version
801 Too many dimensions
802 Can't find window
803 Can't find menu item
804 Another queue is being flushed
805 Can't find control
806 Bad channel number
807 Requested data not available
808 Can't create pop-up menu
810 Command failed
811 Network error
812 Network function not supported
813 Bad password
814 Network access denied
815 Network function busy
816 Queue overflow
817 Too many dialog controls
818 Can't find list box/combo box item

Error Number Error Message
536

Compiler errors
Compiler errors
The following table contains a list of all the errors generated by the macro compiler. With some errors,
the compiler changes placeholders within the error to text from the macro being compiled. These
placeholders are represented in this table by the word placeholder.

819 Control is disabled
820 Window is disabled
821 Can't write to INI file
822 Can't read from INI file
823 Can't copy file onto itself
824 OLE Automation unknown object name
825 Redimension of a fixed array
826 Can't load and initialize extension
827 Can't find extension
828 Unsupported function or statement
829 Can't find ODBC libraries
830 OLE Automation Lbound or Ubound on non-Array value
831 Incorrect definition for dialog procedure
832 Incorrect number of arguments for intermodule call
833 OLE Automation object does not exist
834 Access to OLE Automation object denied
835 OLE initialization error
836 OLE Automation method returned unsupported type
837 OLE Automation method did not return a value

Number Error Message

Number Error Message
1 Variable Required - Can't assign to this expression
2 Letter range must be in ascending order
3 Redefinition of default type
4 Out of storage for variables
5 Type-character doesn't match defined type
6 Expression too complex
7 Cannot assign whole array
8 Assignment variable and expression are different types
537

Compiler errors
9 No type-characters allowed on a function with an explicit type
10 Array type mismatch in parameter
11 Array type expected for parameter
12 Array type unexpected for parameter
13 Integer expression expected for an array index
14 Integer expression expected
15 String expression expected
16 Identifier is already a user defined type
17 Property value is the incorrect type
18 Left of "." must be an object, structure, or dialog
19 Invalid string operator
20 Can't apply operator to array type
21 Operator type mismatch
22 "placeholder" is not a variable
23 "placeholder" is not a array variable or a function
24 Unknown placeholder "placeholder"
25 Out of memory
26 placeholder: Too many parameters encountered
27 placeholder: Missing parameter(s)
28 placeholder: Type mismatch in parameter placeholder
29 Missing label "placeholder"
30 Too many nested statements
31 Encountered new-line in string
32 Overflow in decimal value
33 Overflow in hex value
34 Overflow in octal value
35 Expression is not constant
36 Not inside a Do statement
37 No type-characters allowed on parameters with explicit type
39 Can't pass an array by value
40 "placeholder" is already declared as a parameter
41 Variable name used as label name
42 Duplicate label
43 Not inside a function

Number Error Message
538

Compiler errors
44 Not inside a sub
46 Can't assign to function
47 Identifier is already a variable
48 Unknown type
49 Variable is not an array type
50 Can't redimension an array to a different type
51 Identifier is not a string array variable
52 0 expected
54 placeholder is not an assignable property of the object
55 Integer expression expected for file number
56 placeholder is not a method of the object
57 placeholder is not a property of the object
58 Expecting 0 or 1
59 Boolean expression expected
60 Numeric expression expected
61 Numeric type FOR variable expected
62 For...Next variable mismatch
63 Out of string storage space
64 Out of identifier storage space
68 Division by zero
69 Overflow in expression
70 Floating-point expression expected
72 Invalid floating-point operator
74 Single character expected
75 Subroutine identifier can't have a type-declaration character
76 Macro is too large to be compiled
77 Variable type expected
78 Can't evaluate expression
79 Can't assign to user or dialog type variable
80 Maximum string length exceeded
81 Identifier name already in use as another type
84 Operator cannot be used on an object
85 placeholder is not a property or method of the object
86 Type-character not allowed on label

Number Error Message
539

Compiler errors
87 Type-character mismatch on routine placeholder
88 Destination name is already a constant
89 Can't assign to constant
91 Identifier too long
92 Expecting string or structure expression
93 Can't assign to expression
94 Dialog and Object types are not supported in this context
95 Array expression not supported as parameter
96 Dialogs, objects, and structures expressions are not supported as a parameter
97 Invalid numeric operator
98 Invalid structure element name following "."
99 Access value can't be used with specified mode
101 Invalid operator for object
102 Can't LSet a type with a variable-length string
103 Syntax error
104 placeholder is not a method of the object
105 No members defined
106 Duplicate type member
107 Set is for object assignments
109 Invalid character in octal number
110 Invalid numeric prefix: expecting &H or &O
111 End-of-macro encountered in comment: expecting */
112 Misplaced line continuation
113 Invalid escape sequence
114 Missing End Inline
115 Statement expected
116 ByRef argument mismatch
117 Integer overflow
118 Long overflow
119 Single overflow
120 Double overflow
121 Currency overflow
122 Optional argument must be Variant
123 Parameter must be optional

Number Error Message
540

Compiler errors
124 Parameter is not optional
125 Expected: Lib
126 Illegal external function return type
127 Illegal function return type
128 Variable not defined
129 No default property for the object
130 The object does not have an assignable default property
131 Parameters cannot be fixed length strings
132 Invalid length for a fixed length string
133 Return type is different from a prior declaration
134 Private variable too large. Storage space exceeded
135 Public variables too large. Storage space exceeded
136 No type-characters allowed on variable defined with explicit type
137 Missing parameters are not allowed when using named parameters
138 An unnamed parameter was found following a named parameter
139 Unknown parameter name: placeholder
140 Duplicate parameter name: placeholder
141 Expecting: #If, #ElseIf, #Else, #End If, or #Const
142 Invalid preprocessor directive
143 Expecting preprocessor variable
144 Expecting: =
145 Expecting: [end of line]
146 Expecting: <expression>
148 Expecting:)
149 Unexpected value
150 Expecting: #End If
151 Expecting: Then
152 Missing #End If
153 #Else encountered without #If
154 #ElseIf encountered without #If
155 #End If encountered without #If
156 Invalid use of Null
157 Type mismatch
158 Not a number

Number Error Message
541

Compiler errors
159 Duplicate subroutine function
160 Duplicate function definition
161 MBCS characters not allowed in identifiers
162 Out of range
163 Invalid date
164 Date overflow
165 Expecting: <identifier>
166 Constant type and expression are different types
167 Invalid use of New

Number Error Message
542

Index

Symbols

- (subtraction), 86–87
#Const, 87
#If...Then...#Else, 87–89
& (concatenation), 89–90
() (precedence), 90
* (multiplication), 91
+ (addition/concatenation), 95–96
. (dot), 91–92
/ (division), 92–93
/* */ (comment block), 37, 92, 168
= (assignment), 96–97
>Application (object)

Sessions, 111
\ (integer division), 93
^ (exponentiation), 93–94
_ (line continuation), 18, 37, 94–95
’ (comment), 37, 85, 168
’! (macro description), 18, 85–86
‹, ‹ =, ‹ ›, =, ›, › = (comparison operators) See

Compare

Numerics
3270 sessions

constants for, 176
SNA connections, 160–162

3270/5250 sessions
macro files for, 25
send keystrokes to host, 77–79
wait for form pages in, 21–22

A
Abs (Absolute Value), 99
Accelerators

assign to dialog controls, 52, 58–59
for Dialog Editor, 47
for Macro Editor, 35–36
in dialogs, test, 66

Access
object methods, 345
object properties, 345

Accounting operations
convert expressions to currency, 143
depreciation, 196–197
future value of annuity, 277–278
interest payment, 302–303
interest rate, 378
internal rate of return, 303–304
modified internal rate of return, 329–330
net present value, 341–342
number of periods, 340
payment of annuity, 364
present value of annuity, 375–376
principal payment of annuity, 365–366
random number, 377–378
random numbers, 384–385
square root, 467
straight-line depreciation, 454–455
sum of years’ depreciation, 475–476

Active
application, 102, 104–105
session, 108

Active session, 108
Addition, 95–96

of variants, 515
Annuities, 340–342

interest payment, 302–303
interest rate, 378
payment, 364
present value, 375–376
principal payment, 365–366

ANSI sessions
macro files for, 25
send string to host, 77–78
wait for strings in, 22

Any (data type), 102
Application

send keys to, 394

Application (object), 20, 108, 394–395
application object, 108, 113–114
change caption of window, 108–109
command line for, 109
constants for, 172, 178
exit from, 111
file locations, 116–118
focus, 115
help, 115–116, 118
icon for, 110
languages installed, 110–111
make visible, 118–119
name of product, 111
parent object, 111
run menu commands, 109
session object, 108, 112–114
startup language for, 114
version, 118
window, 119

Applications
activate, 102, 104
close, 104
constants, 123, 125
find running, 104–105
generate list of, 119
get minimized state of active, 106–107
get name of active, 105
get screen position of active, 105–106
hide, 107–108
list, 119
maximize, 120, 123
minimize, 120–121, 123
move, 121–122
resize, 124–125
restore, 122–123
retain focus after launching, 115
return type of, 125–126
run, 452–453
run using DDE, 197–201
send keys to, 392, 394
show, 123–124
543

Applications, external, yield control to, 235
Area code, 152–153
Arrays, 127–129

base of, 354
bounds of, 313–314, 509
define, 214–217
define and fill, 69
delete elements in, 241–242
dialog controls and, 223–224
dimension, 313–314, 380–381
fill with list of filenames, 260–262
fill with list of open applications, 119
fixed, 127–128
iterate across, 264–265
operations on, 128–129
pass, 128
querying, 128
redimension, 380–381
return dimensions of, 127
sort, 129
upper bounds, 509
zero-based, 354

ASCII text
format for IND$File, 492
mode, constant for, 162
Telnet mode for, 162–163
transfer, 79–80

example, 79–81
Assign

expression to variable, 316–317
value to object variable, 345, 449–450
value to variable, 96–97
value to variant, 515

Atangent, 132–133
Attributes, file and directory, 218, 257–258,

281–282, 450–451

B
Baud rate

of serial connection, 155
Beep, 135
Binary

comparison of strings, 354–355
mode (Telnet), 162–163
mode for IND$File, 492

Binary operations
and, 100–101
equivalence, 240–241
exclusive or, 523–524
implication, 294–295
not, 339
or, 359–360
precedence of, 353
precision of, 353–354

Bitmaps
constants for, 165

Boolean
constants, 88
convert from expressions, 142–143

data type, 137–138
functions, 100–101
operations

CBool, 142–143
comparison, 169–170
equivalence, 240–241
exclusive or, 523–524
or, 359–360

Bounds of arrays, 313–314, 509
Break

assert, 149
constant for, 162
duration of (serial connection), 155
mode (Telnet), 162

Breakpoints
remove, 40
set, 40

Buffer, display (3270 and 5250 sessions), 396
Buffers

for serial port, 157–158
Buttons

embed macros in, 24, 74
help, 287–288
on dialogs, 347–348
option, 358–359
push, 372–373

C
C language

comment blocks in, 37, 92, 168
create picture library with, 61
escape sequences in strings, 355–356
structures, 504–505, 510–511

Call subroutines, 141
Cancel button, 142
Caption of session window, 108–109
Caption of session window, change, 396–397
Capture

dialogs, 64
text from host, 79–80, 397–398

Case statements, 390–391, 475
Change

case of string, 314, 510
directories, 145
drives, 145

Character mode (Telnet), 162–163
Characters

constants for, 172
convert from integers, 147–148
convert to integers, 130
fill string with, 471–472
special, constants for, 172
translate during transmission to host, 154–

155
Check boxes, 48, 145–146
Chinese, 175, 293–294
Circuit (object), 22–23, 149, 398

break, 149
connect, 149–150, 161

disconnect, 150–151
example, 74–75
LAT, 151
modem, 152–154
send data to host, 154–155
serial, 155–158, 173
Setup, 158–160
SNA, 160–162
Telnet, 162–163, 173

Clear
Clipboard, 164
screen, 398

Clear error, 243
Clipboard (object), 23, 163

clear, 164
constants for, 165, 174
copy strings into, 164
get format of, 164–165
get text from, 165
insert text into, 165–166
return contents of, 163–164

Close, 167
active session, 398–399
files, 167, 381–382
other application, 104

Collect (Session object), 21
Collections, 346

Sessions, 111–113
Count, 113
Item, 113
Open, 113–114
Parent, 114

Sessions.Application, 113
Collections, iterate across, 264–265
Collectives, 24–25, 30–32, 82–83
Combo boxes, 49, 167–168
Command line, 109
Comments, 37, 85–86, 92, 168, 381
Communications

assert break, 149
automatically connect, 149–150
connect to host, 150, 161
constants for, 156, 162, 173
disconnect from host, 150–151
LAT, 151
method, current, 398
Modem, 152–154
send data to host, 154–155
serial, 155–158
set up, 158–160
SNA, 160–162
Telnet, 162–163
verify connection, 150

Compare
comparison operators, 169–170
dates, 305
numbers, 169
object variables, 345–346
objects, 304–305
strings, 169, 317–318, 354–355, 468–469
544

variants, 170, 306
Compile macros, 24

compiler constants, 174
conditionally, 87–89
saving file, 82–83

Concatenation, 90, 95–96
Conditional compilation, 87–89
ConfigInfo, constants for, 177
Connect, 150, 161
Connected, 150
Connections

assert break, 149
automatic, 149–150
break, 150–151
constants for, 156, 162, 173
establish, 150, 161
LAT, 151
Modem, 152–154
serial, 155–158
set up, 158–160
SNA, 160–162
Telnet, 162–163
verify, 150

