
Macro Guide



SmarTerm 2014 - Version 15.0.0 Issued October 2013
Copyright © 1983-2013 Esker S.A. All rights reserved.

Copyright © 1991-2001 Microsoft Corporation.
Copyright © 1992-1999 Summit Software Company.
Copyright © 1998-2011 The OpenSSL Project. All rights reserved.
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.
Copyright © 1995-1998 Tim Hudson (tjh@cryptsoft.com). All rights reserved.
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.
Copyright © 1995 Tatu Ylonen <ylo@cs.hut.fi> Espoo, Finland. All rights reserved.
Copyright © 1998 CORE SDI S.A., Buenos Aires, Argentina. All rights reserved.
Copyright © 1983, 1990, 1992, 1993, 1995 The Regents of the University of California. All rights reserved.
Copyright © 1995, 1996 by David Mazieres dm@lcs.mit.edu.
Copyright © 1995-2004 Jean-Loup Gailly and Mark Adler.
For additional information, conditions of use, and disclaimers, see copyright.pdf file.
Use and duplicate only in accordance with the Software License Agreement: SmarTerm Products.

Esker, the Esker logo, Esker Pro and SmarTerm, are registered trademarks of Esker S.A or Esker, Inc. DEC, VT, LAT, and VAX are
registered trademarks of Compaq Computer Corporation. IBM and PC AT are registered trademarks of International Business Machines
Corporation. Microsoft, Windows, and Active Server are registered trademarks of Microsoft Corporation. Novell is a registered trademark
of Novell, Inc. Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation. UNIX is a
registered trademark of The Open Group.
All other brand and product names are or may be trademarks, registered trademarks, or service marks of, and are used to identify products
or services of, and is the property of, their respective owners.

Information in this document is subject to change without notice.

See the list of Esker locations in the world.

No part of this document may be reproduced or transmitted in any form or by any means without the prior written consent of Esker S.A. For the
Americas: printed in the United States of America. For the rest of the world: printed in France.

http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp
http://www.esker.com/contact_us.asp


Contents
Introduction 32

File Transfer 33
Character and String Manipulation 33
Drive, Folder, and File Access 34
Keywords, Data Types, Operators, and Expressions 34
Host Connections 35
Numeric, Math, and Accounting Functions 36
Macro Control and Compilation 36
Application and Session Features 37
Operating System Control 38
User Interaction 39
Time and Date Access 39
Objects 40
SQL Access 40
DDE Access 40

Recording and Running Macros 41

Recording macros 41

Running macros 42
What can go wrong? 42
Running PSL Scripts 42

Creating Macros 43

Features and organization 43
Macro syntax 44

Using SmarTerm’s objects 45
Understanding the SmarTerm objects 46

Application 46
Session 46
Circuit 48
Transfer 48
Clipboard 48
Msg 48
Dlg 49
Err 49

Modules and collectives 49



Predefined login and logout macros 50
Session_Connect macro 50
Session_QueryClose macro 54

Why macros, modules, and collectives 54

Programming Macros 57

Using the macro editor 57
The macro editor window 57
Getting help 57
Using the toolbar 57

Edit>CutN 57
Edit>Copy 57
Edit>Paste 58
Edit>Undo 58
Macro>Start 58
Break 58
Macro>Stop 58
Debug>Toggle Breakpoint 58
Debug>Add Watch 58
Calls 58
Debug>Single Step 58
Debug>Procedure Step 58

Using accelerators 58
Editing macros 59

Moving around in a macro 59
Color coding in macros 60
Adding comments to macros 60
Breaking a macro statement across multiple lines 60
Searching and replacing 61

Debugging macros 61
Tracing macro execution 61
Setting and removing breakpoints 62
Using Watch variables 63

Creating Dialogs 65
Using the Dialog Editor 66

Toolbar 67
Dialog 67
Status bar 67
The Dialog Editor 67
Test Dialog 67
Information 67
Cut 67



Copy 67
Paste 68
Undo 68
Select 68
OK Button 68
Cancel Button 68
Help Button 68
Push Button 68
Option Button 68
Check Box 68
Group Box 68
Text 68
Text Box 68
Listbox 68
Combo Box 68
Drop List Box 68
Picture 68
Picture Button 68
Accelerators for the Dialog Editor 68

Creating a Custom Dialog 69
Types of Controls 69
Push button 70
Option button 70
Checkbox 70
Group box 70
Text 70
Text box 70
Listbox 70
Combo box 70
Drop-down listbox 70
Picture 70
Picture button 70
Adding Controls to a Dialog 71
Using the Grid to Help You Position Controls within a Dialog 71
Creating Controls Efficiently 72
Tabbing order 72
Option button grouping 73
Accelerator keys 73

Editing a Custom Dialog 73
Selecting Items 73
Using the Information Dialog 74
Position and Size 76
Keeping Track of Position and Size 76



Changing Titles and Labels 78
Assigning Accelerator Keys 79
Specifying Pictures 80
Creating or Modifying Picture Libraries under Windows 80
Duplicating Controls 81
Deleting Controls 82
Undoing Editing Operations 82

Editing an Existing Dialog 82
Pasting an Existing Dialog into the Dialog Editor 83
Capturing a Dialog 83
Opening a Dialog Template File 84

Testing a Dialog 84
Tabbing order 85
Option button grouping 85
Text box functioning 86
Accelerator keys 86

Incorporating a Dialog into a Macro 86

Using Dialogs 86
Creating a Dialog Record 87
Putting Information into the Dialog 87

Defining and Filling an Array 88
Setting Default Text in a Text Box 88
Setting the Initial Focus and Controlling the Tabbing Order 88

Displaying the Custom Dialog 88
Using the Dialog() Function 88
Using the Dialog Statement 89

Retrieving Values from the Custom Dialog 89
Using a Dynamic Dialog in a Macro 89
Making a Dialog Dynamic 91

Using a Dialog Function 91
Responding to User Actions 91

Using objects in an external OLE application 92

Communicating with a host 92
Handling host connections 93

Possible improvements 93
Sending and receiving data 95

Sending and receiving strings and keystrokes 95
Transferring text 96
Transferring files 98

Compiling Macros 99



Using compiled macros 100

Symbols 101

' (single quote) 101

'! (description comment) 101

- (subtraction) 102
expression1 - expression2 102
-expression 102

#Const 103

#If...Then...#Else 103

& (concatenation) 105

( ) (precedence) 105

* (multiplication) 106

. (dot) 107

/* and */ (C-style comment block) 108

/ (division) 108

\ (integer division) 109

^ (exponentiation) 109

_ (line continuation) 110

+ (addition/concatenation) 111
Numeric add 111
Variant add 111

<, <=, <>, =, >, >= (comparison) 112

= (assignment) 112

A 113

Abs 113

And 113
Binary conjunction 114



AnswerBox 115

Any (data type) 116

AppActivate 116

AppClose 117

AppFind, AppFind$ 118

AppGetActive$ 119

AppGetPosition 119

AppGetState 120

AppHide 121

Application (object) 121
Application.ActiveSession 121
Application.Application 122
Application.Caption 122
Application.CommandLine 122
Application.DoMenuFunction 123
Application.FlashIcon 123
Application.InstalledLanguages 124
Application.Parent 124
Application.Product 125
Application.Quit 125
Application.Sessions (collection) 125
Application.Sessions.Application 126
Application.Sessions.Count 127
Application.Sessions.Item 127
Application.Sessions.Open 127
Application.Sessions.Parent 127
Application.StartupLanguage 128
Application.SuppressRefocus 128
Application.UserHelpFile 129
Application.UserHelpMenu 129
Application.UserHotSpotsLocation 130
Application.UserKeyMapsLocation 130
Application.UserMacrosLocation 130
Application.UserPhoneBookLocation 130
Application.UserSessionsLocation 131



Application.UserButtonPicturesLocation 131
Application.UserSmarTermButtonsLocation 131
Application.UserTransfersLocation 132
Application.Version 132
Application.ViewUserHelp 132
Application.Visible 133
Application.WindowState 133

AppList 133

AppMaximize 134

AppMinimize 135

AppMove 135

AppRestore 136

AppSetState 137

AppShow 138

AppSize 138

AppType 139

ArrayDims 140

Arrays (topic) 141
Declaring array variables 141
Fixed arrays 141
Dynamic arrays 142
Passing arrays 142
Querying arrays 142
Operations on arrays 142

ArraySort 143

Asc, AscB, AscW 143

AskBox, AskBox$ 144

AskPassword, AskPassword$ 145

Atn 146

B 148



Beep 148

Begin Dialog 148
Expression Evaluation within the dialog Template 149

Boolean (data type) 150

ByRef 150

ByVal 151

C 153

Call 153

CancelButton 153

CBool 154

CCur 155

CDate, CVDate 155

CDbl 156

ChDir 156

ChDrive 156

CheckBox 157

Choose 158

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ 158

CInt 160

Circuit (object) 160
Circuit.AssertBreak 161
Circuit.AutoConnect 161
Circuit.Connect 161
Circuit.Connected 162
Circuit.Disconnect 162
Circuit.LATHostName 162
Circuit.LATPassword 163
Circuit.LATSavePassword 163



Circuit.ModemAlt1Number 163
Circuit.ModemAlt2Number 164
Circuit.ModemAlt3Number 164
Circuit.ModemAreaCode 164
Circuit.ModemCountryCode 165
Circuit.ModemGetCountryCodeString 165
Circuit.ModemPhoneNumber 165
Circuit.ModemTotalCountryCodes 166
Circuit.ModemUseCodes 166
Circuit.SendRawToHost 166
Circuit.SerialBaudRate 167
Circuit.SerialBreakDuration 167
Circuit.SerialDataBits 168
Circuit.SerialFlowControl 168
Circuit.SerialParity 169
Circuit.SerialPort 169
Circuit.SerialReceiveBufferSize 170
Circuit.SerialStopBits 170
Circuit.SerialTransmitBufferSize 170
Circuit.Setup 171

Serial COM1-COM4 171
Telnet 172

Circuit.SNALogicalUnit 172
Circuit.SNAProtocol 172
Circuit.SNAServerName 173
Circuit.SuppressConnectErrorDialog 173
Circuit.TelnetBreakMode 174
Circuit.TelnetCharacterMode 175
Circuit.TelnetHostName 175
Circuit.TelnetPortNumber 175

Clipboard (object) 176
Clipboard$ (function) 176
Clipboard$ (statement) 176
Clipboard.Clear 177
Clipboard.GetFormat 177
Clipboard.GetText 177
Clipboard.SetText 178

CLng 179

Close 179



ComboBox 180

Comments (topic) 181

Comparison Operators (topic) 181
String comparisons 182
Numeric comparisons 182
Variant comparisons 182

Const 183

Constants (topic) 184
Application State Constants 184
Application.WindowState, Session.WindowState 184
Character Constants 185
Circuit.SerialFlowControl 185
Circuit.SerialParity 185
Circuit.TelnetBreakMode 186
Circuit.TelnetCharacterMode 186
Clipboard Constants 186
Compiler Constants 186
Date Constants 187
File Constants 187
File Type Constants 187
Font Constants 188
IMEStat Constants 188
Math Constants 188
Session.EventWait 188
MsgBox Constants 189
Session.Capture File Handling 189
Session.KeyWait, Session.Collect 190
Session.StringWait 190
Session.ConfigInfo 190
Session.EmulationInfo 190
Session.KeyWait 190
Session.Language, Application.InstalledLanguages,Application.StartupLanguage 191
Shell Constants 191
Macro Language Constants 191
String Conversion Constants 192
Variant Constants 192

Cos 193

CreateObject 193



CSng 194

CStr 194

CurDir, CurDir$ 195

Currency (data type) 195

CVar 196

CVErr 196

D 198

Date (data type) 198
Date literals 198
Dates and Year 2000 Calculations 198

Compensating for dates specifying two-digit years 199

Date, Date$ (functions) 201

Date, Date$ (statements) 201

DateAdd 202

DateDiff 203

DatePart 205

DateSerial 207

DateValue 208

Day 208

DDB 209

DDEExecute 209

DDEInitiate 210

DDEPoke 211

DDERequest, DDERequest$ 211

DDESend 212

DDETerminate 213



DDETerminateAll 213

DDETimeout 214

Declare 214
Prototying macro subroutines and functions 216

Adding and subtracting via prototypes 216
Declaring routines in external .DLL files 218

Passing parameters 218
Calling conventions with external routines 218
Passing null pointers 219
Passing data to external routines 219
Returning values from external routines 221
Calling external routines 221

DefType 222

Dialog (function) 224

Dialog (statement) 225

Dialogs (topic) 226

Dim 226
Fixed-length strings 227
Implicit variable declaration 227
Declaring explicit OLE automation objects 227
Creating new objects 227
Initial values 227
Naming conventions 228

Dir, Dir$ 229
Wildcards 229
Attributes 229

DiskDrives 230

DiskFree 231

DlgCaption (function) 231

DlgCaption (statement) 231

DlgControlId 232

DlgEnable (function) 232



DlgEnable (statement) 233

DlgFocus (function) 234

DlgFocus (statement) 234

DlgListBoxArray (function) 234

DlgListBoxArray (statement) 235

DlgProc 236

DlgSetPicture 238

DlgText 239

DlgText$ 240

DlgValue (function) 241

DlgValue (statement) 242

DlgVisible (function) 242

DlgVisible (statement) 243
Picture Caching 243

Do...Loop 244

DoEvents (function) 246

DoEvents (statement) 246

Double (data type) 247
Storage 247

DropListBox 247

E 249

End 249

Environ, Environ$ 249

EOF 249

Eqv 250



Binary equivalence 250

Erase 251

Err (object) 252
Erl 252
Err.Clear 253
Err.Description 253
Err.HelpContext 254
Err.HelpFile 254
Err.LastDLLError 255
Err.Number 256
Err 257
Err.Raise 257
Err.Source 258

Error Handling (topic) 259
Cascading Errors 259
Visual Basic Compatibility 259
Error, Error$ (functions) 260
Error (statement) 260

Exit Do 261

Exit For 262

Exit Function 262

Exit Sub 263

Exp 263

Expression Evaluation (topic) 263
Type Coercion 264
Rounding 264
Default Properties 264

F 266

FileAttr 266

FileCopy 267

FileDateTime 267

FileDirs 268



FileExists 269

FileLen 269

FileList 269
Wildcards 270
File attributes 271

FileParse$ 271

Fix 272

For...Each 273

For...Next 274

Format, Format$ 276
Built-in formats 277
User-defined formats 278

FreeFile 282

Function...End Function 282
Returning Values from Functions 284
Passing Parameters to Functions 284
Optional Parameters 284

Fv 286

G 287

Get 287
Variable types 287

GetAttr 289

GetObject 290

291

GoSub 291

Goto 292

GroupBox 293

H 295



HelpButton 295

Hex, Hex$ 296

Hour 296

I 297

If...Then...Else 297

Iif 298

IMEStatus 298

Imp (operator) 300
Binary implication 300

Input# 301

Input, Input$, InputB, InputB$ 303

InputBox, InputBox$ 304

InStr, InstrB 305

Int 306

Integer (data type) 307

IPmt 307

IRR 309

Is 310

IsDate 311

IsEmpty 311

IsError 312

IsMissing 312

IsNull 313

IsNumeric 313

IsObject 314



Item$ 314

ItemCount 315

K 316

Keywords (topic) 316
Restrictions 316

Kill 317

L 318

Lbound 318

LCase, LCase$ 318

Left, Left$, LeftB, LeftB$ 319

Len, LenB 319

Let 321

Like 321

Line Input# 322

Line Numbers (topic) 323

Line$ 323

LineCount 324

ListBox 324

Literals (topic) 325
Constant folding 326

Loc 326

Lock, Unlock 327

Lof 329

Log 329

Long (data type) 329

LSet 330



LTrim, LTrim$ 331

M 332

Mid, Mid$, MidB, MidB$ (functions) 332

Mid, Mid$, MidB, MidB$ (statements) 332

Minute 333

MIRR 334

MkDir 335

Mod 335

Month 336

Msg (object) 336
Msg.Close 336
Msg.Open 336
Msg.Text 337
Msg.Thermometer 338

MsgBox (function) 338
Breaking Text across Lines 340

MsgBox (statement) 341

N 342

Name 342

Named Parameters (topic) 343

New 343

Not 344

Now 344

NPer 345

Npv 346

O 348

Object (data type) 348



Using objects 348
Automatic destruction 348

Objects (topic) 349
What is an object 349
Declaring Object Variables 349
Assigning a Value to an Object Variable 349
Accessing Object Properties 349
Accessing Object Methods 349
Comparing Object Variables 350
Collections 350
Predefined Objects 350