Constants, 172, 174–179
application, 123, 125
application state, 172
Boolean, 88
character, 172
Clipboard, 165, 174
Collect, 177
communication, 173
compiler, 174
configuration, 177
dates, 174
declare, 170–172
directory, 175, 177
drive, 175
file, 175, 177
flow control, 156
font, 175
for conditional compilation, 87
in subroutines and functions, 171–172
installed languages, 110, 114
Keywait, 177–178
language, 175, 178
macro language, 178
math, 176
MsgBox, 176
operating system, 178
parity, 157
program window, 119
session type, 177
Session.Eventwait, 176
Shell, 178
string, 179
Stringwait, 177
Telnet communications, 162
types of, 171
variant, 179
window state, 119

Constants (sml), 110, 114, 119
Contents

of Clipboard, return, 163–164
Controls on dialogs

add, 49
assign accelerators to, 52, 58–59
Cancel button, 142
change labels of, 58
checkbox, 145–146
combo box, 167–168
delete, 62
drop listbox, 49, 236–237
duplicate, 61–62
group boxes, 48, 285
help buttons, 287–288
incorporate into macro, 67
listbox, 49, 320–321
OK button, 347–348
option buttons, 48, 52, 358–359
option group, 358–359
paste into Dialog Editor, 43, 63
paste into macro, 64
picture, 49
picture buttons, 49, 60–61, 362–364
pictures, 227–228, 361–362
position, 50
push buttons, 48, 372–373
reposition, 57
resize, 58
select, 53
specify pictures for, 59–60
tabbing order of, 52, 66
text, 48, 478–479
text boxes, 49, 66, 69, 479–480
text on, 228–229
types of, 48–49
values of, 230–233

Convert
data types, 254
date to variant, 195
to integer, 195

Convert to
Boolean, 142–143
currency, 143
date, 144, 482–483
double, 144
error number, 183
hexadecimal, 288
integer, 130, 148–149, 196, 301
long, 166
lower case, 314
number, 513
numbers, 307–308
octal, 347
single, 181
string, 181–182, 467, 469–470
variant, 182–183, 195

Copy
controls on dialog, 61–62
files, 258

string, 385
string or variant, 325–326
strings into Clipboard, 164

Cosine, 180
Count words in text, 522
Country codes, 153–154
Create

directory, 330
new instance of object, 338–339

Create OLE object, 180–181
Currency (data type), 182

convert from expression, 143

D
Data

print, 366–368
Data bits

of serial connection, 155–156
Data types

Any, 102
arrays, 127–129
Boolean, 100–101, 137–138
conversion, 254
currency, 143, 182
date, 144, 174, 185, 188–196, 305, 330–331,

339–340, 482–483
define, 210, 212, 214–217
double, 144, 236
get, 506
integer, 93, 195–196, 301–302
literals, 321–322
object variables, 507
of variables, determine, 517–518
rounding, 254–255
set default, 356–357
single, 181, 453–454
string, 181–182, 314
time, 289, 329, 339–340, 388, 481
user-defined, 504–505, 510–511
variant, 95–96, 195, 306

Date (data type), 185, 188, 321–322, 330–331,
482–483

compare, 305
constants for, 174
current, 339–340
file, 258–259
literals, 185
operations, 189–190

add, 190–191
convert, 144, 195–196
diff, 191–193
parse, 193–195
subtract, 191–193

Date, Date$
functions, 189
statements, 189–190

DBCS, 293–294
DDE

close channel, 200
545

execute commands, 197
get value of data, 198–199
initiate link, 197–200
set timeout, 201
set value of data, 198–200
terminate link, 200

Debug macros, 38, 40–42
Decimal, 321–322
Declare, 102

constants, 170–172
private variables, 369–371
public variables, 371–372
subroutines and functions, 201–202, 205–

207, 209–210
variables as OLE objects, 343–345

Define
arrays, 69
data type, 210, 212
user-defined data types, 504–505, 510–511
variables, 26

Delete
contents of Clipboard, 164
dialog controls, 62
directories, 383–384
elements in array, 241–242
files, 312
watch variables, 42

Depreciation, 196–197, 454–455, 475–476
DG Dasher sessions

macro files for, 25
send strings to host, 77–78
wait for strings in, 22

Dialog
(function), 69
(statement), 70
functions, 214

Dialog Editor
accelerators, 47
application window, 45
grid, 50–51
Information dialog, 54–57
move controls using, 57
status bar, 45
test dialogs with, 65
toolbar, 45
undo in, 62

Dialogs
AnswerBox, 101–102
AskBox and AskBox$, 131
AskPassword and AskPassword$, 132
Begin Dialog, 135–137
caption, 220
capture from other applications, 64
controls, 220–224, 230–233

add, 49
assign accelerators to, 52, 58–59
cancel buttons, 142
change labels of, 58
checkbox, 145–146

combo box, 167–168
delete, 62
drop listbox, 49, 236–237
duplicating, 61–62
group boxes, 48, 285
Help button, 287–288
incorporate into macro, 67
listbox, 320–321
listboxes, 49
OK button, 347–348
option button, 48, 52, 358–359
option group, 358–359
paste into Dialog Editor, 43, 63
paste into macro, 64
picture, 361–362
picture button, 49, 60–61, 362–364
pictures, 49
position with grid, 50
push buttons, 48, 372–373
reposition, 57
resize, 58
select, 53
specify pictures for, 59–60
tabbing order of, 52, 66
text, 48, 478–479
text boxes, 49, 66, 69, 479–480
types of, 48–49

create custom, 47
Dialog function, 69
Dialog statement, 70
display, 69–71
duplicating controls in, 61–62
dynamic, 23

have respond to user actions, 73
make, 23, 72
use, 71–72
with dialog function, 72–73

edit custom, 52, 62
focus, 69, 222–223
functions, 72–73, 212–214, 220–227, 229–

231
incorporate into macro, 67
InputBox, 298–299
message box, 334–336
modeless, 23, 331–334
move, with Information dialog, 57
open file, 352–353
paste into macro, 63
picture libraries, 60–61
pictures, 227–228
put information into, 68
record for, create, 68
reposition, 56–57
resize, 57–58
retrieve information from, 70–71
save file, 387–388
select box, 391–392
select, in editor, 53
statements, 220, 222–224, 227–233

tabbing order, 69
template files for, 64–65
templates for, 135–137
test, 65–67
text on, 228–229
Tools>Macros, 18
use custom, in macro, 67

Digital VT sessions
macro files for, 25
send strings to host, 77–78
wait for strings in, 22

Dimension
arrays, 69, 127–128, 214–217, 313–314,

380–381
of arrays, return, 127
OLE objects, 216
variables, 26, 214–217

Directories
change, 145
constants for, 175, 177
create, 330
list, 217–219, 259–260
list, to array, 260–262
remove, 383–384
return current, 182

Disable
Triggers, 447

Disconnect from host, 150–151
Display

applications, 123–124
custom dialogs, 69–70
description of macro in Tools>Macros dia-

log, 18
dialogs, 69–71
program, 118–119
user-defined help, 118

Division, 92–93
integer, 93

Dlg (object), 23
caption, 220
controls, 220–224, 230–233
focus, 222–223
functions, 224–227
pictures, 227–228
text on, 228–229

Do loops, 233–234, 252
DOS

applications, 125–126
constants for, 175

Dot notation, 91–92
Double (data type), 236, 321–322

convert from expression, 144
logarithm, 324
rounding, 254–255

Drives
change, 145
constants for, 175
list, 219
list free space on, 219–220
546

Drop list boxes, 49
DTR/DTR flow control, 156
Duplicate

controls on dialog, 61–62
files, 258

E
eb constants, 172

ebCFBitmap, 165
ebCFDIB, 165
ebCFMetafile, 165
ebCFPalette, 165
ebCFText, 165
ebCFUnicodeText, 165
ebDOS, 125
ebMaximized, 123, 172
ebMinimized, 123, 172
ebRestored, 123, 172
ebWindows, 125

Edit pane (Macro Editor), 33
Elapsed time, 482
Empty (constant), 88
EmulationInfo, constants for, 177
Enable

Triggers, 447
End

loops, 252
macro, 239
of file, 240

English, 110–111, 114, 178
constant for, 110, 114

Environment variables, 239–240
EOF (End-of-file marker), 240
Equivalence, 240–241
Erase

dialog controls, 62
directories, 383–384
elements in array, 241–242
files, 312

Err (object), 24, 242–249
Errors

cascading, 249–250
clear, 243
description of, 243–244
functions, 250–251
generate, 247–248
handling, 24, 242–252
help file for, 244–245
in external DLLs, 245–246
number, 246–247
OLE, 248–249
resume after trapping, 382
return line number of, 242–243
runtime, 247–248
set return value, 247
simulate, 251–252
source of, 248–249
SQL, 457–458
statement, 251–252

trap, 348–349
user-defined, 183, 306
Visual Basic, 250
while running macros, 15

Escape sequences, 355–356
Eventwait (Session object), 21–22

constants for, 176
Exclusive or, 523–524
Exit

functions and subroutines, 253
loops, 252

Exit program, 111
Exponentiation, 93–94, 253–254
Expressions, 254–255

assign to variable, 316–317
choose among a list, 146–147
convert from numbers, 513
convert to

Boolean, 142–143
currency, 143
dates, 144
error numbers, 183
hexadecimal, 288
integer, 148–149
long, 166
number, 307–308
single, 181
string, 181–182, 467, 469–470
variant, 182–183

evaluate, 254–255
imply, 294–295
in dialog templates, 137
string, compare, 317–318

External routines
check for parameters, 306–307
declare, 201–202, 205–207, 209–210
explicit declaration of, 357
return errors in, 245–246

F
False (constant), 88
Files

access, 322–324
attributes, 218, 257–258, 450–451
attributes of, 281–282, 350–352
button pictures, 117
capture text into, 397–398
check existence of, 260
close, 167
constants for, 175, 177
copy, 258
date and time, 258–259
delete all, 312
dialog template, 64–65
end of, 240
file numbers, 273
file pointer in, 388–390
help, customize, 115–116
HotSpots, 116

initialization, 523
initialization (ini), 378–380
keyboard maps, 116
length of, 260, 324, 350–352
list, 259–260
list, to array, 260–262
lock, 322–324, 350–352
macros, 24–25, 76–77, 116
name, 337–338
names of, 262–263
open, 350–352
open, with dialog, 352–353
parse names, 262–263
phone books, 116–117
picture, 60
picture library, 60–61
position file pointer in, 322
print, 455–456
print spaces in, 477–478
read, 295–298, 318
receive, 498–499
rename, 337–338
retrieve data from, 279–281
save, with dialog, 387–388
send, 499–500
sessions, 117
size, 324, 350–352
timestamp, 258–259
transfer, 23, 81–82, 118, 483
unlock, 322–324, 350–352
width, 520–521
write, 368–369, 373–375, 455–456, 522–

523
write out and close, 381–382

Find
other application, 104–105
substrings, 299, 301, 314, 319–320, 327–

328, 383, 521
Fixed arrays, 127–128
Flash program icon, 110
Flow control

constants for, 156
of serial connection, 156

Focus, 115
Folders, See Directories
Fonts

constants for, 175
For loops, 252, 265–267

iterate across a collection or array, 264–265
Format

constants for, 165
of Clipboard, 164–165

Format strings, 267–269, 271–273
French, 110–111, 114, 178

constant for, 110, 114
FTP file transfer

connect to host, 484
host name, 486–487
password, 489
send command, 483–486
547

user name, 489
Functions, 274–277

check for parameters, 306–307
constants in, 171–172
declare, 201–202, 205–207, 209–210
described, 18–19
Dialog, 69, 72–73
dialog, 212–214, 224–227
error, 250–251
exit, 253
go to label in, 283–284
pass parameters to, 138–139
private variables in, 369–371
public variables in, 371–372
returning variables, 18

Future value of annuity, 277–278

G
German, 110–111, 114, 178

constant for, 110, 114
Get

data from file, 279–281
file attributes, 281–282
OLE object, 282–283

Global variables, 30–31
Group boxes, 48, 285

H
Help

button on dialog, 287–288
user-defined, 115–116, 118

Hexadecimal, 321–322
convert number to, 288

Hide
application, 107–108
program, 118–119

Hosts
assert break, 149
communicating with, 74–75, 77
connect to, 150, 161

automatically, 149–150
example, 74–75, 77
LAT, 151
modem, 152–154
serial port, 155–158
SNA, 160–162
Telnet, 162–163

disconnect from, 150–151
set up connection to, 158–160
transfer files from, 81–82
transfer text from, 79–80
transfer text to, 80–81
verify connection to, 150

HotSpots
embed macros in, 24
location of, 116

Hour, current, 289

I
Icon, flash, 110
If loops, 291–293
IME, 175
Implication, 294–295
Information dialog. See Dialog Editor, Infor-

mation dialog
Initialization files

read, 378–380
write, 523

Input
file into variables, 295–298, 318
user, via dialog, 298–299

Instance of object, 338–339
Integer (data type), 301–302, 321–322

convert from character, 130
convert from date, 195–196
convert from expression, 148–149
convert from string, 130
convert to character codes, 147–148
division of, 93
return from real, 301

Interest payments, 302–303
Interest rate, 378
Internal rate of return, 303–304
Interrupt, constant for, 162
IPX/SPX, 160

J
Japanese, 175, 293–294

K
Kermit file transfer

checksum, 496–497
duplicate files, 497
packet size, 497
send command, 483–486

Keyboard maps
embed macros in, 24
return location of, 116

Keyboard shortcuts, See Accelerators
Keystrokes

Dialog Editor, 47
Macro Editor, 35–36
send to host, 77–79
send, to external application, 392, 394

Keywait (Session object), 22
constants for, 177

Keywords, 311–312
Kill, 312
Korean, 175, 293–294

L
Labels

in subroutines and functions, 283–284

of dialog controls, 58
Languages

constants for, 110, 114
installed, 110–111
startup, 114

Languages, constants for, 175, 178
LAT

Host name, 151
Password, 151
save password, 151

LBound, 128
Length

file, 324, 350–352
IND$File records, 492
of files, 260

Length of string, 315–316
Line-continuation character (_), 18, 37, 94–95
List

boxes, 49, 320–321
directories, 217–219
drives, 219–220
files and directories, 259–262
items in string, 308–310
of open applications, 119

Literals, 321–322
Local Area Transport, See LAT
Location

of phone books, 116–117
Locations

button pictures, 117
HotSpots, 116
keyboard maps, 116
macros, 116
sessions, 117
transferred files, 118

Lock file, 322–324
Lockstep (Session object), 22

example, 80
LOF, 260
Logarithm, 324
Logical operations

and, 100–101
CBool, 142–143
equivalence, 240–241
implication, 294–295
not, 339
or, 359–360
precedence of, 353
precision of, 353–354

Login/logout macros, 24–29
Long (data type), 321–322, 325

convert from expression, 166
Loops

Choose, 146–147
Do, 233–234
exit, 252
For, 264–267
If, 291–293
while, 520
548

LU (SNA communications)
host names, 160

M
Macro Editor

accelerators, 35–36
edit pane, 33
instruction pointer, 39
search and replace, 37
status bar, 33
toolbar, 35
watch pane, 33

Macros
case statements, 390–391, 475
change caption of session window, 108–109
check syntax, 38
collectives, 24–25, 30–32
comment, 18, 37, 85–86, 92, 168
compiling, 24, 82–83
conditional execution, 233–234, 291–293
constants for, 178
debug, 38–42
description of, in Tools>Macros dialog, 18
display user-defined help, 118
editing, 36–38
end, 239
errors in, 15
files, 116
files of, 24
hide or show program, 118–119
in buttons, 24, 74
in HotSpots, 24
in keyboard maps, 24
in sessions, 24–29
instance program object, 108
instance session object, 108
login and logout, 24–29
loops, 233–234, 291–293
modules, 24–25, 30–32
open session, 113–114
organization of, 17
pause, 454
quit program, 111
record, 14
recording, 13
return

all sessions, 111–113
application object, 113
installed languages, 110–111
location of phone book, 116–117
number of, 113
number of sessions, 113
parent object, 111
parent of session, 114
product name, 111
program’s command line, 109
session, 113
startup language, 114
version of program, 118

return location of, 116
button pictures, 117
macro files, 116
sessions, 117
transferred files, 118

run, 15
menu commands, 109

Session_Connect, 24
Session_QueryClose, 24
set program to flash minimized icon, 110
sharing of variables between, 24
stop, 239
stop running, 467
switch statements, 390–391, 475
syntax, 18–19
trace, 38–39
user macro file, 24–25
watch variables, 40, 42

Math functions
absolute value, 99
addition, 95–96
atn, 132–133
CDbl, 144
CInt, 148–149
Clng, 166
constants for, 176
cosine, 180
division, 92–93
exponentiation, 93–94
integer division, 93
multiplication, 91
subtraction, 86–87

Math operations
convert number to hexadecimal, 288
convert to numbers, 307–308
convert to octal, 347
exponentiation, 253–254
logarithm, 324
modular arithmetic, 330–331
parse real numbers, 263–264
precedence of, 353
precision of, 353–354
random number, 377–378
random numbers, 384–385
return integer from real, 301
sign, 451
sine, 453
square root, 467
tangent, 478

Maximize, 172
applications, 120, 123

MBCS text
insert, into Clipboard, 165–166
return from Clipboard, 165

MBCS text, constants for, 175
Menus

customize, 115–116
run from macro, 109

Methods, 19–24, 149, 242, 345, 483
dot notation, 91–92

Minimize, 172
applications, 120–121, 123

Minute, current, 329
Mnemonics, 77–78
Modeless dialogs, 23
Modem

area code, 152–153
country code, 153
country codes, 154
phone numbers, 152–154

Modular arithmetic, 330–331
Modules, 24–25, 30–32
Month, current, 330–331
Move

applications, 121–122
Msg (object), 23, 331–334
MsgBox constants, 176
Multibyte Character Sets, See MBCS text
Multiplication, 91
MVS/CICS, 491
MVS/TSO, 491

N
Name

of active application, 105
Names

data type, 506
file, 337–338
file, parse, 262–263
host, 151, 160, 486–487
product, return, 111
SNA server, 161–162
Triggers, 414

Negation, 339
Negative numbers, 451
Non-printing characters

constants for, 172
Null

constant, 88
variables, 307

Numbers
compare, 169
convert from expressions, 513
convert to expressions, 183
random, 377–378, 384–385

Numeric functions, See Math functions

O
Object Linking and Embedding See OLE
Objects, 19–20

Application, 20, 108, 114, 346
Application.Sessions, 114
Application.Sessions (collection), 111–114
assign values to variables, 449–450
check for, 308
Circuit, 22–23, 149, 346
Clipboard, 23, 163
collections, 346
compare, 304–305
549

create, 180–181
create new instance, 338–339
define, 216
Dlg, 23
dot notation, 91–92
Err, 24, 242
get data type for variables, 507
methods, 345
Msg, 23, 331–334
OLE, 180–181, 282–283, 343–346
properties, 255, 345
Session, 21, 346
Session.Collect, 21
Session.Eventwait, 21–22
Session.Keywait, 22
Session.LockStep

example, 80
Session.Lockstep, 22
Session.Stringwait, 22
Transfer, 23, 346, 483
variables, 345–346

Octal, 321–322, 347
OLE

compare objects, 304–305
CreateObject, 180–181
define objects, 216
errors, 248–249
get objects, 282–283
objects, 255, 343–346
return dimensions of arrays in, 313–314
using, 73–74

Open
applications, generate list of, 119
file, with dialog, 352–353
session, 113–114

Open files, 350–352
Operating system

beep speaker, 135
change directories, 145
change drives, 145
close applications, 104
close files, 167
constants for, 178
environment variables, 239–240
find running applications, 104–105
hide application, 107–108
Input method, 293–294
list open applications, 119
maximize applications, 120
minimize applications, 120–121
move applications, 121–122
resize application, 124–125
restore applications, 122–123
return name of active application, 105
return screen position of active application,

105–106
return state of active application, 106–107
return type of application, 125–126
set time, 481
show application, 123–124

switch applications, 102, 104
Operators, 353–354

addition, 95–96
array, 128
assignment, 96–97
comparison, 169–170
comparison, See Compare
concatenation, 90, 95–96
division, 93
dot, 91–92
exponentiation, 93–94
multiplication, 91
precedence, 90
subtraction, 86–87

Output
data to printer, 366–368

P
Packet size

IND$File, 492–493
Kermit, 497
XMODEM, 502
YMODEM, 503

Parameters, 338
check for presence of, 306–307
pass by reference, 138
pass by value, 138–139

Parity
constants for, 157
of serial connection, 156–157

Parse
names of files, 262–263
real numbers, 263–264

Passwords
FTP, 489
LAT, 151
prompt user for, 132

Patterns
Trigger, 415

Pause macro, 454
Persoft Script language, See PSL scripts
Phone books

location of, 116–117
Phone numbers, 152–154
Pi, 176
Picture button, 60–61
Picture buttons, 49
Picture control on dialog, 361–364
Pictures, 49, 227–229

files, 60
libraries of, 60–61
location of, 117
specify, 59

Pointer, file, 322, 388–390
PopUpMenu, 365
Port

serial, 157

Port number (Telnet), 163
Positive numbers, 451
Powers, 93–94, 253–254
Precedence operators, 90
Precendence, 353
Precision, 353–354
Print, 455–456
Print data, 366–368
Private

arrays, 127–128
variables, 31, 369–371

Properties, 19–24, 149, 242, 255, 345, 483
dot notation, 91–92

Protocols
file transfer, 497–498
SNA, 160

Prototypes, 201–202, 205–207, 209–210
PSL scripts

run, 15
set up host connections, 159

Public
arrays, 127–128
variables, 30–31, 371–372

Q
Quit macro, 239
Quit program, 111

R
Random numbers, 377–378
Rate of return, 303–304, 329–330
Read

file, 295–298, 318
initialization files, 378–380

Receive files, 498–499
Record

macros, 13
Record macros, 14
Reference, pass parameters by, 138
REM (keyword), 37, 168
Remarks, 381
Remove directories, 383–384
Rename file, 337–338
Reserved words, 311–312
Resize

applications, 124–125
Restore, 172

applications, 122–123
Resume macro after trapping error, 382
Return

contents of clipboard, 163–164
current directory, 182
from subroutine, 382–383

Rounding, 254–255
RTS/CTS flow control, 156
Run

external application, 452–453
macros, 15
PSL scripts, 15
550

S
Save file dialog, 387–388
SCO ANSI sessions

macro files for, 25
send string to host, 77–78
wait for strings in, 22

Search and replace, 37
Second, current, 388
Seconds since midnight, 482
secure FTP file transfer, 489

compression, 487
port number, 488
secure socks enabled, 488
secure socks port number, 488
secure socks server name, 489
warnings, 487

Send, 77–78
data to host, 154–155
files, 499–500
keys to external application, 392, 394
keystrokes to a host, 77–79
strings to a host, 77

SendKey, 78–79
SendLiteral, 77–78
SendRawToHost, 154–155
Serial communications

constants for, 173
Serial connections

baud rate, 155
break duration, 155
buffer size, 157–158
constants for, 156
data bits, 155–156
flow control, 156
parity, 156–157
port, 157
stop bits, 158

Servers (SNA), 161–162
Session (object), 21, 394

blink text, 395
bold text, 395
capture text from host, 407
capture text in, 397–398
Capturing text with, 177
capturing text with, 79–80
change caption of, 396–397
clear screen, 398
close active session, 398–399
Collect (sub-object), 21, 399–400

constants for, 177
pass collected characters to screen, 400
reset, 401
return collected characters, 400
return number of collected characters,

400
return status of, 402
set number of collected characters, 401
set pattern to end on, 402–403
set timeout for, 403

start collecting characters, 401
connect to host, 404
constants for, 172, 177–178
display buffer, 396
display text on screen, 406
emulation, 406–407

constants for, 177
EventWait (sub-object), 21, 407–408

constants for, 176
reset, 409
return number of events, 408
return status of, 410
return type of event, 408–409
set number of events, 409
set timeout, 410
start waiting, 409

file locations, 404
constants for, 177

hide or show, 403–404
Keywait (sub-object), 22

constants for, 177–178
LockStep (sub-object), 22, 80
move cursor, 403
return circuit object, 398
return cursor location, 410–411
return parent object, 394–395
run menu command, 405–406
send keystrokes to host, 77–78
Sendkey, 79
Stringwait (sub-object), 22

constants for, 177
transferring text with, 79–81
turn Dialog View on or off, 405
wrap text in, 395

Session_Connect macros, 24–29
Session_QueryClose macros, 24–25, 29
Sessions

change caption of, 108–109
embed macros in, 24–29
open, 113–114
return active, 108
return command line, 109
return location of, 117
return number of open, 113
return parent, 114
return specified, 113

Set up file transfer method, 500–501
Shell constants, 178
Sine, 453
Single (data type), 321–322, 453–454

convert from expression, 181
rounding, 254–255

Size
array, 380–381
file, 324, 350–352
of serial buffers, 157–158
of string, 316
string, 315–316

SmarTerm Buttons, See Buttons
sml Constants

smlDTRDSR, 156
smlEVENPARITY, 157
smlMARKPARITY, 157
smlNOFLOWCONTROL, 156
smlNOPARITY, 157
smlODDPARITY, 157
smlRTSCTS, 156
smlXONXOFF, 156
SPACEPARITYCommunications

constants, 157
sml constants, 172

smlMAXIMIZE, 172
smlMINIMIZE, 172
smlRESTORE, 172

smlEnglish, 110, 114
smlFrench, 110, 114
smlGerman, 110, 114
smlMaximize, 119
smlMinimize, 119
smlRestore, 119
smlSpanish, 110, 114
SNA

LU, 160
protocol, 160
server name, 161–162

Sort arrays, 129
Spaces

in strings, 455
print, 477–478
print or write to file, 455–456

Spanish, 110–111, 114, 178
constant for, 110, 114

Special characters, constants for, 172
SQL operations

close connection to data, 457
errors in, 457–458
execute query, 458–459, 463–464
get information on data source, 459, 461–