Oct, Oct$ 351

OKButton 351

On Error 352
Errors within an Error Handler 353

Open 353

OpenFilename$ 356

Operator Precedence (topic) 357

Operator Precision (topic) 357

Option Base 358

Option Compare 358

Option CStrings 359

Option Default 360

Option Explicit 361

OptionButton 362

OptionGroup 362

Or 363
Binary Disjunction 363

P 365



Picture 365

PictureButton 366

Pmt 368

PopUpMenu 368

PPmt 369

Print 370

Print# 371

Private 373
Fixed-Length Strings 373
Initial Values 374

Public 374
Fixed-Length Strings 375
Sharing Variables 375

PushButton 376

Put 377

Pv 379

R 380

Random 380

Randomize 380

Rate 381

ReadIni$ 381

ReadIniSection 382

Redim 383

Rem 384

Reset 384

Resume 385



Return 385

Right, Right$, RightB, RightB$ 386

RmDir 386

Rnd 387

RSet 388

RTrim, RTrim$ 388

S 389

SaveFilename$ 389

Second 390

Seek (function) 390

Seek (statement) 391

Select...Case 392

SelectBox 393

SendKeys 394
Specifying Keys 394

Session (object) 396
Session.Application 396
Session.AutoWrap 397
Session.Blink 397
Session.Bold 397
Session.BufferFormatted 398
Session.BufferModified 398
Session.Caption 399
Session.Capture 399
Session.CaptureFileHandling 400
Session.Circuit 400
Session.ClearScreen 400
Session.Close 401
Session.Collect (object) 401
Session.Collect.CollectedCharacters 402
Session.Collect.CollectedString 402



Session.Collect.Consume 403
Session.Collect.MaxCharacterCount 403
Session.Collect.Reset 403
Session.Collect.Start 404
Session.Collect.Status 404
Session.Collect.TermString 405
Session.Collect.TermStringExact 405
Session.Collect.Timeout 405
Session.Collect.TimeoutMS 406
Session.Column 406
Session.Concealed 406
Session.ConfigInfo 407
Session.Connected 407
Session.DialogView 407
Session.DoMenuFunction 408
Session.Echo 409
Session.EmulationInfo 409
Session.EndCapture 410
Session.EventWait (object) 410
Session.EventWait.EventCount 411
Session.EventWait.EventType 411
Session.EventWait.MaxeventCount 412
Session.EventWait.Reset 412
Session.EventWait.Start 412
Session.EventWait.Status 413
Session.EventWait.Timeout 413
Session.EventWait.TimeoutMS 414
Session.FieldEndCol 414
Session.FieldEndRow 414
Session.FieldModified 415
Session.FieldStartCol 415
Session.FieldStartRow 416
Session.FieldText 416
Session.FontAutoSize 417
Session.FontHeight 417
Session.FontWidth 418
Session.GetMostRecentTriggerName 418
Session.GetMostRecentTriggerPattern 418
Session.HotSpotsActive 419
Session.HotSpotsFileName 419
Session.InitialMouseCol 420



Session.InitialMouseRow 420
Session.InsertMode 421
Session.InterpretControls 421
Session.Inverse 421
Session.IsFieldMark 422
Session.IsNumeric 422
Session.IsProtected 423
Session.KeyboardLocked 423
Session.KeyWait (object) 424
Session.KeyWait.KeyCode 425
Session.KeyWait.KeyCount 426
Session.KeyWait.KeyType 426
Session.KeyWait.MaxKeyCount 426
Session.KeyWait.Reset 427
Session.KeyWait.Start 427
Session.KeyWait.Status 427
Session.KeyWait.Timeout 428
Session.KeyWait.TimeoutMS 428
Session.KeyWait.Value 428
Session.Language 429
Session.LoadKeyboardMap 429
Session.LoadSmarTermButtons 430
Session.LockStep (object) 430
Session.LockStep.Reset 432
Session.LockStep.Start 432
Session.MouseCol 432
Session.MouseRow 433
Session.NativeScreenText 433
Session.Normal 434
Session.Online 434
Session.Page 434
Session.ReplayCaptureFile 434
Session.Row 435
Session.ScreenText 435
Session.ScreenToFile 436
Session.SelectScreenAtCoords 436
Session.SelectionEndColumn 437
Session.SelectionEndRow 437
Session.SelectionStartColumn 438
Session.SelectionStartRow 438
Session.SelectionRectangular 439



Session.SelectionType 439
Session.Send 440
Session.SendKey 440
Session.SendLiteral 442
Session.SetFontSize 442
Session.SetHotSpotsFile 443
Session.StringWait (object) 444
Session.StringWait.MatchString 445
Session.StringWait.MatchStringEx 445
Session.StringWait.MatchStringExact 446
Session.StringWait.MaxCharacterCount 447
Session.StringWait.Reset 447
Session.StringWait.Start 447
Session.StringWait.Status 448
Session.StringWait.Timeout 448
Session.StringWait.TimeoutMS 449
Session.TotalColumns 449
Session.TotalPages 449
Session.TotalRows 450
Session.Transfer 450
Session.TransferProtocol 450
Session.TranslateBinary 451
Session.TranslateText 451
Session.TransmitFile 451
Session.TransmitFileUntranslated 452
Session.TriggersActive 453
Session.TypeFile 453
Session.Underline 453
Session.UnloadSmarTermButtons 454
Session.Visible 454
Session.WindowState 454

Set 455

SetAttr 456

Sgn 457

Shell 457

Sin 458

Single (data type) 459



Storage 459

Sleep 459

Sln 460

Space, Space$ 460

Spc 461

SQLBind 461

SQLClose 462

SQLError 463

SQLExecQuery 464

SQLGetSchema 465

SQLOpen 467

SQLRequest 468

SQLRetrieve 470

SQLRetrieveToFile 471

Sqr 472

Stop 472

Str, Str$ 473

StrComp 473

StrConv 474

String (data type) 476

String, String$ 477

Sub...End Sub 477
Passing Parameters to Subroutines 479
Optional Parameters 479

Switch 480



SYD 480

T 482

Tab 482

Tan 482

Text 483

TextBox 484

Time, Time$ (functions) 485

Time, Time$ (statements) 486

Timer 487

TimeSerial 487

TimeValue 487

Transfer (object) 488
Transfer.Command 488
Transfer.FTPAutoConnect 489
Transfer.FTPConfirmDeleteFiles 489
Transfer.FTPConfirmRemoveFolders 490
Transfer.FTPConfirmReplaceFiles 490
Transfer.FTPConfirmTransferFiles 491
Transfer.FTPConfirmTransferFolders 491
Transfer.FTPDeleteIncompleteFiles 492
Transfer.FTPHostName 492
Transfer.FTPSecureCompression 492
Transfer.FTPSecureFirstTimeWarningsOff 493
Transfer.FTPSecurePortNumber 493
Transfer.FTPSecureSocksEnabled 493
Transfer.FTPSecureSocksPortNumber 494
Transfer.FTPSecureSocksServerName 494
Transfer.FTPUserName 494
Transfer.FTPUserPassword 495
Transfer.FTPUseSecureFTP 495
Transfer.INDFILEAdditionalCommands 496
Transfer.INDFILEEnableCRLFHandling 496
Transfer.INDFILEHostEnvironment 497
Transfer.INDFILELocalFileFormat 497



Transfer.INDFILELogicalRecordLength 498
Transfer.INDFILEPacketSize 498
Transfer.INDFILEPromptBeforeOverwrite 498
Transfer.INDFILERecordFormat 499
Transfer.INDFILEResponseTimeout 499
Transfer.INDFILEStartupTimeout 500
Transfer.INDFILETSOAllocationUnits 500
Transfer.INDFILETSOAUPrimary 501
Transfer.INDFILETSOAUSecondary 501
Transfer.INDFILETSOAverageBlockSize 501
Transfer.INDFILETSOBlockSize 502
Transfer.KermitCheckSumType 502
Transfer.KermitDuplicateFileWarning 503
Transfer.KermitPacketSize 503
Transfer.ProtocolName 503
Transfer.ReceiveFile 504
Transfer.ReceiveFileAs 504
Transfer.SendFile 505
Transfer.SendFileAs 505
Transfer.Setup 506

FTP transfers 506
KERMIT transfers 507
XMODEM, YMODEM, and ZMODEM transfers 507

Transfer.XMODEMCheckSumType 507
Transfer.XMODEMPacketSize 508
Transfer.XMODEMStreaming 508
Transfer.YMODEMCheckSumType 508
Transfer.YMODEMPacketSize 509
Transfer.YMODEMStreaming 509

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ 509

Type 510

TypeName 511

TypeOf 512

U 514

UBound 514

UCase, UCase$ 514

Unlock 515



User-Defined Types (topic) 515
Declaring Structures 515
Copying Structures 515
Passing Structures 516
Size of Structures 516

V 517

Val 517

Variant (data type) 517
Determining the Subtype of a Variant 518
Assigning to Variants 518
Operations on Variants 519
Adding Variants 519
Variants That Contain No Data 519
Variant Storage 519
Disadvantages of Variants 520
Passing Nonvariant Data to Routines Taking Variants 520
Passing Variants to Routines Taking Nonvariants 520

VarType 521

W - X - Y 522

Weekday 522

While...Wend 523

Width# 523

Word$ 524

WordCount 525

Write# 525

WriteIni 526

Xor 526
Binary Exclusion 527

Year 528

PSL Equivalents for Methods and Properties 529

Error Messages 536



Visual Basic Compatible error messages 536

Compiler-Specific error messages 539

Compiler errors 541

Index 547



INTRODUCTION
The SmarTerm macro language is a powerful Visual-Basic compatible macro language tailored
especially for use with SmarTerm. This Macro Guide provides a brief overview of and tutorial for the
language, plus comprehensive descriptions of all the features of the language. The initial chapters
cover basic features of the languages, such as data types, operators, expressions, compilation control
features, and keywords. Subsequent chapters are an a-to-z reference of all macro language statements
and functions, as well as all object properties and methods. This long section is followed by two short
appendices, one listing equivalents to the older Persoft Script Language (PSL), and the other listing the
numeric error messages you might receive from the macro compiler.

Note:
All information covered in this manual is also available in the online help system.

Throughout this manual we use the following conventions:

• Examples are shown in a type-in font.

• Optional parameters are enclosed in square brackets: [ ].

• Named parameters are italicized.

• Options in a series are separated with the pipe character: |.

• If you can specify multiple similar parameters, only the first and last are specified, and the
intermediate parameters are indicated with an ellipsis: ....



Macro Features Listed by Purpose

File Transfer
Application.UserTransfersLocation 132
Session.Transfer 450
Session.TransferProtocol 450
Session.TranslateBinary 451
Session.TranslateText 451
Session.TransmitFile 451
Session.TransmitFileUntranslated 452
Transfer (object) 488
Transfer.Command 488
Transfer.FTPAutoConnect 489
Transfer.FTPConfirmDeleteFiles 489
Transfer.FTPConfirmRemoveFolders 490
Transfer.FTPConfirmReplaceFiles 490
Transfer.FTPConfirmTransferFiles 491
Transfer.FTPConfirmTransferFolders 491
Transfer.FTPDeleteIncompleteFiles 492
Transfer.FTPHostName 492
Transfer.FTPSecureCompression 492
Transfer.FTPSecureFirstTimeWarningsOff 493
Transfer.FTPSecurePortNumber 493
Transfer.FTPSecureSocksEnabled 493
Transfer.FTPSecureSocksPortNumber 494
Transfer.FTPSecureSocksServerName 494
Transfer.FTPUserName 494
Transfer.FTPUserPassword 495
Transfer.FTPUseSecureFTP 495
Transfer.INDFILEAdditionalCommands 496
Transfer.INDFILEEnableCRLFHandling 496
Transfer.INDFILEHostEnvironment 497
Transfer.INDFILELocalFileFormat 497
Transfer.INDFILELogicalRecordLength 498
Transfer.INDFILEPacketSize 498
Transfer.INDFILEPromptBeforeOverwrite 498
Transfer.INDFILERecordFormat 499
Transfer.INDFILEResponseTimeout 499
Transfer.INDFILEStartupTimeout 500
Transfer.INDFILETSOAllocationUnits 500
Transfer.INDFILETSOAUPrimary 501
Transfer.INDFILETSOAUSecondary 501
Transfer.INDFILETSOAverageBlockSize 501
Transfer.INDFILETSOBlockSize 502
Transfer.KermitCheckSumType 502
Transfer.KermitDuplicateFileWarning 503
Transfer.KermitPacketSize 503
Transfer.ProtocolName 503
Transfer.ReceiveFile 504

Transfer.ReceiveFileAs 504
Transfer.SendFile 505
Transfer.SendFileAs 505
Transfer.Setup 506
Transfer.XMODEMCheckSumType 507
Transfer.XMODEMPacketSize 508
Transfer.XMODEMStreaming 508
Transfer.YMODEMCheckSumType 508
Transfer.YMODEMPacketSize 509
Transfer.YMODEMStreaming 509

Character and String
Manipulation

& (concatenation) 105
_ (line continuation) 110
+ (addition/concatenation) 111
Asc, AscB, AscW 143
Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ 158
CStr 194
Error, Error$ (functions) 260
FileDirs 268
FileParse$ 271
Format, Format$ 276
Hex, Hex$ 296
InStr, InstrB 305
Item$ 314
ItemCount 315
LCase, LCase$ 318
Left, Left$, LeftB, LeftB$ 319
Len, LenB 319
Like 321
Line$ 323
LineCount 324
LSet 330
LTrim, LTrim$ 331
Mid, Mid$, MidB, MidB$ (functions) 332
Mid, Mid$, MidB, MidB$ (statements) 332
Oct, Oct$ 351
Option Compare 358
Option CStrings 359
Right, Right$, RightB, RightB$ 386
RSet 388
RTrim, RTrim$ 388
Session.Collect (object) 401
Session.Collect.CollectedCharacters 402
Session.Collect.CollectedString 402
Session.Collect.MaxCharacterCount 403
Session.Collect.Reset 403



Session.Collect.Start 404
Session.Collect.TermString 405
Session.Collect.TermStringExact 405
Session.Collect.Timeout 405
Session.Collect.TimeoutMS 406
Session.Send 440
Session.StringWait (object) 444
Space, Space$ 460
Spc 461
Str, Str$ 473
StrComp 473
StrConv 474
String (data type) 476
String, String$ 477
Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ 
509
UCase, UCase$ 514
Unlock 515
Val 517
Word$ 524
WordCount 525

Drive, Folder, and File Access
ChDir 156
ChDrive 156
Close 179
CurDir, CurDir$ 195
Dir, Dir$ 229
DiskDrives 230
DiskFree 231
EOF 249
FileAttr 266
FileCopy 267
FileDateTime 267
FileDirs 268
FileExists 269
FileLen 269
FileList 269
FileParse$ 271
FreeFile 282
Get 287
GetAttr 289
Input# 301
Input, Input$, InputB, InputB$ 303
Kill 317
Line Input# 322
Loc 326
Lock, Unlock 327

Lof 329
MkDir 335
Name 342
Open 353
OpenFilename$ 356
Print 370
Print# 371
Put 377
ReadIni$ 381
ReadIniSection 382
Reset 384
RmDir 386
SaveFilename$ 389
Seek (function) 390
Seek (statement) 391
Session.Capture 399
Session.CaptureFileHandling 400
Session.EndCapture 410
Session.ScreenToFile 436
Session.TypeFile 453
SetAttr 456
Spc 461
Tab 482
Width# 523
Write# 525
WriteIni 526

Keywords, Data Types,
Operators, and Expressions

' (single quote) 101
'! (description comment) 101
- (subtraction) 102
& (concatenation) 105
( ) (precedence) 105
* (multiplication) 106
. (dot) 107
/* and */ (C-style comment block) 108
/ (division) 1
\ (integer division) 109
^ (exponentiation) 109
_ (line continuation) 110
+ (addition/concatenation) 111
<, <=, <>, =, >, >= (comparison) 112
And 113
Any (data type) 116
ArrayDims 140
ArraySort 143
Boolean (data type) 150