462
get query results, 464–467
open connection to data, 462–464
specify fields to return, 456–457

Square root, 467
Statements

constants in, 171–172
Dialog, 70
dialog, 214
error, 251–252
pass parameters to, 138–139

Status bar (Macro Editor), 33
Stop

functions and subroutines, 253
loops, 252
macro, 239, 467

Stop bits
for serial connections, 158

String (data type), 321–322, 470–471
align, 325–326
551

case-sensitivity, 354–355
change case, 314, 510
compare, 317–318, 354–355, 468–469
convert expression to, 467
convert from expression, 469–470
copy, 325–326, 385
C-style escape sequences, 355–356
fill with character, 471–472
fill with spaces, 455
find substring in, 299, 301
fixed-length, 370–371
length, 315–316
return items in, 308–310
size in bytes, 315–316
substring, 319–320, 521
substrings, 314, 327–328, 383
trim, 504

String operations
change case, 510
compare, 468–469
comparison type, 354–355
copy, 385
find substring, 299, 301, 319–320
length, 315–316
return leftmost characters, 314
size, 315–316
substring, 327–328, 383, 521
trim, 504

Strings
compare, 169
concatenate, 90, 95–96
constants for, 179
convert from expression, 181–182
convert from integers, 147–148
convert to integers, 130
copy into Clipboard, 164
format, 267–269, 271–273
return, from Clipboard, 163–164
send to host, 77
wait for, 22

Stringwait (Session object), 22
constants for, 177

Structures, dot notation for, 91–92
Subroutines, 472–473, 475

call, 141
constants in, 171–172
declare, 201–202, 205–207, 209–210
described, 18–19
example of, 18–19
exit, 253
go to label in, 283–284
pass parameters to, 138–139
private variables in, 369–371
public variables in, 371–372
return from, 382–383

Subtraction, 86–87
Suspend macro, 454
Switch

to other application, 102, 104

Switch statements, 390–391, 475
Syntax of macros, 18–19

T
Tangents, 132–133, 478
TCP/IP, 160
Telnet

break mode, 162
character mode, 162–163
constants for, 162, 173
host name, 163
port number, 163

Testing
dialogs, 66

Testing dialogs, 65–66
Text

blinking, 395
bold, 395
capture, 397–398
comparison of strings, 354–355
control on dialog, 478–479
count words in, 522
dialog control, 48
in session window, wrap, 395
insert, into Clipboard, 165–166
on screen, clear, 398
return, from Clipboard, 165
transfer from host, 79–80
transfer to host, 80–81

Textbox dialog control, 66, 479–480
setting default text, 69

Time (data type), 388, 481
current, 339–340
operations, 289, 329

Time since midnight, 482
Time, current, 481
Timestamp, 258–259
Toolbar

Dialog Editor, 45
Macro Editor, 33–35

Transfer (object), 23, 483
connect to host, 484
end-of-line handing for IND$File, 491
example, 81–82
file locations, 118
FTP

connect to host, 484
host name, 486–487
password, 489
secure FTP, 489
send command, 483–486
user name, 489

IND$File
end-of-line handling, 491
host environment, 491
local file format, 492
packet size, 492–493
record length, 492
send commands, 490

Kermit
checksum, 496–497
duplicate files, 497
packet size, 497
send command, 483–486

protocol, 497–498
receive files, 498–499
secure FTP

compression, 487
port number, 488
secure socks enabled, 488
secure socks port number, 488
secure socks server name, 489
warnings, 487

send files, 499–500
setup, 500–501
XMODEM

checksum, 502
packet size, 502
streaming, 502

YMODEM
checksum, 503
packet size, 503
streaming, 503

Translation, 154–155
Triggers

get name of, 414
get pattern for, 415
turn on or off, 447

Trim strings, 504
True (constant), 88
Type

of applications, 125–126
Type checking, 102
Types, of constants, 171

U
Ubound, 128
Undo in Dialog Editor, 62
Unicode text

insert, into Clipboard, 165–166
return, from Clipboard, 165

Unlock file, 322–324
Upper bounds of arrays, 509
Uppercase, 510
User files, 117
User interface

AnswerBox, 101–102
AskBox and AskBox$, 131
AskPassword and AskPassword$, 132
constants for, 176
dialogs, 334–336
InputBox, 298–299
listbox, 320–321
modeless dialogs, 331–334
save file dialog, 387–388
select box, 391–392

User macro file, 24–25
example, 76–77
552

UserButtonPicturesLocation, 117
User-defined

data types, 214–217, 504–505, 510–511
errors, 183, 306, 348–349
help, 115–116, 118

UserHelpFile, 115
UserHelpmenu, 115–116
UserHotSpotsLocation, 116
UserKeyMapsLocation, 116
UserMacrosLocation, 116
UserPhoneBookLocation, 116–117
UserSessionsBookLocation, 117
UserTransfersLocation, 118

V
Value, pass parameters by, 138–139
Variables

array, 127–129
assign expression to, 316–317
assign values to, 96–97
Boolean, 137–138
checking type of, 102
copy, 325–326
declaring as OLE objects, 343–345
define, 26
determine if objects, 308
determine type of, 517–518
dimension, 214–217
empty, 307
environment, 239–240
get data type, 506
global, 30–31
input file into, 295–298, 318
object, 345–346, 449–450, 507
of objects See Properties
private, 31, 369–371
public, 30–31, 371–372

returned by functions, 18
set default data type, 356–357
shared between macros, 24
store data from file in, 279–281
watch, 40, 42

Variant (data type), 514–515, 517
assign value to, 515
compare, 170, 306
concatenate, 95–96
constants for, 179
convert from date, 195
convert from expression, 182–183
copy, 325–326
determine if object, 308
empty, 307
passing to subroutines, 517

Variants
convert from date, 195

Version, 118
ViewUserHelp, 118
Visible, 118–119
VM/CMS, 491

W
Wait for

3270/5250 form pages, 21–22
keystrokes, 22
strings, 22

Watch pane (Macro Editor), 33
Watch variables, 40, 42
Weekday, 519–520
While loops, 520
Width of files, 520–521
Win32 (constant), 88
Windows

applications, 125–126
constants for, 119, 172

of program, set state of, 119
WindowState, 119
Words, count, 522
Wrap text in session window, 395
Write

data to file, 368–369, 373–375
file, 381–382, 522–523

Write data to file, 375
WYSE sessions

macro files for, 25
send string to host, 77–78
wait for strings in, 22

X
XMODEM file transfer

checksum, 502
packet size, 502
streaming, 502

Xon/xoff flow control, 156

Y
Year, 524–525
YMODEM file transfer

packet size, 503
streaming, 503

Z
Zero-based arrays, 354
ZModem example, 81–82
553

	Contents
	Introduction 1
	Macro Features Listed by Purpose 2

	Recording and Running Macros 13
	Recording macros 14
	Running macros 15

	Creating Macros 17
	Features and organization 17
	Using SmarTerm’s objects 19
	Modules and collectives 24

	Programming Macros 33
	Using the macro editor 33
	Creating Dialogs 43
	Using Dialogs 67
	Using objects in an external OLE application 73
	Communicating with a host 74
	Compiling Macros 82

	Symbols 85
	' (single quote) 85
	'! (description comment) 85
	- (subtraction) 86
	#Const 87
	#If...Then...#Else 87
	& (concatenation) 89
	() (precedence) 90
	* (multiplication) 91
	. (dot) 91
	/* and */ (C-style comment block) 92
	/ (division) 92
	\ (integer division) 93
	^ (exponentiation) 93
	_ (line continuation) 94
	+ (addition/concatenation) 95
	<, <=, <>, =, >, >= (comparison) 96
	= (assignment) 96

	A 99
	Abs 99
	And 100
	AnswerBox 101
	Any (data type) 102
	AppActivate 102
	AppClose 104
	AppFind, AppFind$ 104
	AppGetActive$ 105
	AppGetPosition 105
	AppGetState 106
	AppHide 107
	Application (object) 108
	AppList 119
	AppMaximize 120
	AppMinimize 120
	AppMove 121
	AppRestore 122
	AppSetState 123
	AppShow 123
	AppSize 124
	AppType 125
	ArrayDims 126
	Arrays (topic) 127
	ArraySort 129
	Asc, AscB, AscW 130
	AskBox, AskBox$ 131
	AskPassword, AskPassword$ 132
	Atn 132

	B 135
	Beep 135
	Begin Dialog 135
	Boolean (data type) 137
	ByRef 138
	ByVal 138

	C 141
	Call 141
	CancelButton 142
	CBool 142
	CCur 143
	CDate, CVDate 144
	CDbl 144
	ChDir 145
	ChDrive 145
	CheckBox 145
	Choose 146
	Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ 147
	CInt 148
	Circuit (object) 149
	Clipboard (object) 163
	CLng 166
	Close 167
	ComboBox 167
	Comments (topic) 168
	Comparison Operators (topic) 169
	Const 170
	Constants (topic) 172
	Cos 180
	CreateObject 180
	CSng 181
	CStr 181
	CurDir, CurDir$ 182
	Currency (data type) 182
	CVar 182
	CVErr 183

	D 185
	Date (data type) 185
	Date, Date$ (functions) 189
	Date, Date$ (statements) 189
	DateAdd 190
	DateDiff 191
	DatePart 193
	DateSerial 195
	DateValue 195
	Day 195
	DDB 196
	DDEExecute 197
	DDEInitiate 197
	DDEPoke 198
	DDERequest, DDERequest$ 198
	DDESend 199
	DDETerminate 200
	DDETerminateAll 200
	DDETimeout 201
	Declare 201
	DefType 210
	Dialog (function) 212
	Dialog (statement) 214
	Dialogs (topic) 214
	Dim 214
	Dir, Dir$ 217
	DiskDrives 219
	DiskFree 219
	DlgCaption (function) 220
	DlgCaption (statement) 220
	DlgControlId 220
	DlgEnable (function) 221
	DlgEnable (statement) 222
	DlgFocus (function) 222
	DlgFocus (statement) 223
	DlgListBoxArray (function) 223
	DlgListBoxArray (statement) 224
	DlgProc 224
	DlgSetPicture 227
	DlgText 228
	DlgText$ 229
	DlgValue (function) 230
	DlgValue (statement) 230
	DlgVisible (function) 231
	DlgVisible (statement) 231
	Do...Loop 233
	DoEvents (function) 235
	DoEvents (statement) 235
	Double (data type) 236
	DropListBox 236

	E 239
	End 239
	Environ, Environ$ 239
	EOF 240
	Eqv 240
	Erase 241
	Err (object) 242
	Error Handling (topic) 249
	Exit Do 252
	Exit For 252
	Exit Function 253
	Exit Sub 253
	Exp 253
	Expression Evaluation (topic) 254

	F 257
	FileAttr 257
	FileCopy 258
	FileDateTime 258
	FileDirs 259
	FileExists 260
	FileLen 260
	FileList 260
	FileParse$ 262
	Fix 263
	For...Each 264
	For...Next 265
	Format, Format$ 267
	FreeFile 273
	Function...End Function 274
	Fv 277

	G 279
	Get 279
	GetAttr 281
	GetObject 282
	GoSub 283
	Goto 284
	GroupBox 285

	H 287
	HelpButton 287
	Hex, Hex$ 288
	Hour 289

	I 291
	If...Then...Else 291
	Iif 292
	IMEStatus 293
	Imp (operator) 294
	Input# 295
	Input, Input$, InputB, InputB$ 298
	InputBox, InputBox$ 298
	InStr, InstrB 299
	Int 301
	Integer (data type) 301
	IPmt 302
	IRR 303
	Is 304
	IsDate 305
	IsEmpty 306
	IsError 306
	IsMissing 306
	IsNull 307
	IsNumeric 307
	IsObject 308
	Item$ 308
	ItemCount 309

	K 311
	Keywords (topic) 311
	Kill 312

	L 313
	Lbound 313
	LCase, LCase$ 314
	Left, Left$, LeftB, LeftB$ 314
	Len, LenB 315
	Let 316
	Like 317
	Line Input# 318
	Line Numbers (topic) 318
	Line$ 319
	LineCount 319
	ListBox 320
	Literals (topic) 321
	Loc 322
	Lock, Unlock 322
	Lof 324
	Log 324
	Long (data type) 325
	LSet 325
	LTrim, LTrim$ 326

	M 327
	Mid, Mid$, MidB, MidB$ (functions) 327
	Mid, Mid$, MidB, MidB$ (statements) 328
	Minute 329
	MIRR 329
	MkDir 330
	Mod 330
	Month 331
	Msg (object) 331
	MsgBox (function) 334
	MsgBox (statement) 336

	N 337
	Name 337
	Named Parameters (topic) 338
	New 338
	Not 339
	Now 339
	NPer 340
	Npv 341

	O 343
	Object (data type) 343
	Objects (topic) 344
	Oct, Oct$ 347
	OKButton 347
	On Error 348
	Open 350
	OpenFilename$ 352
	Operator Precedence (topic) 353
	Operator Precision (topic) 353
	Option Base 354
	Option Compare 354
	Option CStrings 355
	Option Default 356
	Option Explicit 357
	OptionButton 357
	OptionGroup 358
	Or 359

	P 361
	Picture 361
	PictureButton 362
	Pmt 364
	PopUpMenu 365
	PPmt 365
	Print 366
	Print# 368
	Private 369
	Public 371
	PushButton 372
	Put 373
	Pv 375

	R 377
	Random 377
	Randomize 377
	Rate 378
	ReadIni$ 378
	ReadIniSection 379
	Redim 380
	Rem 381
	Reset 381
	Resume 382
	Return 382
	Right, Right$, RightB, RightB$ 383
	RmDir 383
	Rnd 384
	RSet 385
	RTrim, RTrim$ 385

	S 387
	SaveFilename$ 387
	Second 388
	Seek (function) 388
	Seek (statement) 389
	Select...Case 390
	SelectBox 391
	SendKeys 392
	Session (object) 394
	Set 449
	SetAttr 450
	Sgn 451
	Shell 452
	Sin 453
	Single (data type) 453
	Sleep 454
	Sln 454
	Space, Space$ 455
	Spc 455
	SQLBind 456
	SQLClose 457
	SQLError 457
	SQLExecQuery 458
	SQLGetSchema 459
	SQLOpen 462
	SQLRequest 463
	SQLRetrieve 464
	SQLRetrieveToFile 466
	Sqr 467
	Stop 467
	Str, Str$ 467
	StrComp 468
	StrConv 469
	String (data type) 470
	String, String$ 471
	Sub...End Sub 472
	Switch 475
	SYD 475

	T 477
	Tab 477
	Tan 478
	Text 478
	TextBox 479
	Time, Time$ (functions) 481
	Time, Time$ (statements) 481
	Timer 482
	TimeSerial 482
	TimeValue 482
	Transfer (object) 483
	Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ 504
	Type 504
	TypeName 506
	TypeOf 507

	U 509
	UBound 509
	UCase, UCase$ 510
	Unlock 510
	User-Defined Types (topic) 510

	V 513
	Val 513
	Variant (data type) 514
	VarType 517

	W - X - Y 519
	Weekday 519
	While...Wend 520
	Width# 520
	Word$ 521
	WordCount 522
	Write# 522
	WriteIni 523
	Xor 523
	Year 524

	PSL Equivalents for Methods and Properties 527
	Error Messages 533
	Visual Basic Compatible error messages 533
	Compiler-Specific error messages 536
	Compiler errors 537

	Index 543
	Macro Features Listed by Purpose
	File Transfer
	Character and String Manipulation
	Drive, Folder, and File Access
	Keywords, Data Types, Operators, and Expressions
	Host Connections
	Numeric, Math, and Accounting Functions
	Macro Control and Compilation
	Application and Session Features
	Operating System Control
	User Interaction
	Time and Date Access
	Objects
	SQL Access
	DDE Access

	Introduction
	Note

	Recording and Running Macros
	Recording macros
	1. Select Tools>Macros. The Macros dialog appears:
	2. Type a name for your macro. Don't include spaces in the name. To replace an existing macro, select the name from the list.
	3. Click Record. The Start Recording dialog appears, allowing you to review the macro name you just typed. If you use an existin...
	4. Perform the steps you want to record.
	5. When you are finished recording the macro, click the Stop button to save the macro. If you entered passwords while recording ...

	Running macros
	What can go wrong?
	Running PSL Scripts
	Note

	Creating Macros
	Features and organization
	Macro syntax
	Note
	Note

	Using SmarTerm’s objects
	Understanding the SmarTerm objects
	Application

	Note
	Session

	Note
	Note
	Note
	Circuit
	Transfer

	Note
	Clipboard
	Msg
	Dlg
	Err

	Modules and collectives
	Note
	Predefined login and logout macros
	Session_Connect macro
	Session_QueryClose macro

	Why macros, modules, and collectives

	Note
	1. When you log onto the host, the Session_Connect macro sends your user name and password to the host.
	2. The host sends a line of text displaying a “virtual circuit number” corresponding to your connection.
	3. Your login macro records the virtual circuit number (which must be supplied as a parameter to the print spooler later on in t...
	4. A SmarTerm-button macro later gets the saved virtual circuit number and uses it in a print spooler command sent to the host.

	Programming Macros
	Using the macro editor
	The macro editor window
	Getting help
	Using the toolbar
	Edit>Cut
	Edit>Copy
	Edit>Paste
	Edit>Undo
	Macro>Start
	Break
	Macro>Stop
	Debug>Toggle Breakpoint
	Debug>Add Watch
	Calls
	Debug>Single Step
	Debug>Procedure Step

	Using accelerators
	Editing macros
	Moving around in a macro
	Color coding in macros
	Adding comments to macros
	Breaking a macro statement across multiple lines
	Searching and replacing
	Checking the syntax of macros

	Debugging macros
	Tracing macro execution

	Note
	To trace a macro:

	1. Click the Single Step or Procedure Step button on the toolbar, or Press F8 (Single Step) or Shift+F8 (Procedure Step). The macro editor places the instruction pointer on the first line of the macro.
	Note
	2. Repeat step 1 to run the marked line and then advance the instruction pointer to the next instruction. Each time you repeat step 1, the macro editor runs the line containing the instruction pointer and then moves to the next line.
	3. When you finish tracing the macro, either select Macro>Start (F5 or the toolbar button) to run the rest of the macro at full speed, or select Macro>End (or the toolbar button) to stop running the macro.
	To use the Calls dialog:

	1. Click the Calls button on the toolbar. The Calls dialog appears, which lists the subroutine calls made by your macro in the course of arriving at the current subroutine.
	2. To view one of the subroutines listed in the Calls dialog, highlight it and click Show. The macro editor then displays that s...
	Note
	To move the instruction pointer to another line within a subroutine:

	1. Place the insertion point in the line where you want to resume stepping through the macro.
	2. Select Debug>Set Next Statement. The instruction pointer moves to the line you selected, and you can resume stepping through your macro from there.
	Setting and removing breakpoints
	To set a breakpoint:

	1. Place the insertion point in the line where you want to start debugging.
	2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).
	Note
	To remove a single breakpoint:

	1. Place the insertion point on the line containing the breakpoint that you want to remove.
	2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).
	To remove all breakpoints:
	Using Watch variables
	To add a watch variable:

	1. It is most flexible to add watch variables when running the macro, so begin by select Macro>Start (F5 or the Start button), then press Ctrl-Break to pause the macro. Or, insert a breakpoint at an appropriate location in the macro and then run it.
	2. When the macro pauses, select Debug>Add Watch (Shift+F9 or the Add Watch button). The Add Watch dialog appears.
	3. In the Procedure box, select the name of the procedure containing the variable you want to watch. If the variable you want to watch is global to the module, select “(All Procedures)”.
	4. In the Variable box, select the name of the variable you want to add to the watch variable list.
	5. In the Script box, type or select the name of the macro containing the variable you want to watch. If you're creating a new name, don't include any spaces. If the variable you want to watch is global to the collective, select “(All Scripts)”.
	6. Click OK to add the variable to the watch variable list.
	To modify the value of a watch variable:

	1. Highlight the variable in the watch pane and select Debug>Modify Watch (F2), or just double-click the variable in the watch pane. The Modify Variable dialog appears.
	2. Enter the new value for the variable in the Value field.
	3. Click OK. The new value of your variable appears on the watch variable list.
	To delete a watch variable:

	1. Highlight the variable on the watch list.
	2. Select Debug>Delete Watch or press the Delete key.

	Creating Dialogs
	To insert a new dialog template:
	1. Place the insertion point where you want the new dialog template to appear in your macro. Bear in mind that the scope rules o...
	2. Select Edit>Insert New Dialog. The dialog editor appears, displaying a new dialog in its window.
	3. Use the dialog editor to create the dialog.
	4. Exit from the dialog editor and return to the macro editor.
	To edit an existing dialog template:

	1. Select the lines of code that define the entire dialog template.
	2. Select Edit>Edit Dialog. The dialog editor appears, displaying a dialog created from the code you selected.
	3. Use the dialog editor to modify your dialog.
	4. Exit from the dialog editor and return to the macro editor. The macro editor automatically replaces the dialog template you originally selected with the revised template generated by Dialog Editor.
	To capture a dialog from another application:

	1. Display the dialog you want to capture.
	2. Open the Dialog Editor.
	3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is able to capture:
	4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard Windows controls from the target dialog.
	Note
	Using the Dialog Editor
	Toolbar
	Dialog
	Status bar

	Note
	The Dialog Editor
	Test Dialog
	Information
	Cut
	Copy
	Paste
	Undo
	Select
	OK Button
	Cancel Button
	Help Button
	Adds a Help button to your dialog. Push Button
	Option Button
	Check Box
	Group Box
	Text
	Text Box
	Listbox
	Combo Box
	Drop List Box
	Picture
	Picture Button
	Accelerators for the Dialog Editor
	Creating a Custom Dialog
	Types of Controls
	Push button
	Option button
	Checkbox
	Group box
	Text
	Text box
	Listbox
	Combo box
	Drop-down listbox
	Picture
	Picture button

	Note
	Adding Controls to a Dialog

	1. From the toolbar, choose the button corresponding to the type of control you want to add.
	Note
	2. Place the pointer where you want the control to be positioned and click the mouse button.
	3. To add another control of the same type as the one you just added, press Ctrl+D.
	4. To add a different type of control, repeat steps 1 and 2.
	5. To reactivate the toolbar Pick button, click the toolbar arrow-shaped button.Or, place the mouse pointer on the title bar of ...
	Using the Grid to Help You Position Controls within a Dialog

	1. Press Ctrl+G. The following dialog appears:
	2. To see the grid in your dialog, select the Show Grid checkbox.
	3. To change the current X and Y settings, enter new values in the X and Y fields.
	Note

	4. Click OK or press Enter.
	Note
	Creating Controls Efficiently
	Tabbing order
	Option button grouping
	Accelerator keys
	Editing a Custom Dialog
	Selecting Items
	To select a control:
	Or

	To select the dialog:
	Or

	Using the Information Dialog
	To see the Information dialog for a dialog:
	Or

	To display the Information dialog for a control:
	Or

	Note
	Dialog Attributes
	Control Attributes
	Position and Size
	Keeping Track of Position and Size
	To reposition an item with the mouse:

	1. With the Toolbar Pick button active, place the mouse pointer on an empty area of the dialog or on a control.
	2. Click the mouse button and drag the dialog or control to the desired location.
	Note
	To reposition an item with the arrow keys:

	1. Select the dialog or control that you want to move.
	2. Press an arrow key once to move the item by 1 X or Y unit in the desired direction. Or, click an arrow key to "nudge" the item steadily along in the desired direction.
	Note
	To reposition a dialog with the Information dialog:

	1. Display the Information dialog.
	2. Change the X and Y coordinates in the Position group box. Or, leave the X and/or Y coordinates blank.
	3. Click OK or press Enter.
	To reposition a control with the Information dialog:

	1. Display the Information dialog for the control that you want to move.
	2. Change the X and Y coordinates in the Position group box.
	3. Click OK or press Enter.
	Note
	To resize an item with the mouse:

	1. With the Toolbar Pick button active, select the dialog or control that you want to resize.
	2. Place the mouse pointer over a border or corner of the item.
	3. Click the mouse button and drag the border or corner until the item reaches the desired size.
	To resize an item with the Information dialog:

	1. Display the Information dialog for the dialog or control that you want to resize.
	2. Change the Width and Height settings in the Size group box.
	3. Click OK or press Enter.
	To resize selected controls automatically:

	1. With the Toolbar Pick button active, select the option button, text control, push button, checkbox, or text box that you want to resize.
	2. Press F2. The borders of the control expand or contract to fit the text displayed on it.
	Note
	Changing Titles and Labels
	To change a dialog title or a control label:

	1. Display the Information dialog for the dialog whose title you want to change or for the control whose label you want to change.
	2. Enter the new title or label in the Text$ field.
	Note

	3. If the information in the Text$ field should be interpreted as a variable name rather than a literal string, select the Variable Name checkbox.
	4. Click OK or press Enter. The new title or label appears on the title bar or on the control.
	Assigning Accelerator Keys
	To assign an accelerator key:

	1. Display the Information dialog for the control to which you want to assign an accelerator key.
	2. In the Text$ field, type an ampersand (&) before the letter you want to designate as the accelerator key.
	3. Click OK or press Enter.
	Note
	Note
	Specifying Pictures
	To specify a picture from a file:

	1. Display the Information dialog for the picture control or picture button control whose picture you want to specify.
	2. In the Picture source option button group, select File.
	3. In the Name$ field, enter the name of the file containing the picture you want to display in the picture control or picture button control.
	Note

	4. Click OK or press Enter. The picture control or picture button control now displays the picture you specified.
	To specify a picture from a picture library:

	1. Display the Information dialog.
	2. In the Picture Library field, specify the name of the picture library that contains the picture(s) you want to display in your dialog.
	Note

	3. Click OK or press Enter.
	4. Display the Information dialog for the picture control or picture button control whose picture you want to specify.
	5. In the Picture source option button group, select Library.
	6. In the Name$ field, enter the name of the picture you want to display on the picture control or picture button control. (This picture must be from the library that you specified in step 2.)
	7. Click OK button or Enter. The picture control or picture button control now displays the picture you specified.
	Creating or Modifying Picture Libraries under Windows
	To create a picture library under Windows:

	1. Create a C file containing the minimal code required to establish a DLL. The following code can be used:
	2. Use the following code to create a DEF file for your picture library:
	3. Create a resource file containing your images. The following example shows a resource file using a bitmap called sample.bmp and a metafile called usa.wmf.
	4. Create a make file that compiles your C module, creates the resource file, and links everything together.
	To modify an existing picture library:

	1. Make a copy of the picture library you want to modify.
	2. Modify the copy by adding images using a resource editor such as Borland's Resource Workshop or Microsoft's App Studio.
	Note
	Duplicating Controls

	1. Select the control that you want to duplicate.
	2. Press Ctrl+D. A duplicate copy of the selected control appears in your dialog.
	3. Repeat step 2 as many times as necessary to create the desired number of duplicate controls.
	Deleting Controls
	To delete a single control:

	1. Select the control you want to delete.
	2. Press Del.
	To delete all the controls in a dialog:

	1. Select the dialog.
	2. Press Del.
	3. If the dialog contains more than one control, the Dialog Editor prompts you to confirm that you want to delete all controls. Click the Yes button or press Enter.
	Undoing Editing Operations
	To undo an editing operation:

	Editing an Existing Dialog
	Pasting an Existing Dialog into the Dialog Editor
	To paste an existing dialog into the Dialog Editor:

	1. Copy the entire dialog template (from the Begin Dialog instruction to the End Dialog instruction) from your macro to the Clipboard.
	2. Open the Dialog Editor.
	3. Press Ctrl+V.
	4. When the Dialog Editor asks whether you want to replace the existing dialog, click the Yes button.
	To paste one or more controls from an existing dialog into the Dialog Editor:

	1. Copy the description of the control(s) from your macro to the Clipboard.
	2. Open the Dialog Editor.
	3. Press Ctrl+V.
	Note
	Capturing a Dialog
	To capture an existing standard Windows dialog:

	1. Display the dialog you want to capture.
	2. Open the Dialog Editor.
	3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is able to capture:
	4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard Windows controls from the target dialog.
	Note
	Opening a Dialog Template File
	To open a dialog template file:

	1. Select File>Open. The Open Dialog File dialog appears.
	2. Select the file containing the dialog template that you want to edit and click the OK button.
	Note
	Testing a Dialog
	To test your dialog:

	1. Click the toolbar Test Dialog button or press F5. The dialog becomes operational, and you can check how it functions.
	2. To stop the test, click the toolbar Test Dialog button, press F5, or double-click the dialog's close box (if it has one).
	3. Make any necessary adjustments to the dialog.
	4. Repeat steps 1-3 as many times as you need in order to get the dialog working properly.
	Tabbing order
	Option button grouping
	Text box functioning
	Accelerator keys
	Incorporating a Dialog into a Macro
	To incorporate a dialog or control into your macro:

	1. Select the dialog or control that you want to incorporate into your macro.
	2. Press Ctrl+C.
	3. Open your macro and paste in the contents of the Clipboard at the desired point.

	Using Dialogs
	1. Create a dialog record with the Dim statement.
	2. Put information into the dialog by assigning values to its controls.
	3. Display the dialog with either the Dialog() function or the Dialog statement.
	4. Retrieve values from the dialog after the user closes it.
	Creating a Dialog Record
	Putting Information into the Dialog
	Defining and Filling an Array
	Setting Default Text in a Text Box
	Setting the Initial Focus and Controlling the Tabbing Order

	Displaying the Custom Dialog
	Using the Dialog() Function
	Using the Dialog Statement

	Retrieving Values from the Custom Dialog
	Using a Dynamic Dialog in a Macro
	Making a Dialog Dynamic
	Using a Dialog Function
	Responding to User Actions

	Using objects in an external OLE application
	Communicating with a host
	Handling host connections
	1. Create a session. When asked for the connection settings, pick one of the hosts you routinely connect to.
	2. Set up the display, terminal type, keyboard map, and so forth, the way you want them. Then save the session file.
	3. Now use Tools>SmarTerm buttons to create a set of buttons, one for each host. Attach to each button a macro like the following:
	4. When you have created all your buttons, save them and save the session. From now on, when you open the session you will have a set of SmarTerm buttons that allow you to switch from host to host.
	Possible improvements

	1. Use Tools>Macros to create a macro in the user macro file that will do the actual connecting. It might look like this:
	2. At the top of the macro, add a public string variable that will hold the logout command for the previous host:
	3. Save the macro. Then use Tools>SmarTerm Buttons to create one button for each host. Attach the following macro to each button:
	4. Save the macros and the buttons.
	Sending and receiving data
	Note
	Sending and receiving strings and keystrokes
	Using Session.Send and Session.SendLiteral
	Using Session.Sendkey

	Transferring text

	Note
	Transferring text from the host to SmarTerm
	Transferring text from the SmarTerm server to the host
	Transferring files

	Compiling Macros
	Note
	1. Make sure that the macro file contains bug-free macros that work properly.
	2. Save the macro file with a unique name that identifies the contents of the file. For example, save all of the macros used to work on Host X as HOSTX.STM.
	3. Load the new file into the macro editor and select any of the macros in the file for editing.
	4. Save the file as a compiled macro file by typing Ctrl+Shift+D (for safety’s sake, there is no menu equivalent). The macro edi...
	Note
	Using compiled macros

	Symbols
	' (single quote)
	'! (description comment)
	Note

	- (subtraction)
	expression1 - expression2
	-expression
	Note

	#Const
	#If...Then...#Else
	& (concatenation)
	Note

	() (precedence)
	Note

	* (multiplication)
	. (dot)
	/* and */ (C-style comment block)
	/ (division)
	\ (integer division)
	^ (exponentiation)
	_ (line continuation)
	+ (addition/concatenation)
	Numeric add
	Variant add

	<, <=, <>, =, >, >= (comparison)
	= (assignment)
	Note

	A
	Abs
	And
	Binary conjunction

	AnswerBox
	Any (data type)
	AppActivate
	Note

	AppClose
	AppFind, AppFind$
	AppGetActive$
	AppGetPosition
	AppGetState
	AppHide
	Application (object)
	Application.ActiveSession
	Application.Application
	Application.Caption
	Application.CommandLine
	Application.DoMenuFunction
	Application.FlashIcon
	Application.InstalledLanguages
	Application.Parent
	Application.Product
	Application.Quit
	Application.Sessions (collection)
	Application.Sessions.Application
	Application.Sessions.Count
	Application.Sessions.Item
	Application.Sessions.Open
	Application.Sessions.Parent
	Application.StartupLanguage
	Application.SuppressRefocus
	Note
	Application.UserHelpFile
	Application.UserHelpMenu
	Application.UserHotSpotsLocation
	Application.UserKeyMapsLocation
	Application.UserMacrosLocation
	Application.UserPhoneBookLocation
	Application.UserSessionsLocation
	Application.UserButtonPicturesLocation
	Application.UserSmarTermButtonsLocation
	Application.UserTransfersLocation
	Application.Version
	Application.ViewUserHelp
	Application.Visible
	Application.WindowState

	AppList
	AppMaximize
	AppMinimize
	AppMove
	AppRestore
	AppSetState
	AppShow
	AppSize
	AppType
	ArrayDims
	Arrays (topic)
	Declaring array variables
	Fixed arrays
	Dynamic arrays
	Passing arrays
	Querying arrays
	Operations on arrays

	ArraySort
	Asc, AscB, AscW
	AskBox, AskBox$
	AskPassword, AskPassword$
	Atn

	B
	Beep
	Begin Dialog
	Note
	Expression Evaluation within the dialog Template

	Boolean (data type)
	ByRef
	Note

	ByVal

	C
	Call
	CancelButton
	CBool
	CCur
	CDate, CVDate
	Note

	CDbl
	ChDir
	ChDrive
	CheckBox
	Choose
	Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$
	CInt
	Circuit (object)
	Circuit.AssertBreak
	Circuit.AutoConnect
	Circuit.Connect
	Circuit.Connected
	Circuit.Disconnect
	Circuit.LATHostName
	Circuit.LATPassword
	Circuit.LATSavePassword
	Circuit.ModemAlt1Number
	Circuit.ModemAlt2Number
	Circuit.ModemAlt3Number
	Circuit.ModemAreaCode
	Circuit.ModemCountryCode
	Circuit.ModemGetCountryCodeString
	Circuit.ModemPhoneNumber
	Circuit.ModemTotalCountryCodes
	Circuit.ModemUseCodes
	Circuit.SendRawToHost
	Circuit.SerialBaudRate
	Circuit.SerialBreakDuration
	Circuit.SerialDataBits
	Circuit.SerialFlowControl
	Circuit.SerialParity
	Circuit.SerialPort
	Circuit.SerialReceiveBufferSize
	Circuit.SerialStopBits
	Circuit.SerialTransmitBufferSize
	Circuit.Setup
	Serial COM1-COM4
	Telnet

	Circuit.SNALogicalUnit
	3270 sessions only

	Circuit.SNAProtocol
	3270 sessions only

	Circuit.SNAServerName
	3270 and 5250 sessions only

	Circuit.SuppressConnectErrorDialog
	Circuit.TelnetBreakMode
	Circuit.TelnetCharacterMode
	Circuit.TelnetHostName
	Circuit.TelnetPortNumber

	Clipboard (object)
	Clipboard$ (function)
	Clipboard$ (statement)
	Clipboard.Clear
	Clipboard.GetFormat
	Clipboard.GetText
	Clipboard.SetText

	CLng
	Close
	ComboBox
	Comments (topic)
	Note

	Comparison Operators (topic)
	String comparisons
	Numeric comparisons
	Variant comparisons

	Const
	Constants (topic)
	Application State Constants
	Application.WindowState, Session.WindowState
	Character Constants
	Circuit.SerialFlowControl
	Circuit.SerialParity
	Circuit.TelnetBreakMode
	Circuit.TelnetCharacterMode
	Clipboard Constants
	Compiler Constants
	Date Constants
	File Constants
	File Type Constants
	Font Constants
	IMEStat Constants
	Math Constants
	Session.EventWait
	MsgBox Constants
	Session.Capture File Handling
	Session.KeyWait, Session.Collect
	Session.StringWait
	Session.ConfigInfo
	Session.EmulationInfo
	Session.KeyWait
	Session.Language, Application.InstalledLanguages, Application.StartupLanguage
	Shell Constants
	Macro Language Constants
	String Conversion Constants
	Variant Constants

	Cos
	CreateObject
	CSng
	CStr
	CurDir, CurDir$
	Currency (data type)
	CVar
	Note

	CVErr

	D
	Date (data type)
	Date literals
	Dates and Year 2000 Calculations
	Compensating for dates specifying two-digit years
	Date literals
	Date input
	Legacy data

	Date, Date$ (functions)
	Date, Date$ (statements)
	DateAdd
	DateDiff
	DatePart
	DateSerial
	DateValue
	Day
	DDB
	DDEExecute
	DDEInitiate
	DDEPoke
	DDERequest, DDERequest$
	DDESend
	DDETerminate
	DDETerminateAll
	DDETimeout
	Declare
	Prototying macro subroutines and functions
	Adding and subtracting via prototypes

	1. Use the Tools>Macros command to add a subroutine called Add to the user macro file. The macro should look like this:
	2. While you have the user macro file open, add the following function after the Add subroutine.
	3. Now create a new palette of SmarTerm Buttons called Math. It should have two buttons, an Add button and a Multiply button.
	4. Edit the Add button to attach an embedded macro called GetSum. GetSum should look like this:
	5. Now edit the Multiply button to attach an embedded macro called GetProduct. GetProduct should look like this:
	6. Don’t save and close the macro file just yet. While you have this macro open, scroll to the top of the editor and insert the following lines to the very beginning of the file:
	7. Now save and close the macro file, save the palette and close the palette editor, and try out your new Buttons. You can confi...
	Declaring routines in external .DLL files
	Passing parameters
	Calling conventions with external routines
	Passing null pointers
	Passing data to external routines

	Note
	Returning values from external routines
	Calling external routines

	Note

	1. The directory containing the compiler
	2. The current directory
	3. The Windows system directory
	4. The Windows directory
	5. All directories listed in the path environment variable

	DefType
	Dialog (function)
	Dialog (statement)
	Dialogs (topic)
	Dim
	Note
	Fixed-length strings
	Implicit variable declaration
	Declaring explicit OLE automation objects
	Creating new objects
	Initial values
	Naming conventions

	Dir, Dir$
	Wildcards
	Attributes

	DiskDrives
	DiskFree
	DlgCaption (function)
	DlgCaption (statement)
	DlgControlId
	DlgEnable (function)
	Note

	DlgEnable (statement)
	Note

	DlgFocus (function)
	DlgFocus (statement)
	Note

	DlgListBoxArray (function)
	Note

	DlgListBoxArray (statement)
	Note

	DlgProc
	DlgSetPicture
	DlgText
	Note

	DlgText$
	Note

	DlgValue (function)
	Note

	DlgValue (statement)
	Note

	DlgVisible (function)
	Note

	DlgVisible (statement)
	Note
	Picture Caching

	Do...Loop
	DoEvents (function)
	DoEvents (statement)
	Double (data type)
	Storage

	DropListBox

	E
	End
	Environ, Environ$
	EOF
	Eqv
	Binary equivalence

	Erase
	Err (object)
	Erl
	Err.Clear
	Err.Description
	Err.HelpContext
	Err.HelpFile
	Err.LastDLLError
	Err.Number
	Err
	Err.Raise
	Err.Source

	Error Handling (topic)
	Cascading Errors
	Visual Basic Compatibility
	Error, Error$ (functions)
	Error (statement)

	Exit Do
	Exit For
	Exit Function
	Exit Sub
	Exp
	Expression Evaluation (topic)
	Type Coercion
	Rounding
	Default Properties

	F
	FileAttr
	FileCopy
	FileDateTime
	FileDirs
	FileExists
	FileLen
	FileList
	Wildcards
	File attributes

	FileParse$
	Note

	Fix
	For...Each
	For...Next
	Format, Format$
	Built-in formats
	Numeric formats
	Date/Time formats

	User-defined formats
	Numeric formats
	String formats
	Date/Time formats

	FreeFile
	Function...End Function
	Returning Values from Functions
	Passing Parameters to Functions
	Optional Parameters

	Fv

	G
	Get
	Variable types

	GetAttr
	GetObject
	GoSub
	Goto
	GroupBox

	H
	HelpButton
	Hex, Hex$
	Hour

	I
	If...Then...Else
	Iif
	IMEStatus
	Note

	Imp (operator)
	Binary implication

	Input#
	. Rule 1: If the number contains a decimal point or an exponent, then the number is read as Currency. If there is an error converting to Currency, then the number is treated as a Double.
	. Rule 2: If the number does not contain a decimal point or an exponent, then the number is stored in the smallest of the following data types that most accurately represents that value: integer, long, currency, double.