ByVal 151
CBool 154
CCur 155
CDbl 156
Choose 158
CInt 160
CLng 179
Comparison Operators (topic) 181
Const 183
Constants (topic) 184
CSng 194
CStr 194
Currency (data type) 195
CVar 196
CVErr 196
Date (data type) 198
DefType 222
Dim 226
Double (data type) 247
Eqv 250
Erase 251
Expression Evaluation (topic) 263
Imp (operator) 300
Integer (data type) 307
Is 310
IsDate 311
IsEmpty 311
IsError 312
IsNumeric 313
Keywords (topic) 316
Lbound 318
Let 321
Like 321
Literals (topic) 325
Long (data type) 329
Mod 335
Named Parameters (topic) 343
Not 344
Operator Precedence (topic) 357
Operator Precision (topic) 357
Option Base 358
Or 363
Redim 383
Rem 384
String (data type) 476
Type 510
TypeName 511
TypeOf 512
UBound 514

User-Defined Types (topic) 515
Variant (data type) 517
VarType 521
Xor 526

Host Connections
Application.UserPhoneBookLocation 130
Circuit (object) 160
Circuit.AutoConnect 161
Circuit.Connect 161
Circuit.Connected 162
Circuit.Disconnect 162
Circuit.LATHostName 162
Circuit.LATPassword 163
Circuit.LATSavePassword 163
Circuit.ModemAlt1Number 163
Circuit.ModemAlt2Number 164
Circuit.ModemAlt3Number 164
Circuit.ModemAreaCode 164
Circuit.ModemCountryCode 165
Circuit.ModemGetCountryCodeString 165
Circuit.ModemPhoneNumber 165
Circuit.ModemTotalCountryCodes 166
Circuit.ModemUseCodes 166
Circuit.SendRawToHost 166
Circuit.SerialBaudRate 167
Circuit.SerialBreakDuration 167
Circuit.SerialDataBits 168
Circuit.SerialFlowControl 168
Circuit.SerialParity 169
Circuit.SerialPort 169
Circuit.SerialReceiveBufferSize 170
Circuit.SerialStopBits 170
Circuit.SerialTransmitBufferSize 170
Circuit.Setup 171
Circuit.SNALogicalUnit 172
Circuit.SNAProtocol 172
Circuit.SNAServerName 173
Circuit.SuppressConnectErrorDialog 173
Circuit.TelnetBreakMode 174
Circuit.TelnetCharacterMode 175
Circuit.TelnetHostName 175
Circuit.TelnetPortNumber 175
SendKeys 394
Session.Circuit 400
Session.Connected 407
Session.EventWait (object) 410
Session.EventWait.EventCount 411



Session.EventWait.EventType 411
Session.EventWait.MaxeventCount 412
Session.EventWait.Start 412
Session.EventWait.Status 413
Session.EventWait.Timeout 413
Session.EventWait.TimeoutMS 414
Session.KeyWait (object) 424
Session.LockStep (object) 430

Numeric, Math, and Accounting
Functions

- (subtraction) 102
* (multiplication) 106
/ (division) 1
\ (integer division) 109
^ (exponentiation) 109
+ (addition/concatenation) 111
Abs 113
Atn 146
Cos 193
DDB 209
Exp 263
Fix 272
Fv 286
Int 306
IPmt 307
IRR 309
IsNumeric 313
Log 329
MIRR 334
Mod 335
NPer 345
Npv 346
Pmt 368
PPmt 369
Pv 379
Random 380
Randomize 380
Rate 381
Rnd 387
Sgn 457
Sin 458
Sln 460
Sqr 472
SYD 480
Tan 482

Macro Control and Compilation

' (single quote) 101
'! (description comment) 101
#Const 103
#If...Then...#Else 103
( ) (precedence) 105
/* and */ (C-style comment block) 108
= (assignment) 112
ByRef 150
ByVal 151
Declare 214
Do...Loop 244
End 249
Erl 252
Err.Clear 253
Err.Description 253
Err.HelpContext 254
Err.HelpFile 254
Err.LastDLLError 255
Err.Number 256
Err 257
Err.Raise 257
Err.Source 258
Error Handling (topic) 259
Error, Error$ (functions) 260
Error (statement) 260
Exit Do 261
Exit For 262
Exit Function 262
Exit Sub 263
For...Each 273
For...Next 274
Function...End Function 282
GoSub 291
Goto 292
If...Then...Else 297
Iif 298
IsMissing 312
IsNull 313
Line Numbers (topic) 323
Named Parameters (topic) 343
On Error 352
Option Default 360
Option Explicit 361
Private 373
Public 374
Rem 384
Resume 385
Return 385
Select...Case 392



Sleep 459
Stop 472
Sub...End Sub 477
Switch 480
While...Wend 523

Application and Session
Features

Application (object) 121
Application.ActiveSession 121
Application.Application 122
Application.Caption 122
Application.CommandLine 122
Application.DoMenuFunction 123
Application.FlashIcon 123
Application.InstalledLanguages 124
Application.Parent 124
Application.Product 125
Application.Quit 125
Application.Sessions (collection) 125
Application.Sessions.Application 126
Application.Sessions.Count 127
Application.Sessions.Item 127
Application.Sessions.Open 127
Application.Sessions.Parent 127
Application.StartupLanguage 128
Application.UserHelpFile 129
Application.SuppressRefocus 128
Application.UserHotSpotsLocation 130
Application.UserKeyMapsLocation 130
Application.UserMacrosLocation 130
Application.UserPhoneBookLocation 130
Application.UserSessionsLocation 131
Application.UserButtonPicturesLocation 131
Application.UserSmarTermButtonsLocation 131
Application.UserTransfersLocation 132
Application.Version 132
Application.ViewUserHelp 132
Application.Visible 133
Application.WindowState 133
Session (object) 396
Session.Application 396
Session.AutoWrap 397
Session.Blink 397
Session.Bold 397
Session.BufferFormatted 398
Session.BufferModified 398
Session.Capture 399

Session.CaptureFileHandling 400
Session.Circuit 400
Session.ClearScreen 400
Session.Close 401
Session.Collect (object) 401
Session.Collect.CollectedString 402
Session.Collect.Consume 403
Session.Collect.MaxCharacterCount 403
Session.Collect.Reset 403
Session.Collect.Start 404
Session.Collect.Status 404
Session.Collect.TermString 405
Session.Collect.TermStringExact 405
Session.Collect.Timeout 405
Session.Collect.TimeoutMS 406
Session.Column 406
Session.Concealed 406
Session.ConfigInfo 407
Session.Connected 407
Session.DialogView 407
Session.DoMenuFunction 408
Session.Echo 409
Session.EmulationInfo 409
Session.EndCapture 410
Session.EventWait (object) 410
Session.EventWait.EventCount 411
Session.EventWait.EventType 411
Session.EventWait.MaxeventCount 412
Session.EventWait.Reset 412
Session.EventWait.Start 412
Session.EventWait.Status 413
Session.EventWait.Timeout 413
Session.EventWait.TimeoutMS 414
Session.FieldEndCol 414
Session.FieldEndRow 414
Session.FieldModified 415
Session.FieldStartCol 415
Session.FieldStartRow 416
Session.FieldText 416
Session.FontAutoSize 417
Session.FontHeight 417
Session.FontWidth 418
Session.GetMostRecentTriggerName 418
Session.GetMostRecentTriggerPattern 418
Session.HotSpotsActive 419
Session.HotSpotsFileName 419
Session.InitialMouseCol 420
Session.InitialMouseRow 420
Session.InsertMode 421



Session.InterpretControls 421
Session.Inverse 421
Session.IsFieldMark 422
Session.IsNumeric 422
Session.IsProtected 423
Session.KeyboardLocked 423
Session.KeyWait (object) 424
Session.KeyWait.KeyCode 425
Session.KeyWait.KeyCount 426
Session.KeyWait.KeyType 426
Session.KeyWait.MaxKeyCount 426
Session.KeyWait.Reset 427
Session.KeyWait.Start 427
Session.KeyWait.Status 427
Session.KeyWait.Timeout 428
Session.KeyWait.TimeoutMS 428
Session.KeyWait.Value 428
Session.Language 429
Session.LoadKeyboardMap 429
Session.LoadSmarTermButtons 430
Session.LockStep (object) 430
Session.LockStep.Reset 432
Session.LockStep.Start 432
Session.MouseCol 432
Session.MouseRow 433
Session.NativeScreenText 433
Session.Normal 434
Session.Online 434
Session.Page 434
Session.ReplayCaptureFile 434
Session.Row 435
Session.ScreenText 435
Session.ScreenToFile 436
Session.SelectScreenAtCoords 436
Session.SelectionEndColumn 437
Session.SelectionEndRow 437
Session.SelectionStartColumn 438
Session.SelectionStartRow 438
Session.SelectionRectangular 439
Session.SelectionType 439
Session.Send 440
Session.SendKey 440
Session.SendLiteral 442
Session.SetFontSize 442
Session.SetHotSpotsFile 443
Session.StringWait (object) 444
Session.StringWait.MatchString 445
Session.StringWait.MatchStringEx 445
Session.StringWait.MatchStringExact 446

Session.StringWait.MaxCharacterCount 447
Session.StringWait.Reset 447
Session.StringWait.Start 447
Session.StringWait.Status 448
Session.StringWait.Timeout 448
Session.StringWait.TimeoutMS 449
Session.TotalColumns 449
Session.TotalPages 449
Session.TotalRows 450
Session.TransferProtocol 450
Session.TranslateBinary 451
Session.TranslateText 451
Session.TransmitFile 451
Session.TransmitFileUntranslated 452
Session.TriggersActive 453
Session.TypeFile 453
Session.Underline 453
Session.UnloadSmarTermButtons 454
Session.Visible 454
Session.WindowState 454

Operating System Control
AppActivate 116
AppClose 117
AppFind, AppFind$ 118
AppGetActive$ 119
AppGetPosition 119
AppGetState 120
AppHide 121
AppList 133
AppMaximize 134
AppMinimize 135
AppMove 135
AppRestore 136
AppSetState 137
AppShow 138
AppSize 138
AppType 139
Beep 148
Clipboard (object) 176
Clipboard$ (function) 176
Clipboard$ (statement) 176
Clipboard.Clear 177
Clipboard.GetFormat 177
Clipboard.GetText 177
Clipboard.SetText 178
DoEvents (function) 246
DoEvents (statement) 246



Environ, Environ$ 249
291

IMEStatus 298
Shell 457

User Interaction
AnswerBox 115
Application.UserHelpFile 129
Application.SuppressRefocus 128
Application.UserHelpMenu 129
Application.ViewUserHelp 132
AskBox, AskBox$ 144
AskPassword, AskPassword$ 145
Beep 148
Begin Dialog 148
CancelButton 153
CheckBox 157
ComboBox 180
Dialog (function) 224
Dialog (statement) 225
Dialogs (topic) 226
DlgCaption (function) 231
DlgCaption (statement) 231
DlgControlId 232
DlgEnable (function) 232
DlgEnable (statement) 233
DlgFocus (function) 234
DlgFocus (statement) 234
DlgListBoxArray (function) 234
DlgListBoxArray (statement) 235
DlgProc 236
DlgSetPicture 238
DlgText 239
DlgText$ 240
DlgValue (function) 241
DlgValue (statement) 242
DlgVisible (function) 242
DlgVisible (statement) 243
DropListBox 247
Err.HelpContext 254
Err.HelpFile 254
GroupBox 293
H 295
InputBox, InputBox$ 304
ListBox 324
Msg (object) 336
Msg.Close 336
Msg.Open 336

Msg.Text 337
Msg.Thermometer 338
MsgBox (function) 338
MsgBox (statement) 341
OKButton 351
OpenFilename$ 356
OptionButton 362
OptionGroup 362
Picture 365
PictureButton 366
PopUpMenu 368
PushButton 376
SaveFilename$ 389
SelectBox 393
Session.DialogView 407
Session.Echo 409
Session.HotSpotsActive 419
Session.HotSpotsFileName 419
Session.LoadSmarTermButtons 430
Session.SetHotSpotsFile 443
Session.UnloadSmarTermButtons 454
Text 483
TextBox 484

Time and Date Access
CDate, CVDate 155
Date (data type) 198
Date, Date$ (functions) 201
Date, Date$ (statements) 201
DateAdd 202
DateDiff 203
DatePart 205
DateSerial 207
DateValue 208
Day 208
FileDateTime 267
Hour 296
IsDate 311
Minute 333
Month 336
Msg (object) 336
Now 344
Second 390
Time, Time$ (functions) 485
Time, Time$ (statements) 486
Timer 487
TimeSerial 487
TimeValue 487



Weekday 522
Year 528

Objects
. (dot) 107
Application (object) 121
Application.Application 122
Application.Parent 124
Application.Sessions.Application 126
Application.Sessions.Open 127
Application.Sessions.Parent 127
Circuit (object) 160
CreateObject 193
Err (object) 252
GetObject 290
Is 310
IsObject 314
New 343
Object (data type) 348
Objects (topic) 349
Session (object) 396
Session.Application 396
Session.Circuit 400
Session.Collect (object) 401
Session.EventWait (object) 410
Session.KeyWait (object) 424
Session.LockStep (object) 430
Session.StringWait (object) 444
Session.Transfer 450
Session.TransferProtocol 450
Set 455
Transfer (object) 488

SQL Access
SQLBind 461
SQLClose 462
SQLError 463
SQLExecQuery 464
SQLGetSchema 465
SQLOpen 467
SQLRequest 468
SQLRetrieve 470
SQLRetrieveToFile 471

DDE Access
CreateObject 193
DDEExecute 209

DDEInitiate 210
DDEPoke 211
DDERequest, DDERequest$ 211
DDESend 212
DDETerminate 213
DDETerminateAll 213
DDETimeout 214
GetObject 290



RECORDING AND RUNNING MACROS
When you start up SmarTerm, select Tools>Macros and click Record, you start a macro recorder that:

• Records what you do in a file

• Automatically writes it in the SmarTerm macro language

• Documents what it records

You then can replay the macro or edit it using the macro editor.

When you record a macro, you might keep in mind that the Toolbox doesn't record every action you
perform. Instead, it analyzes your actions and records those that can be performed with macro
commands. The recorder also looks for incoming prompts and stores outgoing keystrokes.

For example, SmarTerm provides a full range of file transfer capabilities. Therefore, when you record a
file transfer, the entire process is recorded. However, the macro language does not support editing a
macro in the macro editor, so you cannot record that sort of task in a macro.

This chapter describes how to record and use macros. More macro information follows in the next two
chapters, Creating Macros 43 and Programming Macros 57.

Recording macros
To record a macro:

1. Select Tools>Macros. The Macros dialog appears:

Select the file where the macro is to be stored.

2. Type a name for your macro. Don't include spaces in the name. To replace an existing macro, select
the name from the list.

3. Click Record. The Start Recording dialog appears, allowing you to review the macro name you just
typed. If you use an existing macro name, SmarTerm asks whether you want to overwrite that macro.
Agree, or change the name, and then click OK. Your session reappears with the word "Record" in the
status bar and a set of buttons that allow you to control the recording process.



SmarTerm Macro Guide

42

4. Perform the steps you want to record.

At any time you can click the Pause button to pause the recording or the Abort button to abort the
recording.

Pause Abort Stop

5. When you are finished recording the macro, click the Stop button to save the macro. If you entered
passwords while recording the macro, a Password Handling dialog appears. You can choose to store
the password in the macro or to require the macro to prompt for the password each time you run it.

Running macros
To test a macro, select Tools>Macros, select the file and macro you want to run, and click Run. You
can also assign a macro to a keystroke, a SmartMouse action, or a SmarTerm button. Follow these
instructions in the online Help for the tool which you want to use.

What can go wrong?
The Toolbox can't record everything you do in a macro. For example, you might record a macro that
includes a specific response from the host. If you run the macro again and get a different response from
the host, the macro may get out of sync. If this happens, stop the macro and then try running it again
to see if the same thing happens. If the host consistently produces the same new response, you can
record the macro again to put the new host response into the macro. If the problem is that you cannot
predict the host's response, you may have to edit macro to allow for multiple responses from the host.
See the chapter on Creating Macros for information on editing macros.

Running PSL Scripts
Before SmarTerm 6.0, the SmarTerm products relied on the Persoft Script Language (PSL). Since then,
the Visual Basic compatible SmarTerm Macro Language has replaced PSL. If you are upgrading old
sessions to the current version, SmarTerm automatically converts most of the old PSL scripts, those
associated with:

• Automatic login and logout

• SmartMouse actions

• Keyboard mappings

Note:
Only old button palettes and toolbars require you to run a converter. In the online help, under
Tools>Toolbar or Tools>SmarTerm Buttons, you’ll find a Toolbar and Button Palette Converter book
with conversion instructions.