	Input, Input$, InputB, InputB$
	InputBox, InputBox$
	InStr, InstrB
	Int
	Integer (data type)
	IPmt
	IRR
	Is
	IsDate
	IsEmpty
	IsError
	IsMissing
	IsNull
	IsNumeric
	IsObject
	Item$
	ItemCount

	K
	Keywords (topic)
	Restrictions

	Kill

	L
	Lbound
	LCase, LCase$
	Left, Left$, LeftB, LeftB$
	Len, LenB
	Let
	Like
	Line Input#
	Line Numbers (topic)
	Line$
	LineCount
	ListBox
	Literals (topic)
	Constant folding

	Loc
	Lock, Unlock
	Lof
	Log
	Long (data type)
	LSet
	Syntax 1
	Syntax 2

	LTrim, LTrim$

	M
	Mid, Mid$, MidB, MidB$ (functions)
	Mid, Mid$, MidB, MidB$ (statements)
	Minute
	MIRR
	MkDir
	Mod
	Month
	Msg (object)
	Msg.Close
	Msg.Open
	Msg.Text
	Msg.Thermometer

	MsgBox (function)
	Breaking Text across Lines

	MsgBox (statement)

	N
	Name
	Named Parameters (topic)
	.

	New
	Not
	Now
	NPer
	Npv

	O
	Object (data type)
	Using objects
	Automatic destruction
	Note

	Objects (topic)
	What is an object
	Declaring Object Variables
	Assigning a Value to an Object Variable
	Accessing Object Properties
	Accessing Object Methods
	Comparing Object Variables
	Collections
	Predefined Objects

	Oct, Oct$
	OKButton
	On Error
	Errors within an Error Handler

	Open
	OpenFilename$
	Operator Precedence (topic)
	Operator Precision (topic)
	Option Base
	Option Compare
	Option CStrings
	Option Default
	Note

	Option Explicit
	Note

	OptionButton
	OptionGroup
	Or
	Binary Disjunction

	P
	Picture
	PictureButton
	Pmt
	PopUpMenu
	PPmt
	Print
	Note

	Print#
	Private
	Fixed-Length Strings
	Initial Values

	Public
	Fixed-Length Strings
	Sharing Variables

	PushButton
	Put
	Pv

	R
	Random
	Randomize
	Rate
	ReadIni$
	ReadIniSection
	Redim
	Rem
	Reset
	Resume
	Return
	Right, Right$, RightB, RightB$
	RmDir
	Note

	Rnd
	RSet
	RTrim, RTrim$

	S
	SaveFilename$
	Second
	Seek (function)
	Seek (statement)
	Select...Case
	SelectBox
	SendKeys
	Specifying Keys

	Session (object)
	Session.Application
	Session.AutoWrap
	VT, SCO, ANSI, and DG sessions only

	Session.Blink
	VT, SCO, ANSI, and DG sessions only

	Session.Bold
	VT, SCO, ANSI, and DG sessions only

	Session.BufferFormatted
	3270 and 5250 sessions only

	Session.BufferModified
	3270 and 5250 sessions only

	Session.Caption
	Session.Capture
	VT, SCO, ANSI, and DG sessions only

	Session.CaptureFileHandling
	VT, SCO, ANSI, and DG sessions only

	Session.Circuit
	Session.ClearScreen
	Session.Close
	Session.Collect (object)
	VT, SCO, ANSI, and DG sessions only

	Note
	Session.Collect.CollectedCharacters
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.CollectedString
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.Consume
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.MaxCharacterCount
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.Reset
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.Start
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.Status
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.TermString
	VT, SCO, ANSI, and DG sessions only

	Note
	Session.Collect.TermStringExact
	VT, SCO, ANSI, and DG sessions only

	Note
	Session.Collect.Timeout
	VT, SCO, ANSI, and DG sessions only

	Session.Collect.TimeoutMS
	VT, SCO, ANSI, and DG sessions only

	Note
	Session.Column
	Session.Concealed
	VT, SCO, ANSI, and DG sessions only

	Session.ConfigInfo
	Session.Connected
	Session.DialogView
	3270 and 5250 sessions only

	Session.DoMenuFunction

	Note
	Session.Echo
	VT, SCO, ANSI, and DG sessions only

	Session.EmulationInfo

	Note
	Session.EndCapture
	VT, SCO, ANSI, and DG sessions only

	Session.EventWait (object)
	3270 and 5250 sessions only

	Session.EventWait.EventCount
	3270 and 5250 sessions only

	Session.EventWait.EventType
	3270 and 5250 sessions only

	Session.EventWait.MaxeventCount
	3270 and 5250 sessions only

	Session.EventWait.Reset
	3270 and 5250 sessions only

	Session.EventWait.Start
	3270 and 5250 sessions only

	Session.EventWait.Status
	3270 and 5250 sessions only

	Session.EventWait.Timeout
	3270 and 5250 sessions only

	Session.EventWait.TimeoutMS
	3270 and 5250 sessions only

	Session.FieldEndCol
	3270 and 5250 sessions only

	Note
	Session.FieldEndRow
	3270 and 5250 sessions only

	Note
	Session.FieldModified
	5250 sessions only

	Session.FieldStartCol
	3270 and 5250 sessions only

	Session.FieldStartRow
	3270 and 5250 sessions only

	Session.FieldText
	3270 and 5250 sessions only

	Note
	Note
	Session.FontAutoSize
	Session.FontHeight
	Session.FontWidth
	Session.GetMostRecentTriggerName
	Session.GetMostRecentTriggerPattern
	Session.HotSpotsActive
	Session.HotSpotsFileName
	Session.InitialMouseCol
	Session.InitialMouseRow
	Session.InsertMode
	3270 and 5250 sessions only

	Session.InterpretControls
	VT, SCO, ANSI, and DG sessions only

	Session.Inverse
	VT, SCO, ANSI, and DG sessions only

	Session.IsFieldMark
	3270 sessions only

	Session.IsNumeric
	3270 and 5250 sessions only

	Session.IsProtected
	3270 and 5250 sessions only

	Session.KeyboardLocked
	3270 and 5250 sessions only

	Session.KeyWait (object)
	Session.KeyWait.KeyCode

	Note
	Session.KeyWait.KeyCount
	Session.KeyWait.KeyType
	Session.KeyWait.MaxKeyCount
	Session.KeyWait.Reset
	Session.KeyWait.Start
	Session.KeyWait.Status
	Session.KeyWait.Timeout
	Session.KeyWait.TimeoutMS
	Session.KeyWait.Value
	Session.Language
	Session.LoadKeyboardMap
	Session.LoadSmarTermButtons
	Session.LockStep (object)
	Session.LockStep.Reset
	Session.LockStep.Start

	Note
	Session.MouseCol
	Not available for Wyse sessions

	Session.MouseRow
	Not available for Wyse sessions

	Session.NativeScreenText
	3270 and 5250 sessions only

	Session.Normal
	VT, SCO, ANSI, and DG sessions only

	Session.Online
	Session.Page
	VT and SCO sessions only

	Session.ReplayCaptureFile
	Session.Row
	Session.ScreenText
	Session.ScreenToFile
	Session.SelectScreenAtCoords

	Note
	Session.SelectionEndColumn

	Note
	Session.SelectionEndRow

	Note
	Session.SelectionStartColumn

	Note
	Session.SelectionStartRow

	Note
	Session.SelectionRectangular

	Note
	Session.SelectionType

	Note
	Session.Send

	Note
	Session.SendKey
	3270 and 5250 sessions only

	Session.SendLiteral
	Session.SetFontSize
	Session.SetHotSpotsFile
	Session.StringWait (object)
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.MatchString
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.MatchStringEx
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.MatchStringExact
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.MaxCharacterCount
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.Reset
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.Start
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.Status
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.Timeout
	VT, SCO, ANSI, and DG sessions only

	Session.StringWait.TimeoutMS
	VT, SCO, ANSI, and DG sessions only

	Session.TotalColumns
	Session.TotalPages
	Session.TotalRows
	Session.Transfer
	Session.TransferProtocol
	Session.TranslateBinary

	Note
	Session.TranslateText

	Note
	Session.TransmitFile

	Note
	Session.TransmitFileUntranslated

	Note
	Session.TriggersActive
	Session.TypeFile
	VT, SCO, ANSI, and DG sessions only

	Session.Underline
	VT, SCO, ANSI, and DG sessions only

	Session.UnloadSmarTermButtons
	Session.Visible
	Session.WindowState

	Set
	Syntax 1
	Syntax 2
	Syntax 3

	SetAttr
	Sgn
	Shell
	Sin
	Single (data type)
	Storage

	Sleep
	Sln
	Space, Space$
	Spc
	SQLBind
	SQLClose
	SQLError
	SQLExecQuery
	SQLGetSchema
	SQLOpen
	SQLRequest
	SQLRetrieve
	SQLRetrieveToFile
	Sqr
	Stop
	Str, Str$
	StrComp
	StrConv
	String (data type)
	String, String$
	Sub...End Sub
	Passing Parameters to Subroutines
	Optional Parameters

	Switch
	SYD

	T
	Tab
	Note

	Tan
	Text
	TextBox
	Time, Time$ (functions)
	Time, Time$ (statements)
	Note

	Timer
	TimeSerial
	TimeValue
	Transfer (object)
	Note
	Transfer.Command
	Kermit and FTP file transfer protocols only

	Transfer.FTPAutoConnect
	Transfer.FTPConfirmDeleteFiles

	Note
	Transfer.FTPConfirmRemoveFolders

	Note
	Transfer.FTPConfirmReplaceFiles

	Note
	Transfer.FTPConfirmTransferFiles

	Note
	Transfer.FTPConfirmTransferFolders

	Note
	Transfer.FTPDeleteIncompleteFiles
	Transfer.FTPHostName
	Telnet sessions only

	Transfer.FTPSecureCompression
	Transfer.FTPSecureFirstTimeWarningsOff
	Transfer.FTPSecurePortNumber
	Transfer.FTPSecureSocksEnabled
	Transfer.FTPSecureSocksPortNumber
	Transfer.FTPSecureSocksServerName
	Transfer.FTPUserName
	Telnet sessions only

	Transfer.FTPUserPassword
	Telnet sessions only

	Transfer.FTPUseSecureFTP
	Transfer.INDFILEAdditionalCommands
	3270 and 5250 sessions only

	Transfer.INDFILEEnableCRLFHandling
	3270 and 5250 sessions only

	Transfer.INDFILEHostEnvironment
	3270 and 5250 sessions only

	Transfer.INDFILELocalFileFormat
	3270 and 5250 sessions only

	Transfer.INDFILELogicalRecordLength
	3270 and 5250 sessions only

	Transfer.INDFILEPacketSize
	3270 and 5250 sessions only

	Transfer.INDFILEPromptBeforeOverwrite
	3270 and 5250 sessions only

	Transfer.INDFILERecordFormat
	3270 and 5250 sessions only

	Transfer.INDFILEResponseTimeout
	3270 and 5250 sessions only

	Transfer.INDFILEStartupTimeout
	3270 and 5250 sessions only

	Transfer.INDFILETSOAllocationUnits
	3270 and 5250 sessions only

	Transfer.INDFILETSOAUPrimary
	3270 and 5250 sessions only

	Transfer.INDFILETSOAUSecondary
	3270 and 5250 sessions only

	Transfer.INDFILETSOAverageBlockSize
	3270 and 5250 sessions only

	Transfer.INDFILETSOBlockSize
	3270 and 5250 sessions only

	Transfer.KermitCheckSumType
	VT, ANSI, SCO, and DG sessions only

	Transfer.KermitDuplicateFileWarning
	VT, ANSI, SCO, and DG sessions only

	Transfer.KermitPacketSize
	VT, ANSI, SCO, and DG sessions only

	Transfer.ProtocolName
	Transfer.ReceiveFile
	Transfer.ReceiveFileAs
	Transfer.SendFile
	Transfer.SendFileAs
	Transfer.Setup