CREATING MACROS
The SmarTerm macro language is an implementation of VisualBasic for Applications (VBA) especially
tailored for use with SmarTerm. The previous chapter described how to use the macro recorder to
record and play back simple macros (see Recording and Running Macros 41). There are times,
however, when the tasks that you want to accomplish are too complicated for simple recording, so
SmarTerm comes with an integrated editor and debugger that allow you to write more complex
macros. This and the following chapter explain how to do this.

This chapter briefly describes the features of the SmarTerm macro language and explains how macros
are organized in SmarTerm. The next chapter describes how to program macros for a variety of basic
tasks (see Programming Macros 57), and the last chapter explains how to best use macros when you
need the sophistication and flexibility required in a large organization.

Before getting started, please note that these chapters, although constituting a sort of macro tutorial,
are probably not appropriate if you have never programmed before, or if you are not familiar with
SmarTerm. This tutorial does not assume complete mastery of either of these topics, but it does require
at least some familiarity with topics such as looping constructs, arrays, functions, data typing, and so
forth, as well as a sense of what one does with terminal emulation software.

Features and organization
The SmarTerm Macro Language provides you with customizable control over most aspects of host
communication. Commands in the language let you:

• Make host connections using all of the communication methods supported by SmarTerm

• Modify the settings of all of the emulation types supported by SmarTerm

• Transfer files using all of the file transfer methods supported by SmarTerm

• Build Windows-style user interfaces for your macros using the integrated visual dialog editor

• Have access to the most important operating system functions such as disk and file access, OLE
(Object Linking and Embedding) automation, and so forth

You may be familiar with another macro language that organizes macros in a particular way. For
example, many macro languages simply store each macro in a file, and allow you to open and run one
or another macro file. SmarTerm, like other Windows applications that support a VBA-based macro
language (such as Microsoft Word), uses a somewhat more complicated system. In part this is in
recognition of the greater flexibility required by emulation software (since we can't know what host
applications you may use with SmarTerm). However, it is also in response to the needs of large, server-
oriented sites that need more sophisticated tools to support the needs of their users. Later in this
chapter we describe how macros are organized, and provide some tips to help you take advantage of
this organization.



SmarTerm Macro Guide

44

Macro syntax
A single macro is simply a block of text with macro commands in it stored in some location accessible
to SmarTerm (called a macro module). Macros may be subroutines (which carry out commands but do
not return a result that can be assigned to a variable) or functions (subroutines which do return a result
that can be assigned to a variable). In this chapter, unless specifically stated otherwise, you may
assume that any reference to "subroutine" can be expanded to include functions as well.

The text for a macro must have:

• A first line that is Sub for a subroutine or Function for a function, followed by the name of the
subroutine or function. This name must follow the conventions described in the online help for
subroutines and functions.

• For subroutines only: If you want the macro to be selectable from the Tools>Macros dialog when
the module is loaded, the second line must begin '! (a single quotation mark followed by an
exclamation point). If you want a description of the macro to appear in the Macros dialog, put the
text you want after the '!. You can have up to three lines of 66 characters each for the description,
each beginning with '!. SmarTerm puts as much text as possible on each of the three lines, even if
you insert carriage returns.

Note:
Functions do not appear in the Tools>Macros dialog, even if they have the '! description line.

• One or more lines of text containing control statements to carry out the macro’s purpose. Each line
is considered to end when the compiler encounters a comment or the carriage-return linefeed
combination that ends a line in an ASCII text file. If you need to, you can continue a line of code
onto the next line of the macro by preceding the carriage-return with an underscore (_), the line
continuation character. Any line or section of a line that has been commented (see Adding
comments to macros 60) is ignored by the compiler.

• A last line marking the end of the macro that corresponds to the first, either End Sub or End
Function.

For example, a macro containing file transfer commands to fetch a weekly status report might look
something like this in the module:

Sub GetWeeklyStatusReport
'! Run every Friday after 12:00

' initiate the file transfer on the host
Session.Send "SX Wstatus.TXT"

' initiate the reception of the file on the PC
Transfer.ReceiveFile "Wstatus.TXT"

End Sub

Note:
White space (extra spaces, carriage returns, and tabs) that makes the macro more readable is ignored
by the compiler.

When you open the Tools>Macros dialog and select the macro, the dialog looks like this:



Creating Macros

45

Notice that the instructions that appear in the second line of the macro text ('! Run every Friday

after 12:00) now appear below the name of the module in which the macro is stored.

Using SmarTerm’s objects
An object is a special kind of programming construct that organizes related settings and tasks into a
single, object-oriented model. This model provides a common syntax for all related tasks, whether they
involve changing settings, sending commands, or communicating with other applications. A macro
accomplishes all related tasks by accessing the methods (commands) and properties (settings) of the
appropriate object.

The syntax for accessing the methods and properties of an object is quite simple: Object.Method or
Object.Property. To assign the current setting of an object's property to a variable, you use Variable =

Object.Property. To use an object's method, you use Object.Method.

For example, suppose that you want to create a macro that gets the version number of SmarTerm and
then displays it in the SmarTerm window. In a procedural language you might need to use two macro
commands that use completely different syntax, such as:

LatestVersion$ = Version$( ) ! Get version number
Send (LatestVersion$) ! Display version number

With this kind of macro language you need to learn a new syntax each time a different programmer
adds a new feature. The macro code is hardly self-explanatory (version of what? Send it where?), and
of course the presence or absence of parentheses, arbitrary as it seems, will make or break the macro.

With the object-orientation of the macro language, the version number and the session window are
considered part of the SmarTerm application object, so you can use one statement for both tasks:

Session.Echo Application.Version
! Display the version number in the session window

You will use this object-oriented approach to control SmarTerm from a macro. In addition, if you
create your own data structures, you will access the members of those structures using the same object-
oriented syntax.



SmarTerm Macro Guide

46

Understanding the SmarTerm objects
There are SmarTerm objects corresponding to the tasks basic to host connection: Application
(controlling SmarTerm), Session (communicating with the host), Circuit (connecting to the host),
Transfer (transferring files), and Clipboard (moving information between SmarTerm and the Windows
Clipboard). There are also objects that simplify the creation of a user interface (Msg and Dlg) and the
handling of errors (Err). These are all briefly described in the following sections. All object properties
and methods begin with the object name and are listed in alphabetical order in this manual and in the
online help.

Application
The Application object is SmarTerm itself. With the Application object you control or have access to
those properties of SmarTerm that are not session-dependent. You can also access methods that are not
session-dependent.

Note:
The Application object should not be confused with the macro commands that begin App, such as
AppActivate. The App commands provide access to external Windows and DOS applications, not to
SmarTerm.

The Application object includes one sub-object, the Sessions collection. This sub-object gives you
access to the set of sessions running or available to run at a given time. You access the properties and
methods of all this Application sub-objects with a syntax very similar to that for the primary objects:
Application.Sessions.Property or Application.Sessions.Method. For example, you can count the
number of open session files with Application.Sessions.Count.

Session
With the Session object you control or have access to those properties of SmarTerm that are session-
dependent. You can also access methods that are session-dependent.

The Session object includes five sub-objects that help you handle the flow of events that occurs
between SmarTerm and the host.

You access the properties and methods of all of these Session sub-objects with a syntax very similar to
that for the primary objects: Session.Object.Property or Session.Object.Method. For example, you set
the keycode that SmarTerm should wait for with the Session.Keywait.Keycode property.

The primary documentation for the Session subobjects is in the online help system. The following
sections briefly explain each subobject.

Collect
The Session.Collect object allows you to pause the macro while it collects strings of text from the
host. You can use the text you collect in any fashion you choose (but if you need to collect text and
store it in a file, the Session.Capture or Session.Screentofile commands are more efficient). If you do
not need to use the text sent by the host, but simply need to control the flow of the macro based on
text sent from the host, consider using the Session.Stringwait subobject.

Note:
Since the Session.Collect object collects only text, it is not available if you are using a form-based
session type, such as IBM 3270 or 5250. For form-based session types, use the Session.Eventwait

object to wait for data from the host.



Creating Macros

47

There are commands that allow you to start collecting text, indicate the signal to end collecting, and
determine whether or not the collected text is passed on to the screen. There is one Session.Collect

object per session. You can either trust SmarTerm to re-initialize all properties each time the object is
used after the previous collection has finished, or you can use the Session.Collect.Reset command
before each use of the Session.Collect object to clear all previous values of the object (such as the
collected string or a timeout value).

Eventwait
The Session.Eventwait object allows you to pause the macro while it checks to see if SmarTerm has
sent one or more form pages to the host or received one or more form pages from the host. The
Session.Eventwait object does not store the data on the pages sent to or received from the host.

Note:
Since the Session.Eventwait object only waits for form pages, it is not available if you are using a
text-based session type, such as Digital VT, ANSI, SCO ANSI, or Wyse. For text-based session types,
use the Session.Collect or Session.Stringwait object to wait for data from the host.

There are commands that allow you to start waiting for form events and indicate the signal to end
waiting. There is one Session.Eventwait object per session. You can either trust SmarTerm to re-
initialize all properties each time the object is used after a Session.Eventwait operation, or you can use
the Session.Eventwait.Reset command before each use of the Session.Eventwait object to clear all
previous values of the object (such as the number of pages to receive before resuming the macro).

Keywait
The Session.Keywait object allows you to pause the macro while it checks for a keystroke or
mousebutton press. You can have the macro check for any keystroke, for a specific keystroke, for a
certain number of keystrokes of any kind, or for a specific mousebutton. You can also set a timeout
value. There is one Session.Keywait object per session. You can either trust SmarTerm to re-initialize
all properties each time the object is used after the previous Session.Keywait operation, or you can use
the Session.Keywait.Reset command before each use of the Session.Keywait object to clear all
previous values of the object.

Stringwait
The Session.Stringwait object allows you to pause the macro while it checks for receipt of a string of
text from the host. This object does not store the text received from the host, so if you need to use the
text received from the host, use the Session.Collect object or the Session.Capture or
Session.Screentofile command.

Note:
Since the Session.Stringwait object waits only for text, it is not available if you are using a form-
based session type, such as IBM 3270 or 5250. For form-based session types, use the
Session.Eventwait object to wait for data from the host.

There are commands that allow you to start waiting for a string, indicate whether to match the string
exactly or not, set a maximum timeout and a maximum number of characters to wait through, and
determine whether or not the string has been matched. There is one Session.Stringwait object per
session. You can either trust SmarTerm to re-initialize all properties each time the object is used after
the previous collection has finished, or you can use the Session.Stringwait.Reset command before
each use of the Session.Stringwait object to clear all previous values of the object (such as the
collected string or a timeout value).

Lockstep



SmarTerm Macro Guide

48

The Session.Lockstep object allows you to ensure that SmarTerm and the host remain in sync with
each other while the macro is monitoring data sent to or received from the host. This prevents your
macro from failing in situations where the host sends or receives data faster than SmarTerm can handle
internally. For example, if you use the Session.Stringwait object to wait for a prompt from the host, it
is possible that the host may send the string you are waiting for while SmarTerm is setting up the
Session.Stringwait object. The wait will then fail, because the macro never sees the string even
though the host has sent it. On the other hand, if you begin by setting up the Session.Lockstep object
and then start waiting for the string, SmarTerm handles flow control with the host such that no
characters are dropped.

Session.Lockstep is a simple enough object that there are only three methods for it: Start, Stop, and
Reset.

Circuit
The Circuit object is the current communication method in use by the active session. With the
Circuit object you control or have access to those properties of SmarTerm that relate to the details of
host connection, such as any settings that appear on the Connection>Properties dialog (which vary
depending on the communication method). You can also access methods that relate to the details of
host connection (which also vary depending on the communication method).

All Circuit methods and properties unique to a given communication method are prefixed with the
name of the communication method, such as Circuit.TelnetHostName. As of this version of SmarTerm,
the supported communication methods are LAT, modem, serial, SNA, and Telnet.

Transfer
The Transfer object is the current transfer method in use by the active session. With the Transfer

object you control or have access to those properties of SmarTerm that relate to file transfer, such as
generic File menu commands and any settings that appear on the Properties>File Transfer Properties
dialog (which vary depending on the transfer method). You can also access methods that relate to the
details of host connection (which also vary depending on the transfer method).

Note:
For macro commands dealing with data capture from the host, see the methods and properties of the
Session object.

All methods and properties unique to a given transfer method are prefixed with the name of the
transfer method, such as Transfer.FTPHostName. As of this version of SmarTerm, the supported file
transfer methods are FTP, IND$FILE, Kermit, XModem, YModem, and ZModem. However, because
ZModem handles so many file transfer issues automatically, there are no unique Transfer properties or
methods for it.

Clipboard
The Clipboard object is a special object that provides access to the Windows Clipboard, allowing you
to transfer text between SmarTerm and another Windows application. With the Clipboard object you
can cut and copy text from the session window to the clipboard, paste text into the session window
from the clipboard, and clear the clipboard. You can also set the format of clipboard text and pipe text
to and from the clipboard directly from a macro.

Msg
The Msg object provides a modeless dialog—that is, a dialog that the user must respond to before
continuing. (The standard Windows File>Open dialog is a good example of a modeless dialog: you
must click either Open or Cancel to dismiss the dialog.) SmarTerm’s Msg object can contain text and a



Creating Macros

49

thermometer control in addition to an OK button and a Cancel button. Macro commands allow you to
create, change the contents of, and close the dialog.

Dlg
The Dlg object provides easy access to dynamic dialogs defined in your macros. Each Dlg method
works as either a statement or a function, allowing you to check return values or ignore them as you
prefer. The use of the Dlg object and dialog procedures in general are described in more detail in Using
a Dynamic Dialog in a Macro 89.

Err
The Err object allows you to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. You can also construct macro code to raise errors as necessary. The
methods and properties of the Err object provide access to the calling OLE object or external DLL,
and the source if possible.

Modules and collectives
The locations where macros are stored (the macro modules) are primarily determined by settings stored
in the session file. The modules available in a session, called the macro collective, do not share source
code, but they can share variables with each other. Moreover, some members of the collective can act
as repositories of shared macros available to all the other members of the collective. This allows you to
create multiple session files that employ different sets of macros, but which may also share some
macros. For example, you may always log onto one host in the same way, but run different
applications at different times that require special macros. You can set up a session file for each host
application that employs the same login macro, but loads a unique set of macros appropriate to each
application. The session-based macro collective also allows you to share macros among many users
simply by sharing the locations of certain modules (see Possible improvements 93).

A macro collective consists of:

• Macros stored in the User macro file

• Macros stored in the session file, including the Session_Connect macro, which runs when the
session connects to the host; the Session_QueryClose macro that runs when the session is closed;
and any SmartMouse event handlers

• Macros compiled and saved as files with the .PCD extension in the program folder (see Compiling
Macros 99 for instructions).

• Macros stored in the currently running macro file loaded with the Other Macro file option on the
Tools>Macros dialog

• Macros embedded in the currently loaded keyboard map

• Macros embedded in the currently loaded SmarTerm Buttons palette

• Macros embedded in the currently loaded HotSpots file

Global variables can be declared in any member of the collective and then accessed by any member of
the collective. Subroutines and functions stored in the first three locations listed above (the User macro
file, the session file, and any compiled macro files) are always available to each other and to any
loaded tools (such as keyboard maps, Buttons, HotSpots, and the Other macro file). Subroutines and
functions stored in loaded tools, however, are not accessible to other members of the collective.



SmarTerm Macro Guide

50

Note:
You must use the Declare statement to prototype functions in the User macro file, session file, and
compiled macro files that you want accessible to other members of the collective. This step is not
required for subroutines unless you have also turned on Option Explicit to require prototyping of
external routines. For clarity’s sake, we recommend that you turn on Option Explicit and prototype
all functions and subroutines. See Declare 214 and Option Explicit 361 for more information.

The user macro file is intended as a location where individuals can build up a collection of their own
macros. By default, SmarTerm assumes that you will tend to organize macros based on session type, so
the default user macro files assumed for a new session are:

Session Type User Macro file

Digital VT, ANSI, SCO ANSI USERVT.STM

Data General DASHER, Wyse USERDG.STM

IBM 3270, IBM 5250 USERIBM.STM

You can select new user files for a given session with the Tools>Macros dialog or through
Properties>Session Options>Macros tab. You can change the location where SmarTerm looks for
macros through Properties>Options>File Locations tab. If you do so, be aware that you cannot make
this change on a per-session basis; all sessions must store their user macros in common folders.

In a server installation of SmarTerm, the user macros folder can reside on each user's PC or the user
folder on the network.

The last entry in the list above, Other Macro File, is a special case. This feature allows you to select
any macro file, select a specific macro in it, and click Run to run the macro.

Predefined login and logout macros
As part of a session's macro collective, SmarTerm provides for two predefined macros: Session_
Connect and Session_QueryClose macro. The Session_Connect macro runs automatically when the
session file is opened, and the Session_QueryClose macro runs automatically when the session file is
closed. These macros are stored in the session's STW file under the heading [Script].

Session_Connect macro
There are a number of ways in which you can create the Session_Connect macro. One way is to use
the Tools>Macros dialog to write it from scratch; another way is to record an actual login when you
create the session (you can always edit the resulting macro to add more commands). If you record a
login, clicking Stop on the macro recorder toolbar after you enter your password, you get a skeletal
login macro that looks something like this:

Sub Session_Connect
    '! This macro is run automatically when the session opens.

    Dim nContinue as Integer
    Dim nTimeOut as Integer

    ' The default timeout for each command is 3 minutes.
    ' Increase this value if your host requires more time
    ' for each command.
    nTimeOut = 180



Creating Macros

51

    Dim LockStep As Object
    Set LockStep = Session.LockStep
    LockStep.Start

    While (Circuit.Connected = False)
    Wend

    ' Wait for response from host.
    Session.StringWait.Timeout = nTimeout
    Session.StringWait.MatchStringExact "Username: "
    if Session.StringWait.Start = smlWAITTIMEOUT then
        nContinue = QuerySyncError()
        if nContinue <> ebYes then End
    end if

    Session.Send "nguyenp" + chr(13)

    ' Wait for response from host.
    Session.StringWait.Timeout = nTimeout
    Session.StringWait.MatchStringExact "Password: "
    if Session.StringWait.Start = smlWAITTIMEOUT then
        nContinue = QuerySyncError()
        if nContinue <> ebYes then End
    end if

    Session_Connect_PasswordHandler 1
    Session.Send chr(13)

    Set LockStep = Nothing

End Sub

Everything in this sample Session_Connect macro was generated automatically by SmarTerm, with the
exception of the account name (nguyenp), which was entered by the person logging onto the host. Let's
look briefly at each section of the macro.

The macro begins with a description line explaining when the macro runs, which will appear at the
bottom of the Tools>Macros dialog when the Session_Connect macro is selected. This is followed by
the definition of several variables and the assignment of values to those variables:

    Dim nContinue as Integer
    Dim nTimeOut as Integer

    ' The default timeout for each command is 3 minutes.
    ' Increase this value if your host requires more time
    ' for each command.
    nTimeOut = 180

    Dim LockStep As Object
    Set LockStep = Session.LockStep
    LockStep.Start

Dim (short for Dimension) is the standard BASIC command to define a variable. Notice that the macro
uses the as <Type> notation to select a data type for each variable (as in Dim nContinue as Integer).
This is the clearest way to define a variable's type, but you can also use the type-definition character at
the name to shorten the command (as in Dim nContinue%).

The variable nContinue, which is used to determine if there has been an error in the login, is assigned a
value later in the macro.

The variable nTimeOut, which is used to halt the macro if there is no response from the host, is assigned
the value 180 using the simple assignment statement nTimeOut = 180, although the macro could have



SmarTerm Macro Guide

52

used the wordier Let nTimeOut = 180 method. As the comment preceding the assignment statement
indicates, a value of 180 equals three minutes, so this macro will wait three minutes for the host to
respond before automatically stopping. (Because this variable is used by the SmarTerm
Session.Stringwait object later in the macro, its value must be specified in seconds). This is the
default setting only. You can always edit the Session_Connect macro to shorten or lengthen the
timeout just by changing the value assigned to nTimeOut in this statement.

The next three commands define a variable of type object, assign that variable to the SmarTerm
Session.Lockstep object, and then send the Start command to that object. (For more about objects, see
Using SmarTerm’s objects 45.) The Session_Connect macro sets up a Session.Lockstep object to
ensure that SmarTerm and the host stay in sync with each other, so that SmarTerm always waits for
complete responses from the host before running the next macro commands. You do not have to use
this object to maintain synchrony, but it is by far the easiest way.

Next, the macro sets up a short While loop to wait for the initial host connection:
    While (Circuit.Connected = False)
    Wend

This command uses the SmarTerm Circuit object to test whether or not the initial host connection has
been made. (Again, SmarTerm objects are described in detail later in this chapter). This is done by
comparing the value of Circuit.Connected with the built-in constant False. As long as
Circuit.Connected = False, the initial connection has not been made and SmarTerm will just keep
making the comparison.

As soon as the connection has been made, SmarTerm sets Circuit.Connected to True and the While

loop ends. Notice that SmarTerm did not set a timeout for this loop. The initial host connection is
handled by the low-level drivers for the communication method, so the timeout cannot be changed by
the application.

Once the connection has been made, SmarTerm begins the section of the macro that handles the actual
login to the host. First the macro waits to get the Username prompt from the host (which it simply read
off the screen when the macro was recorded):

    ' Wait for response from host.
    Session.StringWait.Timeout = nTimeout
    Session.StringWait.MatchStringExact "Username: "
    if Session.StringWait.Start = smlWAITTIMEOUT then
        nContinue = QuerySyncError()
        if nContinue <> ebYes then End
   end if

This block first sets the length of time SmarTerm will wait for the Username prompt from the host by
setting the Timeout property of the SmarTerm Session.StringWait object to the value stored in
nTimeout earlier in the macro (180 seconds). Then it tells SmarTerm what host string to wait for by
sending the MatchStringExact "Username: " message to the SmarTerm Session.StringWait object.

Finally, the macro sets up an If loop to determine whether or not the host has sent the Username

prompt. If SmarTerm receives the Username prompt before the timeout expires, then the macro skips the
If loop and proceeds to the next section of the macro. If the timeout has expired, a messagebox appears
that indicates an out-of-sync error and asks if the user wants to continue (this error handler, the
QuerySyncError function, is defined as a separate subroutine after the end of the Session_Connect
subroutine). If the user clicks No, then the macro ends; if Yes, then the macro continues even though it
probably won't work anymore. This function is self-explanatory, so we will not go into it here.

If SmarTerm has received the Username prompt, it then sends the username typed in when the macro
was recorded, and then waits for the host to prompt for the password:



Creating Macros

53

     Session.Send "nguyenp" + chr(13)

     ' Wait for response from host.
     Session.StringWait.Timeout = nTimeout
     Session.StringWait.MatchStringExact "Password: "
     if Session.StringWait.Start = smlWAITTIMEOUT then
         nContinue = QuerySyncError()
         if nContinue <> ebYes then End
    end if

The macro sends the username by sending the Send message to the SmarTerm Session object. The
complete username is constructed as "nguyenp" + chr(13), which is the text typed by the user
concatenated with a carriage return (character 13 in the standard ASCII table). The loop that waits for
the password is exactly the same as the one that waits for the username, except that now the string the
macro waits for is "Password: ".

When SmarTerm receives the password, it calls the Session_Connect_PasswordHandler function, which
is defined at the bottom of the Session_Connect macro module. The call looks like this:

Session_Connect_PasswordHandler 1
Session.Send chr(13)

The actual Session_Connect_PasswordHandler subroutine differs from macro to macro depending on
whether you chose to save the Session_Connect macro in a secured or unsecured way. If you chose
secured, then the subroutine looks something like this:

Sub Session_Connect_PasswordHandler(i as Integer)
' This procedure is called to send a password to the host.
'
' You have chosen not to store passwords in your macro file, so
' this_ procedure prompts for a password.

        ' Wait for user to enter the password.
    Session.Send AskPassword$("Enter password:")
End Sub

This version of the subroutine displays a messagebox asking the user for a password. The user then
types in the password, which is displayed as a series of asterisks (*) in the dialog, then clicks OK (this
is the AskPassword$ function). The macro then uses Session.Send to send the password to the host.
There is no error handling at this point, however, so if the user types an incorrect password it’s up to
the host to deal with it.

If you chose to save the macro unsecured, the Session_Connect_PasswordHandler subroutine looks
something like this:

Sub Session_Connect_PasswordHandler(i as Integer)
' This procedure is called to send a password to the host.
' You have chosen to store passwords in your macro file, so this
' procedure simply sends the correct password.

    select case i
        case 1
            Session.Send "chaothay"
    end select

End Sub

In this case, as the comment observes, the macro simply sends the text you typed in when recording
the macro.



SmarTerm Macro Guide

54

The final line of the Session_Connect macro deals with the Session.Lockstep object created at the
very beginning of the macro:

Set LockStep = Nothing

This line destroys the Session.Lockstep object. This is important because, as the section in this chapter
on SmarTerm objects explains, you can have only one Session.Lockstep object per session. Destroying
the object as soon as you are finished using it ensures that the next time you need to maintain
synchrony between SmarTerm and the host there will be no residual data that might confuse the
situation.

Session_QueryClose macro
The Session_QueryClose session macro is a logout macro - a counterpart to Session_Connect. Its
purpose is to make it easy to customize SmarTerm behavior when an attempt is made to close a
session. For example, a system administrator could write a macro that reads the screen and verifies that
the user has just entered a logout command. If the user hasn’t, this macro could emit a warning
message, to remind the user to exit any host applications first, and then logout properly.

This macro can be written to test for certain conditions and affect the session close operation
accordingly, even canceling the close attempt altogether.

Below is an example of this macro as an empty shell, to illustrate its parameters:
Sub Session_QueryClose
 ....
[statements go here]
 ....
End Sub

Why macros, modules, and collectives
Although the macro-module-collective system may seem confusing at first, it can provide major
benefits in interoperation. That is to say, all of the macros in all of the modules participating in the
collective can share subroutines and data with each other. This allows you to reuse macros rather than
rewrite them, and lets you create more complex macros that interact with each other to produce more
sophisticated results.

Note:
The module called Other Macro File in the Tools>Macros dialog is a special case. This module,
while fully participating in the collective whenever one of its macros is running, withdraws from the
collective when its macros are not running. Macros that must participate in the collective at all times
should be placed in the user macro file.

To get a better idea of how this interoperation works, let’s consider an example. Suppose that you
want these steps to occur:

1. When you log onto the host, the Session_Connect macro sends your user name and password to the
host.

2. The host sends a line of text displaying a “virtual circuit number” corresponding to your connection.

3. Your login macro records the virtual circuit number (which must be supplied as a parameter to the
print spooler later on in the session) and stores it where a SmarTerm button macro can access it. This
requires a public or global variable – a variable whose value can be read and written by more than
one macro in the collective.



Creating Macros

55

4. A SmarTerm-button macro later gets the saved virtual circuit number and uses it in a print spooler
command sent to the host.

What follows is a simple example of this interoperation that assumes that you are not taking
advantage of macros. We can expand this example to show the power of shared macros in the
collective (see Possible improvements 93).

This example requires interoperation between two macros in the collective, the Session_Connect
macro and a macro embedded in a SmarTerm button. First let's look at the Session_Connect macro.
There are a number of ways in which you can create this macro. One way is to use the Tools>Macros
dialog to write it from scratch; another way is to record an actual login when you create the session
and then modify that recorded Session_Connect macro. If you record a login, you get the login macro
that we discussed earlier in this chapter.

At the top of the Session_Connect macro module, we define a public variable named VirtualCircuit

as follows:
Public VirtualCircuit as String

Sub Session_Connect
    '! This macro is run automatically when the session opens.
.
.
.
End Sub

The keyword Public identifies the variable as one available to all modules in the collective. This
keyword is actually optional; you could use Dim instead, and the macro compiler will assume that you
wanted the variable to be public. If you need a variable to be shared between macros in one module,
but invisible to macros in other modules in the collective, use the keyword Private instead.

Having defined VirtualCircuit as a public variable, we then set up the macro commands that read the
virtual circuit number off the screen. These commands go inside the Session_Connect macro since
right after logon is the only time that the host displays this information. However, the commands
should go before the command that destroys the Session.Lockstep object so that we can be sure that
SmarTerm and the host are in sync.

Sub Session_Connect
.
.
.
    Session_Connect_PasswordHandler 1
    Session.Send chr(13)

    ' Wait for response from host.
    Session.StringWait.Timeout = nTimeout
    Session.StringWait.MatchStringExact "Circuit Number: "
    if Session.StringWait.Start = smlWAITTIMEOUT then
        nContinue = QuerySyncError()
        if nContinue <> ebYes then End
    end if

    ' Read circuit number from screen. We assume a single digit.
    Session.Collect.MaxCharacterCount = 1
    Session.Collect.Start

    ' Now set VirtualCircuit to the number collected from host.
    VirtualCircuit = Session.Collect.CollectedCharacters

    Set LockStep = Nothing



SmarTerm Macro Guide

56

End Sub

This block of commands is really quite simple. First, we wait for the prompt "Circuit Number: "

exactly as we waited for the username and password prompts. Then we read a single digit from the
host using the SmarTerm object Session.Collect.

    ' Read circuit number from screen. We assume a single digit.
    Session.Collect.MaxCharacterCount = 1
    Session.Collect.Start

The Session.Collect object automatically stores a single character in the property
Session.Collect.Collected. Therefore, all we need to do to use the digit obtained is store it in the
public variable VirtualCircuit:

    ' Now set VirtualCircuit to the number collected from host.
    VirtualCircuit = Session.Collect.CollectedString

Now whenever you open this session and connect to the host, the Session_Connect macro always
creates a public variable called VirtualCircuit and stores the virtual circuit number obtained from the
host in it. That variable and the number stored in it are now available to all macros in the collective.
The only catch is that each module that needs to use a public variable declared in a different module
must also declare it as a public variable. For example, if you create a SmarTerm button that starts a
print spooler, sending the virtual circuit number obtained by the Session_Connect macro, the
following statement must appear at the top of the SmarTerm button macro's module. Then the print
spooler macro can send the number in the variable to the host print spooler:

Public VirtualCircuit as Integer

Sub CallPrintSpooler
    ! This macro runs the print spooler.
.
.
.
    Session.Send ViritualCircuit
.
.
.
End Sub



PROGRAMMING MACROS
This chapter describes how to:

• Use the Macro Editor

• Create the user interface for a macro

• Use SmarTerm objects

• Communicate with a host via macros

• Create compiled macro files

Using the macro editor
This section explains how to use the macro editor, a tool that enables you to edit and debug macros. It
begins with some general information about working with the Macro Editor and then discusses editing
your macros, running your macros to make sure they work properly, debugging them if necessary, and
exiting from the Macro Editor.

The macro editor window
To edit a macro, select Tools>Macros to see the macros dialog. Then either select an existing macro
file and macro and click Edit/Debug, or just enter a macro name and click Create to start editing a new
macro. The macro editor window then appears. It contains the following elements:

• Toolbar with buttons for controlling the macro editor

• Edit pane that contains the macro you are editing

• Status bar that displays the current location of the insertion point

• Watch pane that allows you to monitor the values of variables

Getting help
You can get online help for the macro editor and use of the macro language using the standard
Windows methods. In addition, you can get specific help on a keyword or a watch variable by placing
the insertion point within the text you have a question about and pressing F1.

Using the toolbar
The following list summarizes the buttons on the macro editor toolbar, which provide quick access to
the menu commands.

Edit>CutN
Cuts the selected text to the Clipboard.

Edit>Copy
Copies the selected text to the Clipboard.



SmarTerm Macro Guide

58

Edit>Paste
Pastes the contents of the Clipboard into the macro.

Edit>Undo
Undoes the last edit. Click multiple times to undo multiple edits.

Macro>Start
Runs the macro.

Break
Pauses the macro and points to the next line to be executed.

Macro>Stop
Stops running the macro.

Debug>Toggle Breakpoint
Adds or removes a breakpoint.

Debug>Add Watch
Opens the Add watch dialog.

Calls
Lists the procedures called by the macro. Available only when a running macro is paused.

Debug>Single Step
Executes the next line of a macro and then pauses. If the macro calls another macro procedure,
execution continues into each line of the called procedure.

Debug>Procedure Step
Executes the next line of a macro and then pauses. If the macro calls another macro procedure, the
compiler runs the called procedure in its entirety.