	Note
	FTP transfers
	KERMIT transfers
	XMODEM, YMODEM, and ZMODEM transfers
	Transfer.XMODEMCheckSumType
	VT, ANSI, SCO, and DG sessions only

	Transfer.XMODEMPacketSize
	VT, ANSI, SCO, and DG sessions only

	Transfer.XMODEMStreaming
	VT, ANSI, SCO, and DG sessions only

	Transfer.YMODEMCheckSumType
	VT, ANSI, SCO, and DG sessions only

	Transfer.YMODEMPacketSize
	VT, ANSI, SCO, and DG sessions only

	Transfer.YMODEMStreaming
	VT, ANSI, SCO, and DG sessions only

	Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
	Type
	Note

	TypeName
	TypeOf

	U
	UBound
	UCase, UCase$
	Unlock
	User-Defined Types (topic)
	Declaring Structures
	Copying Structures
	Passing Structures
	Note
	Size of Structures

	V
	Val
	Variant (data type)
	Determining the Subtype of a Variant
	Assigning to Variants
	Operations on Variants
	Adding Variants
	Variants That Contain No Data
	Variant Storage
	Disadvantages of Variants
	Passing Nonvariant Data to Routines Taking Variants
	Passing Variants to Routines Taking Nonvariants

	VarType

	W - X - Y
	Weekday
	While...Wend
	Width#
	Word$
	WordCount
	Write#
	WriteIni
	Xor
	Binary Exclusion

	Year

	PSL Equivalents for Methods and Properties
	‰

	Error Messages
	Visual Basic Compatible error messages
	Compiler-Specific error messages
	Compiler errors

	Index
	Symbols
	- (subtraction), 86-87
	#Const, 87
	#If...Then...#Else, 87-89
	& (concatenation), 89-90
	() (precedence), 90
	* (multiplication), 91
	+ (addition/concatenation), 95-96
	. (dot), 91-92
	/ (division), 92-93
	/* */ (comment block), 37, 92, 168
	= (assignment), 96-97
	>Application (object)
	\ (integer division), 93
	^ (exponentiation), 93-94
	_ (line continuation), 18, 37, 94-95
	’ (comment), 37, 85, 168
	’! (macro description), 18, 85-86
	‹, ‹ =, ‹ ›, =, ›, › = (comparison operators) See Compare

	Numerics
	3270 sessions
	3270/5250 sessions

	A
	Abs (Absolute Value), 99
	Accelerators
	Access
	Accounting operations
	Active
	Active session, 108
	Addition, 95-96
	Annuities, 340-342
	ANSI sessions
	Any (data type), 102
	Application
	Application (object), 20, 108, 394-395
	Applications
	Applications, external, yield control to, 235
	Area code, 152-153
	Arrays, 127-129
	ASCII text
	Assign
	Atangent, 132-133
	Attributes, file and directory, 218, 257-258, 281-282, 450-451

	B
	Baud rate
	Beep, 135
	Binary
	Binary operations
	Bitmaps
	Boolean
	Bounds of arrays, 313-314, 509
	Break
	Breakpoints
	Buffer, display (3270 and 5250 sessions), 396
	Buffers
	Buttons

	C
	C language
	Call subroutines, 141
	Cancel button, 142
	Caption of session window, 108-109
	Caption of session window, change, 396-397
	Capture
	Case statements, 390-391, 475
	Change
	Character mode (Telnet), 162-163
	Characters
	Check boxes, 48, 145-146
	Chinese, 175, 293-294
	Circuit (object), 22-23, 149, 398
	Clear
	Clear error, 243
	Clipboard (object), 23, 163
	Close, 167
	Collect (Session object), 21
	Collections, 346
	Collections, iterate across, 264-265
	Collectives, 24-25, 30-32, 82-83
	Combo boxes, 49, 167-168
	Command line, 109
	Comments, 37, 85-86, 92, 168, 381
	Communications
	Compare
	Compile macros, 24
	Concatenation, 90, 95-96
	Conditional compilation, 87-89
	ConfigInfo, constants for, 177
	Connect, 150, 161
	Connected, 150
	Connections
	Constants, 172, 174-179
	Constants (sml), 110, 114, 119
	Contents
	Controls on dialogs
	Convert
	Convert to
	Copy
	Cosine, 180
	Count words in text, 522
	Country codes, 153-154
	Create
	Create OLE object, 180-181
	Currency (data type), 182

	D
	Data
	Data bits
	Data types
	Date (data type), 185, 188, 321-322, 330-331, 482-483
	Date, Date$
	DBCS, 293-294
	DDE
	Debug macros, 38, 40-42
	Decimal, 321-322
	Declare, 102
	Define
	Delete
	Depreciation, 196-197, 454-455, 475-476
	DG Dasher sessions
	Dialog
	Dialog Editor
	Dialogs
	Digital VT sessions
	Dimension
	Directories
	Disable
	Disconnect from host, 150-151
	Display
	Division, 92-93
	Dlg (object), 23
	Do loops, 233-234, 252
	DOS
	Dot notation, 91-92
	Double (data type), 236, 321-322
	Drives
	Drop list boxes, 49
	DTR/DTR flow control, 156
	Duplicate

	E
	eb constants, 172
	Edit pane (Macro Editor), 33
	Elapsed time, 482
	Empty (constant), 88
	EmulationInfo, constants for, 177
	Enable
	End
	English, 110-111, 114, 178
	Environment variables, 239-240
	EOF (End-of-file marker), 240
	Equivalence, 240-241
	Erase
	Err (object), 24, 242-249
	Errors
	Escape sequences, 355-356
	Eventwait (Session object), 21-22
	Exclusive or, 523-524
	Exit
	Exit program, 111
	Exponentiation, 93-94, 253-254
	Expressions, 254-255
	External routines

	F
	False (constant), 88
	Files
	Find
	Fixed arrays, 127-128
	Flash program icon, 110
	Flow control
	Focus, 115
	Folders, See Directories
	Fonts
	For loops, 252, 265-267
	Format
	Format strings, 267-269, 271-273
	French, 110-111, 114, 178
	FTP file transfer
	Functions, 274-277
	Future value of annuity, 277-278

	G
	German, 110-111, 114, 178
	Get
	Global variables, 30-31
	Group boxes, 48, 285

	H
	Help
	Hexadecimal, 321-322
	Hide
	Hosts
	HotSpots
	Hour, current, 289

	I
	Icon, flash, 110
	If loops, 291-293
	IME, 175
	Implication, 294-295
	Information dialog. See Dialog Editor, Information dialog
	Initialization files
	Input
	Instance of object, 338-339
	Integer (data type), 301-302, 321-322
	Interest payments, 302-303
	Interest rate, 378
	Internal rate of return, 303-304
	Interrupt, constant for, 162
	IPX/SPX, 160

	J
	Japanese, 175, 293-294

	K
	Kermit file transfer
	Keyboard maps
	Keyboard shortcuts, See Accelerators
	Keystrokes
	Keywait (Session object), 22
	Keywords, 311-312
	Kill, 312
	Korean, 175, 293-294

	L
	Labels
	Languages
	Languages, constants for, 175, 178
	LAT
	LBound, 128
	Length
	Length of string, 315-316
	Line-continuation character (_), 18, 37, 94-95
	List
	Literals, 321-322
	Local Area Transport, See LAT
	Location
	Locations
	Lock file, 322-324
	Lockstep (Session object), 22
	LOF, 260
	Logarithm, 324
	Logical operations
	Login/logout macros, 24-29
	Long (data type), 321-322, 325
	Loops
	LU (SNA communications)

	M
	Macro Editor
	Macros
	Math functions
	Math operations
	Maximize, 172
	MBCS text
	MBCS text, constants for, 175
	Menus
	Methods, 19-24, 149, 242, 345, 483
	Minimize, 172
	Minute, current, 329
	Mnemonics, 77-78
	Modeless dialogs, 23
	Modem
	Modular arithmetic, 330-331
	Modules, 24-25, 30-32
	Month, current, 330-331
	Move
	Msg (object), 23, 331-334
	MsgBox constants, 176
	Multibyte Character Sets, See MBCS text
	Multiplication, 91
	MVS/CICS, 491
	MVS/TSO, 491

	N
	Name
	Names
	Negation, 339
	Negative numbers, 451
	Non-printing characters
	Null
	Numbers
	Numeric functions, See Math functions

	O
	Object Linking and Embedding See OLE
	Objects, 19-20
	Octal, 321-322, 347
	OLE
	Open
	Open files, 350-352
	Operating system
	Operators, 353-354
	Output

	P
	Packet size
	Parameters, 338
	Parity
	Parse
	Passwords
	Patterns
	Pause macro, 454
	Persoft Script language, See PSL scripts
	Phone books
	Phone numbers, 152-154
	Pi, 176
	Picture button, 60-61
	Picture buttons, 49
	Picture control on dialog, 361-364
	Pictures, 49, 227-229
	Pointer, file, 322, 388-390
	PopUpMenu, 365
	Port
	Port number (Telnet), 163
	Positive numbers, 451
	Powers, 93-94, 253-254
	Precedence operators, 90
	Precendence, 353
	Precision, 353-354
	Print, 455-456
	Print data, 366-368
	Private
	Properties, 19-24, 149, 242, 255, 345, 483
	Protocols
	Prototypes, 201-202, 205-207, 209-210
	PSL scripts
	Public

	Q
	Quit macro, 239
	Quit program, 111

	R
	Random numbers, 377-378
	Rate of return, 303-304, 329-330
	Read
	Receive files, 498-499
	Record
	Record macros, 14
	Reference, pass parameters by, 138
	REM (keyword), 37, 168
	Remarks, 381
	Remove directories, 383-384
	Rename file, 337-338
	Reserved words, 311-312
	Resize
	Restore, 172
	Resume macro after trapping error, 382
	Return
	Rounding, 254-255
	RTS/CTS flow control, 156
	Run

	S
	Save file dialog, 387-388
	SCO ANSI sessions
	Search and replace, 37
	Second, current, 388
	Seconds since midnight, 482
	secure FTP file transfer, 489
	Send, 77-78
	SendKey, 78-79
	SendLiteral, 77-78
	SendRawToHost, 154-155
	Serial communications
	Serial connections
	Servers (SNA), 161-162
	Session (object), 21, 394
	Session_Connect macros, 24-29
	Session_QueryClose macros, 24-25, 29
	Sessions
	Set up file transfer method, 500-501
	Shell constants, 178
	Sine, 453
	Single (data type), 321-322, 453-454
	Size
	SmarTerm Buttons, See Buttons
	sml Constants
	sml constants, 172
	smlEnglish, 110, 114
	smlFrench, 110, 114
	smlGerman, 110, 114
	smlMaximize, 119
	smlMinimize, 119
	smlRestore, 119
	smlSpanish, 110, 114
	SNA
	Sort arrays, 129
	Spaces
	Spanish, 110-111, 114, 178
	Special characters, constants for, 172
	SQL operations
	Square root, 467
	Statements
	Status bar (Macro Editor), 33
	Stop
	Stop bits
	String (data type), 321-322, 470-471
	String operations
	Strings
	Stringwait (Session object), 22
	Structures, dot notation for, 91-92
	Subroutines, 472-473, 475
	Subtraction, 86-87
	Suspend macro, 454
	Switch
	Switch statements, 390-391, 475
	Syntax of macros, 18-19

	T
	Tangents, 132-133, 478
	TCP/IP, 160
	Telnet
	Testing
	Testing dialogs, 65-66
	Text
	Textbox dialog control, 66, 479-480
	Time (data type), 388, 481
	Time since midnight, 482
	Time, current, 481
	Timestamp, 258-259
	Toolbar
	Transfer (object), 23, 483
	Translation, 154-155
	Triggers
	Trim strings, 504
	True (constant), 88
	Type
	Type checking, 102
	Types, of constants, 171

	U
	Ubound, 128
	Undo in Dialog Editor, 62
	Unicode text
	Unlock file, 322-324
	Upper bounds of arrays, 509
	Uppercase, 510
	User files, 117
	User interface
	User macro file, 24-25
	UserButtonPicturesLocation, 117
	User-defined
	UserHelpFile, 115
	UserHelpmenu, 115-116
	UserHotSpotsLocation, 116
	UserKeyMapsLocation, 116
	UserMacrosLocation, 116
	UserPhoneBookLocation, 116-117
	UserSessionsBookLocation, 117
	UserTransfersLocation, 118

	V
	Value, pass parameters by, 138-139
	Variables
	Variant (data type), 514-515, 517
	Variants
	Version, 118
	ViewUserHelp, 118
	Visible, 118-119
	VM/CMS, 491

	W
	Wait for
	Watch pane (Macro Editor), 33
	Watch variables, 40, 42
	Weekday, 519-520
	While loops, 520
	Width of files, 520-521
	Win32 (constant), 88
	Windows
	WindowState, 119
	Words, count, 522
	Wrap text in session window, 395
	Write
	Write data to file, 375
	WYSE sessions

	X
	XMODEM file transfer
	Xon/xoff flow control, 156

	Y
	Year, 524-525
	YMODEM file transfer

	Z
	Zero-based arrays, 354
	ZModem example, 81-82