Using accelerators
The macro editor supports the Microsoft Office standard for common editing functions (such as Ctrl+C
and Ctrl+Insert to copy selected text to the clipboard). In addition, the macro editor provides the
following accelerator keys for commonly used commands.

Key(s) Commands

Ctrl+A Edit>Select All: Selects all text in the module.

Ctrl+Break Break (Pause).

Ctrl+F Edit>Find: Opens the Find dialog.

Ctrl+G (F4) Edit>Goto Line: Opens the Goto Line dialog.

Ctrl+K Macro>Check syntax.

Ctrl+Y Yank: Deletes the entire line containing the insertion.

Home Moves the insertion point to the beginning of the line.



Programming Macros

59

Key(s) Commands

Ctrl+Home Moves the insertion point to the beginning of the module.

PgDn Moves the insertion point down one windowful.

Ctrl+PgDn Moves the insertion point right one windowful.

PgUp Moves the insertion point up one windowful.

Ctrl+PgUp Moves the insertion point left one windowful.

Ctrl+Left arrow Moves the insertion point one word left.

Ctrl+Right arrow Moves the insertion point one word right.

End Moves the insertion point to the end of the line.

Ctrl+End Moves the insertion point to the end of the module.

Shift+navigation key Move the insertion point, selecting the intervening text. For
example, Shift+Ctrl+Left arrow selects the word to the left of the
insertion point.

Esc Deactivates the Help pointer if it is active. Otherwise, exits your
macro and returns you to the Tools>Macros dialog.

F2 During debugging, opens the Modify Variable dialog for the
selected watch variable in the watch pane. You can also double-
click the variable.

F3 Edit>Find Next.

F5 Macro>Run.

F6 Switches between the watch pane and the edit pane.

F8 Debug>Single Step.

Shift+F8 Debug>Procedure Step.

F9 Debug>Toggle breakpoint.

Shift+F9 Debug>Add watch.

Editing macros
In most respects, editing macro code with the macro editor is like editing regular text with a word-
processing program. However, the macro editor also has certain capabilities specifically designed to
help you edit macro code.

In this section you'll learn how to move around within macros, select and edit text, add comments,
break long macro statements across multiple lines, search for and replace text, and check the syntax.

Moving around in a macro
Like all text editors, the macro editor lets you move around in a macro with the cursor keys and the
mouse. However, the macro editor differs from most word-processing programs in that it allows you to
place the insertion point anywhere within your macro, including "empty space," such as a tab's



SmarTerm Macro Guide

60

expanded space or the area beyond the last character on a line. This feature allows you to place
comments anywhere in the macro file, so that you can place comments next to the relevant lines in the
macro. A corollary to this feature is that there is no automatic wordwrap in the macro editor.

In addition, there are several special movement commands. You can jump to:

• The start or end of the line with the Home and End keys.

• Any line in the macro file by selecting Edit>Goto line (Ctrl+G or F4) and typing in a line number.
This is particularly helpful if you receive a runtime error message that specifies the number of the
line containing the error.

• Up or down by windowfuls with PageUp and PageDown, and left or right by windowfuls with
Ctrl+PageUp and Ctrl+PageDown.

• To the top or bottom of the file containing the macro with Ctrl+Home and Ctrl+End. (Remember,
multiple macros can be stored in one macro file).

Color coding in macros
When you enter certain types of text in the macro editor, the text automatically appears in a
distinctive color. The default colors, which you can change, are:

• Blue for keywords

• Black for normal text

• Green for comments

• Red for breakpoints

Adding comments to macros
Comments are lines or portions of lines of macro code that are ignored when a macro runs. You can
add comments to macros to remind yourself or others of how your code works or to temporarily
disable blocks of code.

Comments are indicated with the keyword REM or with a single apostrophe ('), which causes the
compiler to ignore all following text until the next line. You can thus have a full-line comment by
beginning a line with REM or an apostrophe, or you can follow executable code with a comment on
the same line just by inserting :REM (the colon is required) or an apostrophe at the point where you
want the comment. Just remember that, although you can place a comment at the end of a line
containing executable code, you cannot place executable code at the end of a line containing a
comment.

You can also use C-style multiline comment blocks /*...*/, as follows:
Session.Echo "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
Session.Echo "After comment"

C-style comments can be nested.

Breaking a macro statement across multiple lines
By default, a single macro statement can extend only as far as the right margin, and each new line
constitutes a new statement. However, you can break a long statement across two or more lines with
the line-continuation character, the underscore (_). Any line that ends with a space followed by the
underscore character is combined with the next line and compiled as a unit.



Programming Macros

61

For the most part, long lines stitched together with underscores indicate weak design, and should be
avoided.

Searching and replacing
The macro editor makes it easy to search for specified text in your macro and automatically replace
instances of specified text. The Edit>Find command (Ctrl+F), Edit>Find Next command (F3), and
Edit>Replace command all work as you would expect in a text editor.

Checking the syntax of macros

When you try to run or debug a macro whose syntax hasn't been checked, the Macro Editor first
performs a syntax check automatically. You can also check the syntax of a macro whenever you please
with the Macro>Check syntax command (Ctrl+K). When you use this command, the macro editor
checks the syntax of the entire macro, stopping the check when it finds the first syntax error (if there
are any) and highlighting the line containing the error. You must correct the syntax error the macro
editor found before continuing to check the syntax or running the macro.

Debugging macros
This section explains how to use the macro debugger integrated with the macro editor to find and
correct errors in your macros. While debugging, you are actually executing the code in your macro
line by line. Therefore, to prevent any modifications to your macro while it is being run, the edit pane
is read-only during the debugging process. You are free to move the insertion point throughout the
macro, select text and copy it to the Clipboard, set breakpoints, and add and remove watch variables,
but you cannot make any changes to the macro code until you stop running it.

To let you follow and control the debugging process, the Macro Editor displays an instruction pointer
on the line of code that is about to be executed—that is, the line that will be executed next if you
either proceed with the debugging process or run your macro at full speed. When the instruction
pointer is on a line of code, the text on that line appears in black on a gray background that spans the
line. In the following illustration, the line beginning with the keyword Sub is marked with the
instruction pointer. As a comparison, the block of text that says .PushButton2 is shown with the
highlighting used to indicate selected text.

Tracing macro execution
The Macro Editor gives you two ways to trace macro execution—single step and procedure step—both
of which involve stepping through your macro code line by line. Single step simply traces through
every line in the macro, going into each subroutine called by the macro in complete detail. Procedure
step traces line by line through the code for the macro itself, but runs all of the subroutines called by



SmarTerm Macro Guide

62

the macro without showing the line-by-line detail. Single step is good for debugging relatively simple
macros that do not call very many subroutines. Use procedure step on macros that call subroutines you
have already debugged and do not need to see traced in detail.

Note:
Single-step doesn't work when a macro uses the SmarTerm Session.StringWait, Session.Collect, or
Session.EventWait objects to control the timing and flow of the macro. In such macros you must use
breakpoints instead.

To trace a macro:

1. Click the Single Step or Procedure Step button on the toolbar, or Press F8 (Single Step) or Shift+F8
(Procedure Step). The macro editor places the instruction pointer on the first line of the macro.

Note:
When you start a trace, there may be a slight pause before the trace actually begins while the macro
editor compiles your macro. If it finds errors during compilation, you will have to correct them before
you can continue debugging.

2. Repeat step 1 to run the marked line and then advance the instruction pointer to the next instruction.
Each time you repeat step 1, the macro editor runs the line containing the instruction pointer and then
moves to the next line.

3. When you finish tracing the macro, either select Macro>Start (F5 or the toolbar button) to run the rest
of the macro at full speed, or select Macro>End (or the toolbar button) to stop running the macro.

While you are stepping through a subroutine, you may need to determine the subroutine calls by
which you arrived at that point in the macro. You can do this with the Calls dialog.

To use the Calls dialog:

1. Click the Calls button on the toolbar. The Calls dialog appears, which lists the subroutine calls made
by your macro in the course of arriving at the current subroutine.

2. To view one of the subroutines listed in the Calls dialog, highlight it and click Show. The macro
editor then displays that subroutine, highlighting the currently running line. (Note, however, that the
instruction pointer remains in its original location in the subroutine.)

When you are stepping through a subroutine, you may want to repeat or skip execution of a section of
code. You can use the Set Next Statement command to move the instruction pointer to a specific line
within that subroutine.

Note:
You can only use the Set Next Statement command to move the instruction pointer within the same
subroutine.

To move the instruction pointer to another line within a subroutine:

1. Place the insertion point in the line where you want to resume stepping through the macro.

2. Select Debug>Set Next Statement. The instruction pointer moves to the line you selected, and you can
resume stepping through your macro from there.

Setting and removing breakpoints
If you are debugging a long, complicated macro, stepping through it line by line can be quite time-
consuming. An alternate strategy is to set one or more breakpoints at selected lines in your macro.



Programming Macros

63

Then, when you run the macro, it automatically pauses at each breakpoint, allowing you to examine
the code or step through the lines only where necessary

You can set breakpoints anywhere in a macro, but only breakpoints on lines that contain macro
commands, including lines in functions and subroutines are considered valid. (The macro editor beeps
if you set an invalid breakpoint.) When you compile and run the macro, invalid breakpoints are
automatically removed.

You can set breakpoints at any time while editing a macro or when a running macro has been paused.
For example, if you know that there are certain sections you want to debug, you can set all of the
breakpoints in the editor, and then run the macro to check the code at each breakpoint. Or, if the
macro doesn't seem to be working properly, you can use the Break command (Ctrl+Break) to pause the
macro, set a breakpoint, and then resume running the macro to move at full speed to the breakpoint.

To set a breakpoint:

1. Place the insertion point in the line where you want to start debugging.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).

Note:
You can set up to 255 breakpoints in a macro.

Invalid breakpoints are removed automatically when the macro is compiled and run. When you exit
the macro editor, all other breakpoints are also removed. You can also remove breakpoints manually.

To remove a single breakpoint:

1. Place the insertion point on the line containing the breakpoint that you want to remove.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).

To remove all breakpoints:

Exit the macro editor or select Debug>Clear All Breakpoints.

Using Watch variables
As you debug your macro, you can use the watch pane to monitor selected variables. For each variable
you select, the watch pane displays its context, name, and value. The values of the variables on the
watch list are updated each time you pause the macro with a breakpoint or with the Break command
(Ctrl+Break).

The Macro Editor permits you to monitor variables of fundamental data types, such as Integer, Long,
Variant, and so on; you cannot watch complex variables, such as user-defined types or arrays, or
expressions using arithmetic operators. You can, however, watch individual elements of user-defined
types or arrays using the following syntax:

[variable [(index,_)] [.member [(index,_)]]_]

where variable is the name of the user-defined type or array variable, index is a literal number, and
member is the name of a member of the user-defined type.

For example, the following are valid watch expressions:

Watch Variable Description

a(1) Element 1 of array a



SmarTerm Macro Guide

64

Watch Variable Description

person.age Member age of the user-defined type person

company(10,23).person.age Member age of user-defined type person that
is at element 10,23 within the array of user-
defined types called company

To add a watch variable:

1. It is most flexible to add watch variables when running the macro, so begin by select Macro>Start (F5
or the Start button), then press Ctrl-Break to pause the macro. Or, insert a breakpoint at an appropriate
location in the macro and then run it.

2. When the macro pauses, select Debug>Add Watch (Shift+F9 or the Add Watch button). The Add
Watch dialog appears.

3. In the Procedure box, select the name of the procedure containing the variable you want to watch. If
the variable you want to watch is global to the module, select “(All Procedures)”.

4. In the Variable box, select the name of the variable you want to add to the watch variable list.

5. In the Script box, type or select the name of the macro containing the variable you want to watch. If
you're creating a new name, don't include any spaces. If the variable you want to watch is global to
the collective, select “(All Scripts)”.

6. Click OK to add the variable to the watch variable list.

The context, name, and value of the variable appear in a three-column list in the watch pane at the top
of the macro editor window, along with any other variables you may have added during this editing
session.

To modify the value of a watch variable:

1. Highlight the variable in the watch pane and select Debug>Modify Watch (F2), or just double-click
the variable in the watch pane. The Modify Variable dialog appears.

2. Enter the new value for the variable in the Value field.

3. Click OK. The new value of your variable appears on the watch variable list.

When you change the value of a variable, the macro editor converts the value you enter to match the
type of the variable. For example, if you change the value of an Integer variable to 1.7, the macro
editor converts this value from a floating-point number to an Integer, assigning the value 2 to the
variable.



Programming Macros

65

When you modify a Variant variable, the macro editor determines both the type and value of your
entry using the following rules (in this order):

If the new value is Then

Null The Variant variable is assigned Null (VarType 1).

Empty The Variant variable is assigned Empty (VarType 0).

True The Variant variable is assigned True (VarType 11).

False The Variant variable is assigned False (VarType 11).

number The Variant variable is assigned the value of number. The type of the
variant is the smallest data type that fully represents that number. You
can force the data type of the variable by using a type-declaration
letter following number, such as %, #, &, !, or @.

date The Variant variable is assigned the value of the new date (VarType
7).

Anything else The Variant variable is assigned a String (VarType 8).

The Macro Editor will not assign a new value if it cannot be converted to the same type as the
specified variable.

To delete a watch variable:

1. Highlight the variable on the watch list.

2. Select Debug>Delete Watch or press the Delete key.

Creating Dialogs
Dialogs are created in two steps. First you define a dialog template that contains the definitions of the
types, sizes, placement, and so forth of all the elements of a dialog. Then you use macro commands to
create an instance of that dialog using the template you defined earlier in the macro.

To insert a new dialog template:

1. Place the insertion point where you want the new dialog template to appear in your macro. Bear in
mind that the scope rules outlined above for variables and subroutines apply to dialog templates as
well. If you want a dialog template to be available to all subroutines in a given macro file, define the
template at the top of the file. If you want the template to be private to a specific subroutine, define it
within that subroutine.

2. Select Edit>Insert New Dialog. The dialog editor appears, displaying a new dialog in its window.

3. Use the dialog editor to create the dialog.

4. Exit from the dialog editor and return to the macro editor.

The Macro Editor automatically places the new dialog template generated by Dialog Editor in your
macro at the location of the insertion point.

To edit an existing dialog template:

1. Select the lines of code that define the entire dialog template.



SmarTerm Macro Guide

66

2. Select Edit>Edit Dialog. The dialog editor appears, displaying a dialog created from the code you
selected.

3. Use the dialog editor to modify your dialog.

4. Exit from the dialog editor and return to the macro editor. The macro editor automatically replaces the
dialog template you originally selected with the revised template generated by Dialog Editor.

To capture a dialog from another application:

You can capture the standard Windows controls from any standard Windows dialog in another
application and insert those controls into the Dialog Editor for editing. Follow these steps:

1. Display the dialog you want to capture.

2. Open the Dialog Editor.

3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is
able to capture:

4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard
Windows controls from the target dialog.

Note:
The Dialog Editor only supports standard Windows controls and standard Windows dialogs. You
cannot capture custom dialogs or custom dialog controls.

Using the Dialog Editor
This section presents general information that will help you work most effectively with the Dialog
Editor. It includes an overview of the Dialog Editor as well as a list of accelerators and information on
using the Help system.

Before you begin creating a new custom dialog, the Dialog Editor looks like this:



Programming Macros

67

The application window contains the following elements:

Toolbar
A collection of buttons that you can use to provide instructions to the Dialog Editor, as discussed in
the following subsection.

Dialog
The visual layout of the dialog that you are currently creating or editing.

Status bar
Provides key information about the operation you are currently performing, including the name of the
currently selected control or dialog, together with its position on the display and its dimensions; the
name of a control you are about to add to the dialog with the mouse pointer, together with the
pointer's position on the display; the function of the currently selected menu command; and the
activation of the Dialog Editor's testing or capturing functions.

Note:
Dialogs created with the Dialog Editor normally appear in an 8 point Helvetica font, both in the
Dialog Editor's application window and when the corresponding macro code is run.

The Dialog Editor
Test Dialog
Runs the dialog for testing.

Information
Displays information for the selected control.

Cut
Removes the selected control from the dialog.

Copy
Copies the selected control to the clipboard.



SmarTerm Macro Guide

68

Paste
Inserts the clipboard into the active dialog.

Undo
Reverses the effect of the preceding editing change(s).

Select
Lets you select, move, and resize items and control the insertion point.

OK Button
Adds an OK button to your dialog.

Cancel Button
Adds a Cancel button to your dialog.

Help Button
Adds a Help button to your dialog.

Push Button
Adds a push button to your dialog.

Option Button
Adds an option button to your dialog.

Check Box
Adds a checkbox to your dialog.

Group Box
Adds a group box to your dialog.

Text
Adds a text control to your dialog.

Text Box
Adds a text box to your dialog.

Listbox
Adds a listbox to your dialog.

Combo Box
Adds a combo box to your dialog.

Drop List Box
Adds a drop-down listbox to your dialog.

Picture
Adds a picture to your dialog.

Picture Button
Adds a picture button to your dialog.

For more information, select Help.

Accelerators for the Dialog Editor



Programming Macros

69

Key(s) Function

Alt+F4 Closes the Dialog Editor.

Ctrl+C Copies the selected dialog or control and places it on the Clipboard.

Ctrl+D Creates a duplicate of the selected control.

Ctrl+G Displays the Grid dialog.

Ctrl+I Displays the Information dialog for the selected dialog or control.

Ctrl+V Inserts the contents of the Clipboard into the Dialog Editor. If the Clipboard
contains macro statements describing one or more controls, then the Dialog
Editor adds those controls to the current dialog. If the Clipboard contains the
template for an entire dialog, then the Dialog Editor creates a new dialog from
the statements in the template.

Ctrl+X Removes the selected dialog or control and places it on the Clipboard.

Ctrl+Z Undoes the preceding operation.

Del Removes the selected dialog or control.

F1 Displays Help for the active window.

F2 Sizes certain controls to fit the text they contain.

F5 Runs the dialog for testing.

Shift+F1 Toggles the Help pointer.

Creating a Custom Dialog
This section describes the types of controls that the Dialog Editor supports. It also explains how to
create controls and initially position them within your dialog, and offers some pointers on creating
controls efficiently.

In the next section, Editing a Custom Dialog, you'll learn how to make various types of changes to the
controls that you've created—moving and resizing them, assigning labels and accelerator keys, and so
forth.

Types of Controls



SmarTerm Macro Guide

70

The Dialog Editor supports the following types of standard Windows controls:

Push button
A command button. The OK, Cancel, and Help buttons are special types of push buttons.

Option button
One of a group of two or more linked buttons that let users select only one from a group of mutually
exclusive choices. A group of option buttons works the same way as the buttons on a car radio:
because the buttons operate together as a group, clicking an unselected button in the group selects that
button and automatically deselects the previously selected button in that group.

Checkbox
A box that users can check or clear to indicate their preference regarding the alternative specified on
the checkbox label.

Group box
A rectangular design element used to enclose a group of related controls. You can use the optional
group box label to display a title for the controls in the box.

Text
A field containing text that you want to display for the users' information. The text in this field wraps,
and the field can contain a maximum of 255 characters. Text controls can either display stand-alone
text or be used as labels for text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and
picture buttons. You can choose the font in which the text appears.

Text box
A field into which users can enter text (potentially, as much as 32K). By default, this field holds a
single line of nonwrapping text. If you choose the Multiline setting in the Text Box Information
dialog, this field will hold multiple lines of wrapping text.

Listbox
A displayed, scrollable list from which users can select one item. The currently selected item is
highlighted on the list.

Combo box
A text field with a displayed, scrollable list beneath it. Users can either select an item from the list or
enter the name of the desired item in the text field. The currently selected item is displayed in the text
field. If the item was selected from the scrolling list, it is highlighted there as well.

Drop-down listbox
A field that displays the currently selected item, followed by a downward-pointing arrow, which users
can click to temporarily display a scrolling list of items. Once they select an item from the list, the list
disappears and the newly selected item is displayed in the field.

Picture
A field used to display a Windows bitmap or metafile.

Picture button
A special type of push, or command, button on which a Windows bitmap or metafile appears.

Note:
Group boxes, text controls, and pictures are passive elements in a dialog, inasmuch as they are used
purely for decorative or informative purposes. Users cannot act upon these controls, and when they



Programming Macros

71

tab through the dialog, the focus skips over these controls. You can obtain a Windows bitmap or
metafile from a file or from a specified library.

Adding Controls to a Dialog
This section explains how to create controls and determine approximately where they first appear
within your dialog. The next section explains how to determine the positioning of controls more
precisely. Follow these steps:

1. From the toolbar, choose the button corresponding to the type of control you want to add.

When you pass the mouse pointer over an area of the display where a control can be placed, the
pointer becomes an image of the selected control with crosshairs (for positioning purposes) to its upper
left. The name and position of the selected control appear on the status bar. When you pass the pointer
over an area of the display where a control cannot be placed, the pointer changes into a circle with a
slash through it (the "prohibited" symbol).

Note:
You can only insert a control within the borders of the dialog you are creating. You cannot insert a
control on the dialog's title bar or outside its borders.

2. Place the pointer where you want the control to be positioned and click the mouse button.

The control you just created appears at the specified location. (To be more specific, the upper left
corner of the control will correspond to the position of the pointer's crosshairs at the moment you
clicked the mouse button.) The control is surrounded by a thick frame, which means that it is selected,
and it may also have a default label.

After the new control has appeared, the mouse pointer becomes an arrow, to indicate that the toolbar
Pick button is active and you can once again select any of the controls in your dialog.

3. To add another control of the same type as the one you just added, press Ctrl+D.

A duplicate copy of the control appears.

4. To add a different type of control, repeat steps 1 and 2.

5. To reactivate the toolbar Pick button, click the toolbar arrow-shaped button.Or, place the mouse
pointer on the title bar of the dialog or outside the borders of the dialog (that is, on any area where the
mouse pointer turns into the "prohibited" symbol) and click the mouse button.

As you plan your dialog, keep in mind that a single dialog can contain no more than 255 controls and
that a dialog will not operate properly unless it contains either an OK button, a Cancel button, a push
button, or a picture button. (When you create a new custom dialog, an OK button and a Cancel button
are provided for you by default.)

Using the Grid to Help You Position Controls within a Dialog
The preceding subsection explained how to determine approximately where a newly created control
will materialize in your dialog. Here, you'll learn how to use the Dialog Editor's grid to help you fine-
tune the initial placement of controls.

The area of your dialog in which controls can be placed (that is, the portion of the dialog below the
title bar) can be thought of as a grid, with the X (horizontal) axis and the Y (vertical) axis intersecting
in the upper left corner (the 0, 0 coordinates). The position of controls can be expressed in terms of X
units with respect to the left border of this area and in terms of Y units with respect to the top border.



SmarTerm Macro Guide

72

(In fact, the position of controls is expressed in this manner within the dialog template that you
produce by working with the Dialog Editor.)

Follow these steps:

1. Press Ctrl+G. The following dialog appears:

2. To see the grid in your dialog, select the Show Grid checkbox.

3. To change the current X and Y settings, enter new values in the X and Y fields.

Note:
The values of X and Y in the Grid dialog determine the grid's spacing. Assigning smaller X and Y
values produces a more closely spaced grid, which enables you to move the mouse pointer in smaller
horizontal and vertical increments as you position controls. Assigning larger X and Y values
produces the opposite effect on both the grid's spacing and the movement of the mouse pointer. The
X and Y settings entered in the Grid dialog remain in effect regardless of whether you choose to
display the grid.

4. Click OK or press Enter.

The Dialog Editor displays the grid with the settings you specified. With the grid displayed, you can
line up the crosshairs on the mouse pointer with the dots on the grid to position controls precisely and
align them with respect to other controls.

As you move the mouse pointer over the dialog after you have chosen a control button from the
toolbar, the status bar displays the name of the type of control you have selected and continually
updates the position of the mouse pointer in X and Y units. (This information disappears if you move
the mouse pointer over an area of the screen where a control cannot be placed.) After you click the
mouse button to add a control, that control remains selected, and the status bar displays the control's
width and height in dialog units as well as its name and position.

Note:
Dialog units represent increments of the font in which the Dialog Editor creates dialogs (namely, 8
point Helvetica). Each X unit represents an increment equal to 1/4 of that font, and each Y unit
represents an increment equal to 1/8 of that font.

Creating Controls Efficiently
Creating dialog controls in random order might seem like the fastest approach. However, the order in
which you create controls has some important implications, so a little advance planning can save you
a lot of work in the long run.

Here are several points about creating controls that you should keep in mind:

Tabbing order
Users can select dialog controls by tabbing from one control to the next. The order in which you
create the controls is what determines the tabbing order. The closer you can come to creating controls



Programming Macros

73

in the order in which you want them to receive the tabbing focus, the fewer tabbing-order adjustments
you'll have to make later on.

Option button grouping
If you want a series of option buttons to work together as a mutually exclusive group, you must create
all the buttons in that group one right after the other, in an unbroken sequence. If you get sidetracked
and create a different type of control before you have finished creating all the option buttons in your
group, you'll split the buttons into two (or more) separate groups.

Accelerator keys
You can provide easy access to a text box, listbox, combo box, or drop-down listbox by assigning an
accelerator key to an associated text control, and you can provide easy access to the controls in a
group box by assigning an accelerator key to the group box label. To do this, you must create the text
control or group box first, followed immediately by the controls that you want to associate with it. If
the controls are not created in the correct order, they will not be associated in your dialog template,
and any accelerator key you assign to the text control or group box label will not work properly.

If you don't create controls in the most efficient order, the resulting problems with tabbing order,
option button grouping, and accelerator keys usually won't become apparent until you test your
dialog. Although you can still fix these problems at that point, it will definitely be more cumbersome.
In short, it's easier to prevent (or at least minimize) problems of this sort than to fix them after the fact.

Editing a Custom Dialog
In the preceding section, you learned how to create controls and determine where they initially appear
within your dialog. In this section, you'll learn how to make changes to both the dialog and the
controls in it. The following topics are included:

• Selecting items so that you can work with them

• Using the Information dialog to check and/or change various attributes of items

• Changing the position and size of items

• Changing titles and labels

• Assigning accelerator keys

• Specifying pictures

• Creating or modifying picture libraries under Windows

• Duplicating and deleting controls

• Undoing editing operations

Selecting Items
In order to edit a dialog or a control, you must first select it. When you select an item, it becomes
surrounded by a thick frame, as you saw in the preceding section.

To select a control:

• With the toolbar Pick button active, place the mouse pointer on the desired control and click the
mouse button.

Or



SmarTerm Macro Guide

74

• With the Toolbar Pick button active, press the Tab key repeatedly until the focus moves to the
desired control.

The control is now surrounded by a thick frame to indicate that it is selected and you can edit it.

To select the dialog:

• With the Toolbar Pick button active, place the mouse pointer on the title bar of the dialog or on an
empty area within the borders of the dialog (that is, on an area where there are no controls) and
click the mouse button.

Or

• With the Toolbar Pick button active, press the Tab key repeatedly until the focus moves to the
dialog.

The dialog is now surrounded by a thick frame to indicate that it is selected and you can edit it.

Using the Information Dialog
The Information dialog enables you to check and adjust various attributes of controls and dialogs. This
subsection explains how to display the Information dialog and provides an overview of the attributes
with which it lets you work. In the following subsections, you'll learn more about how to use the
Information dialog to make changes to your dialog and its controls.

To see the Information dialog for a dialog:

• With the Toolbar Pick button active, place the mouse pointer on an area of the dialog where there
are no controls and double-click the mouse button.

Or

• With the Toolbar Pick button active, select the dialog and either click the toolbar Information
button, press Enter, or press Ctrl+I. The following dialog appears:

To display the Information dialog for a control:

• With the Toolbar Pick button active, place the mouse pointer on the desired control and double-
click the mouse button.

Or

• With the Toolbar Pick button active, select the control and either click the toolbar Information
button, press Enter, or press Ctrl+I.

The Information dialog corresponding to the control you selected appears:



Programming Macros

75

The following lists show the attributes that you can change with the Dialog Information and
Information dialogs for the various controls. In some cases (specified below), it's mandatory to fill in
the fields in which the attributes are specified—that is, you must either leave the default information
in these fields or replace it with more meaningful information, but you can't leave the fields empty. In
other cases, filling in these fields is optional.

Note:
A quick way to determine whether it's mandatory to fill in a particular Information dialog field is to
see whether the OK button becomes grayed out when you delete the information in that field. If it
does, then you must fill in that field.

In many cases, you could simply leave the generic-sounding default information in the Information
dialog fields and worry about replacing it with more meaningful information after you paste the dialog
template into your macro. However, if you take a few moments to replace the default information with
something specific when you first create your dialog, not only will you save yourself some work later
on but you may also find that your changes make the code produced by the Dialog Editor more
readily comprehensible and thus easier to work with.

Dialog Attributes

Mandatory/
Optional

Attribute

Optional Position: X and Y coordinates on the display, in dialog units

Mandatory Size: width and height of the dialog, in dialog units

Optional Style: options that allow you to determine whether the close box
and title bar are displayed

Optional Text$: text displayed on the title bar of the dialog

Mandatory Name: name by which you refer to this dialog template in your code

Optional .Function: name of a function in your dialog

Optional Picture Library: picture library from which one or more pictures in
the dialog are obtained

Control Attributes



SmarTerm Macro Guide

76

Mandatory/ Optional Control(s) Affected Attribute

Mandatory All controls Position: X and Y coordinates within the
dialog, in dialog units

Mandatory All controls Size: width and height of the control, in
dialog units

Optional Push button, option
button, checkbox,
group box, and text

Text$: text displayed on a control

Optional Help button FileName$: name of the help file invoked
when the user clicks this button

Optional Text Font: font in which text is displayed

Optional Text box Multiline: option that allows you to
determine whether users can enter a single
line of text or multiple lines

Optional OK button, Cancel
button, push button,
option button, group
box, and text

.Identifier: name by which you refer to a
control in your code

Mandatory Checkbox, text box,
listbox, combo box,
drop-down listbox,
and help button

.Identifier: name by which you refer to a
control in your code; also contains the
result of the control after the dialog has
been processed

Optional Picture, picture button .Identifier: name of the file containing a
picture that you want to display or the
name of a picture that you want to display
from a specified picture library

Optional Picture Frame: option that allows you to display
a 3-D frame

Mandatory Listbox, combo box,
and drop-down listbox

Array$: name of an array variable in your
code

Mandatory Option button .Option Group: name by which you refer
to a group of option buttons in your code

Position and Size
This section explains how the Dialog Editor helps you keep track of the location and dimensions of
dialogs and controls, and presents several ways to move and resize these items.

Keeping Track of Position and Size
The Dialog Editor's display can be thought of as a grid, in which the X (horizontal) axis and the Y
(vertical) axis intersect in the upper left corner of the display (the 0, 0 coordinates). The position of the
dialog you are creating can be expressed in terms of X units with respect to the left border of the
parent window and in terms of Y units with respect to the top border.



Programming Macros

77

When you select a dialog or control, the status bar displays its position in X and Y units as well as its
width and height in dialog units. Each time you move or resize an item, the corresponding information
on the status bar is updated. You can use this information to position and size items more precisely.

The Dialog Editor provides several ways to reposition dialogs and controls.

To reposition an item with the mouse:

1. With the Toolbar Pick button active, place the mouse pointer on an empty area of the dialog or on a
control.

2. Click the mouse button and drag the dialog or control to the desired location.

Note:
The increments by which you can move a control with the mouse are governed by the grid setting.
For example, if the grid's X setting is 4 and its Y setting is 6, you'll be able to move the control
horizontally only in increments of 4 X units and vertically only in increments of 6 Y units. This
feature is handy if you're trying to align controls in your dialog. If you want to move controls in
smaller or larger increments, press Ctrl+G to display the Grid dialog and adjust the X and Y settings.

To reposition an item with the arrow keys:

1. Select the dialog or control that you want to move.

2. Press an arrow key once to move the item by 1 X or Y unit in the desired direction. Or, click an arrow
key to "nudge" the item steadily along in the desired direction.

Note:
When you reposition an item with the arrow keys, a faint, partial afterimage of the item may remain
visible in the item's original position. These afterimages are rare and will disappear once you test
your dialog.

To reposition a dialog with the Information dialog:

1. Display the Information dialog.

2. Change the X and Y coordinates in the Position group box. Or, leave the X and/or Y coordinates
blank.

3. Click OK or press Enter.

If you specified X and Y coordinates, the dialog moves to that position. If you left the X coordinate
blank, the dialog will be centered horizontally relative to the parent window of the dialog when the
dialog is run. If you left the Y coordinate blank, the dialog will be centered vertically relative to the
parent window of the dialog when the dialog is run.

To reposition a control with the Information dialog:

1. Display the Information dialog for the control that you want to move.

2. Change the X and Y coordinates in the Position group box.

3. Click OK or press Enter.

The control moves to the specified position.

Note:
When you move a dialog or control with the arrow keys or with the Information dialog, the item's



SmarTerm Macro Guide

78

movement is not restricted to the increments specified in the grid setting. When you attempt to test a
dialog containing hidden controls (i.e., controls positioned entirely outside the current borders of
your dialog), the Dialog Editor displays a message advising you that there are controls outside the
dialog's borders and asks whether you wish to proceed with the test. If you proceed, the hidden
controls will be disabled for testing purposes. (Testing dialogs is discussed later in the chapter.)

Dialogs and controls can be resized either by directly manipulating them with the mouse or by using
the Information dialog. Certain controls can also be resized automatically to fit the text displayed on
them.

To resize an item with the mouse:

1. With the Toolbar Pick button active, select the dialog or control that you want to resize.

2. Place the mouse pointer over a border or corner of the item.

3. Click the mouse button and drag the border or corner until the item reaches the desired size.

To resize an item with the Information dialog:

1. Display the Information dialog for the dialog or control that you want to resize.

2. Change the Width and Height settings in the Size group box.

3. Click OK or press Enter.

The dialog or control is resized to the dimensions you specified.

To resize selected controls automatically:

1. With the Toolbar Pick button active, select the option button, text control, push button, checkbox, or
text box that you want to resize.

2. Press F2. The borders of the control expand or contract to fit the text displayed on it.

Note:
Windows metafiles always expand or contract proportionally to fit within the picture control or
picture button control containing them. In contrast, Windows bitmaps are of a fixed size. If you place
a bitmap in a control that is smaller than the bitmap, the bitmap is clipped off on the right and
bottom. If you place a bitmap in a control that is larger than the bitmap, the bitmap is centered
within the borders of the control. Picture controls and picture button controls must be resized
manually.

Changing Titles and Labels
By default, when you begin creating a dialog, its title reads "Untitled," and when you first create
group boxes, option buttons, push buttons, text controls, and checkboxes, they have generic-sounding
default labels, such as "Group Box" and "Option Button."

To change a dialog title or a control label:

1. Display the Information dialog for the dialog whose title you want to change or for the control whose
label you want to change.

2. Enter the new title or label in the Text$ field.

Note:
Dialog titles and control labels are optional. Therefore, you can leave the Text$ field blank.



Programming Macros

79

3. If the information in the Text$ field should be interpreted as a variable name rather than a literal
string, select the Variable Name checkbox.

4. Click OK or press Enter. The new title or label appears on the title bar or on the control.

Although OK and Cancel buttons also have labels, you cannot change them. The remaining controls
(text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and picture buttons) don't have
their own labels, but you can position a text control above or beside these controls to serve as a de
facto label for them.

Assigning Accelerator Keys
Accelerator keys enable users to access dialog controls simply by pressing Alt plus a specified letter.
Users can employ accelerator keys to choose a push button or an option button; toggle a checkbox on
or off; and move the insertion point into a text box or group box or to the currently selected item in a
listbox, combo box, or drop-down listbox.

An accelerator key is essentially a single letter that you designate for this purpose from a control's
label. You can assign an accelerator key directly to controls that have their own label (option buttons,
push buttons, checkboxes, and group boxes). (You can't assign an accelerator key to OK and Cancel
buttons because, as noted above, their labels can't be edited.) You can create a de facto accelerator key
for certain controls that don't have their own labels (text boxes, listboxes, combo boxes, and drop-
down listboxes) by assigning an accelerator key to an associated text control.

To assign an accelerator key:

1. Display the Information dialog for the control to which you want to assign an accelerator key.

2. In the Text$ field, type an ampersand (&) before the letter you want to designate as the accelerator
key.

3. Click OK or press Enter.

The letter you designated is now underlined on the control's label, and users will be able to access the
control by pressing Alt plus the underlined letter.

Note:
Accelerator key assignments must be unique within a particular dialog. If you attempt to assign the
same accelerator key to more than one control, the Dialog Editor displays a reminder that letter has
already been assigned.

If, for example, you have a push button whose label reads Apply, you can designate A as the accelerator
key by displaying the Push Button Information dialog and typing &Apply in the Text$ field. When
you press Enter, the button label says Apply, and users will be able to choose the button by pressing
Alt+A.

Note:
In order for such a default accelerator key to work properly, the text control or group box label to
which you assign the accelerator key must be associated with the control(s) to which you want to
provide user access. That is, in the dialog template, the description of the text control or group box
must immediately precede the description of the control(s) that you want associated with it. The
simplest way to establish such an association is to create the text control or group box first, followed
immediately by the associated control(s).



SmarTerm Macro Guide

80

Specifying Pictures
In the preceding section, you learned how to add picture controls and picture button controls to your
dialog. But these controls are nothing more than empty outlines until you specify the pictures that you
want them to display.

A picture control or picture button control can display a Windows bitmap or metafile, which you can
obtain from a file or from a specified library. (Refer to the following subsection for information on
creating or modifying picture libraries under Windows.)

To specify a picture from a file:

1. Display the Information dialog for the picture control or picture button control whose picture you
want to specify.

2. In the Picture source option button group, select File.

3. In the Name$ field, enter the name of the file containing the picture you want to display in the picture
control or picture button control.

Note:
Click Browse to see the Select a Picture File dialog and use it to find the file.

4. Click OK or press Enter. The picture control or picture button control now displays the picture you
specified.

To specify a picture from a picture library:

1. Display the Information dialog.

2. In the Picture Library field, specify the name of the picture library that contains the picture(s) you
want to display in your dialog.

Note:
Click Browse to see the Select a Picture Library dialog and use it to find the file. If you specify a
picture library in the Information dialog, all the pictures in your dialog must come from this library.

3. Click OK or press Enter.

4. Display the Information dialog for the picture control or picture button control whose picture you
want to specify.

5. In the Picture source option button group, select Library.

6. In the Name$ field, enter the name of the picture you want to display on the picture control or picture
button control. (This picture must be from the library that you specified in step 2.)

7. Click OK button or Enter. The picture control or picture button control now displays the picture you
specified.

Creating or Modifying Picture Libraries under Windows
The Picture statement allows images to be specified as individual picture files or as members of a
picture library, which is a DLL that contains a collection of pictures. Both Windows bitmaps and
metafiles are supported. You can obtain a picture library either by creating a new one or by modifying
an existing one, as described below.

Each image is placed into the DLL as a resource identified by its unique resource identifier. This
identifier is the name used in the Picture statement to specify the image.

The following resource types are supported in picture libraries:



Programming Macros

81

Resource Type Description

2 Bitmap. This is defined in windows.h as RT_BITMAP.

256 Metafile. Since there is no resource type for metafiles, 256 is
used.

To create a picture library under Windows:

1. Create a C file containing the minimal code required to establish a DLL. The following code can be
used:

#include <windows.h>
int CALLBACK LibMain(
HINSTANCE hInstance,
WORD wDataSeg,
WORD wHeapSz,
LPSTR lpCmdLine) {
UnlockData(0);
return 1;
}

2. Use the following code to create a DEF file for your picture library:
LIBRARY
DESCRIPTION "My Picture Library"
EXETYPE WINDOWS
CODE LOADONCALL MOVABLE DISCARDABLE
DATA PRELOAD MOVABLE SINGLE
HEAPSIZE 1024

3. Create a resource file containing your images. The following example shows a resource file using a
bitmap called sample.bmp and a metafile called usa.wmf.

#define METAFILE 256
USA METAFILE "usa.wmf"
MySample BITMAP "sample.bmp"

4. Create a make file that compiles your C module, creates the resource file, and links everything
together.

To modify an existing picture library:

1. Make a copy of the picture library you want to modify.

2. Modify the copy by adding images using a resource editor such as Borland's Resource Workshop or
Microsoft's App Studio.

Note:
When you use a resource editor, you need to create a new resource type for metafiles (with the value
256).

Duplicating Controls
1. Select the control that you want to duplicate.

2. Press Ctrl+D. A duplicate copy of the selected control appears in your dialog.

3. Repeat step 2 as many times as necessary to create the desired number of duplicate controls.



SmarTerm Macro Guide

82

Duplicating is a particularly efficient approach if you need to create a group of controls, such as a
series of option buttons or checkboxes. Simply create the first control in the group and then, while the
newly created control remains selected, repeatedly press Ctrl+D until you have created the necessary
number of copies.

The Dialog Editor also enables you to delete single controls or even clear the entire dialog.

Deleting Controls
To delete a single control:

1. Select the control you want to delete.

2. Press Del.

The selected control is removed from your dialog.

To delete all the controls in a dialog:

1. Select the dialog.

2. Press Del.

3. If the dialog contains more than one control, the Dialog Editor prompts you to confirm that you want
to delete all controls. Click the Yes button or press Enter.

All the controls disappear, but the dialog's title bar and close box (if displayed) remain unchanged.

Undoing Editing Operations
You can undo editing operations that produce a change in your dialog, including:

• The addition of a control

• The insertion of one or more controls from the Clipboard

• The deletion of a control

• Changes made to a control or dialog, either with the mouse or with the Information dialog

You cannot undo operations that don't produce any change in your dialog, such as selecting controls
or dialogs and copying material to the Clipboard.

To undo an editing operation:

• Press Ctrl+Z.

Your dialog is restored to the way it was before you performed the editing operation.

Editing an Existing Dialog
There are three ways to edit an existing dialog:

• You can copy the template of the dialog you want to edit from a macro to the Clipboard and paste
it into the Dialog Editor.

• You can use the capture feature to "grab" an existing dialog from another application and insert a
copy of it into the Dialog Editor.

• You can open a dialog template file that has been saved on a disk. Once you have the dialog
displayed in the Dialog Editor's application window, you can edit it using the methods described
earlier in the chapter.



Programming Macros

83

Pasting an Existing Dialog into the Dialog Editor
You can use the Dialog Editor to modify the macro statements that correspond to an entire dialog or
to one or more dialog controls.

If you want to modify a dialog template contained in your macro, here's how to select the template
and paste it into the Dialog Editor for editing.

To paste an existing dialog into the Dialog Editor:

1. Copy the entire dialog template (from the Begin Dialog instruction to the End Dialog instruction) from
your macro to the Clipboard.

2. Open the Dialog Editor.

3. Press Ctrl+V.

4. When the Dialog Editor asks whether you want to replace the existing dialog, click the Yes button.

The Dialog Editor creates a new dialog corresponding to the template contained on the Clipboard.

If you want to modify the macro statements that correspond to one or more dialog controls, here's how
to select the statements and paste them into the Dialog Editor for editing.

To paste one or more controls from an existing dialog into the Dialog Editor:

1. Copy the description of the control(s) from your macro to the Clipboard.

2. Open the Dialog Editor.

3. Press Ctrl+V.

The Dialog Editor adds to your current dialog one or more controls corresponding to the description
contained on the Clipboard.

Note:
When you paste a dialog template into the Dialog Editor, the tabbing order of the controls is
determined by the order in which the controls are described in the template. When you paste one or
more controls into the Dialog Editor, they will come last in the tabbing order, following the controls
that are already present in the current dialog.

If there are any errors in the statements that describe the dialog or controls, the Dialog Translation
Errors dialog will appear when you attempt to paste these statements into the Dialog Editor. This
dialog shows the lines of code containing the errors and provides a brief description of the nature of
each error.

Capturing a Dialog
Here's how to capture the standard Windows controls from any standard Windows dialog in another
application and insert those controls into the Dialog Editor for editing.

To capture an existing standard Windows dialog:

1. Display the dialog you want to capture.

2. Open the Dialog Editor.

3. Select File>Capture Dialog. The Dialog Editor displays a dialog that lists all open dialogs that it is
able to capture:



SmarTerm Macro Guide

84

4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard
Windows controls from the target dialog.

Note:
The Dialog Editor only supports standard Windows controls and standard Windows dialogs.
Therefore, if the target dialog contains both standard Windows controls and custom controls, only
the standard Windows controls will appear in the Dialog Editor's application window. If the target
dialog is not a standard Windows dialog, you will be unable to capture the dialog or any of its
controls.

Opening a Dialog Template File
Here's how to open any dialog template file that has been saved on a disk so you can edit the template
in the Dialog Editor.

To open a dialog template file:

1. Select File>Open. The Open Dialog File dialog appears.

2. Select the file containing the dialog template that you want to edit and click the OK button.

The Dialog Editor creates a dialog from the statements in the template and displays it in the
application window.

Note:
If there are any errors in the statements that describe the dialog, the Dialog Translation Errors dialog
will appear when you attempt to load the file into the Dialog Editor. This dialog shows the lines of
code containing the errors and provides a brief description of the nature of each error.

Testing a Dialog
The Dialog Editor lets you run your edited dialog for testing purposes. When you click the toolbar
Test Dialog button, your dialog comes alive, which gives you an opportunity to make sure it functions
properly and fix any problems before you incorporate the dialog template into your macro.

Before you run your dialog, take a moment to look it over for basic problems such as the following:

• Does the dialog contain a command button—that is, a default OK or Cancel button, a push button,
or a picture button?

• Does the dialog contain all the necessary push buttons?

• Does the dialog contain a Help button if one is needed?

• Are the controls aligned and sized properly?

• If there is a text control, is its font set properly?

• Are the close box and title bar displayed (or hidden) as you intended?



Programming Macros

85

• Are the control labels and dialog title spelled and capitalized correctly?

• Do all the controls fit within the borders of the dialog?

• Could you improve the design of the dialog by adding one or more group boxes to set off groups of
related controls?

• Could you clarify the purpose of any unlabeled control (such as a text box, listbox, combo box,
drop-down listbox, picture, or picture button) by adding a text control to serve as a de facto label
for it?

• Have you made all the necessary accelerator key assignments?

After you've fixed any elementary problems, you're ready to run your dialog so you can check for
problems that don't become apparent until a dialog is activated.

Testing your dialog is an iterative process that involves running the dialog to see how well it works,
identifying problems, stopping the test and fixing those problems, then running the dialog again to
make sure the problems are fixed and to identify any additional problems, and so forth—until the
dialog functions the way you intend. Here's how to test your dialog and fine-tune its performance.

To test your dialog:

1. Click the toolbar Test Dialog button or press F5. The dialog becomes operational, and you can check
how it functions.

2. To stop the test, click the toolbar Test Dialog button, press F5, or double-click the dialog's close box
(if it has one).

3. Make any necessary adjustments to the dialog.

4. Repeat steps 1–3 as many times as you need in order to get the dialog working properly.

When testing a dialog, you can check for operational problems such as the following:

Tabbing order
When you press the Tab key, does the focus move through the controls in a logical order? (Remember,
the focus skips over items that users cannot act upon, including group boxes, text controls, and
pictures.)

When you paste controls into your dialog, the Dialog Editor places their descriptions at the end of
your dialog template, in the order in which you paste them in. Therefore, you can use a simple cut-
and-paste technique to adjust the tabbing order. First, click the toolbar Test Dialog button to end the
test and then, proceeding in the order in which you want the controls to receive the focus, select each
control, cut it from the dialog (by pressing Ctrl+X), and immediately paste it back in again (by
pressing Ctrl+V). The controls will now appear in the desired order in your template and will receive
the tabbing focus in that order.

Option button grouping
Are the option buttons grouped correctly? Does selecting an unselected button in a group
automatically deselect the previously selected button in that group?

To merge two groups of option buttons into a single group, click the toolbar Test Dialog button to
end the test and then use the Option Button Information dialog to assign the same .Option Group
name for all the buttons that you want included in that group.



SmarTerm Macro Guide

86

Text box functioning
Can you enter only a single line of nonwrapping text, or can you enter multiple lines of wrapping
text?

If the text box doesn't behave the way you intended, click the toolbar Test Dialog button to end the
test; then display the Text Box Information dialog and select or clear the Multiline checkbox.

Accelerator keys
If you have assigned an accelerator key to a text control or group box in order to provide user access
to a text box, listbox, combo box, drop-down listbox, or group box, do the accelerator keys work
properly? That is, if you press Alt + the designated accelerator key, does the insertion point move into
the text box or group box or to the currently selected item in the listbox, combo box, or drop-down
listbox?

If the accelerator key doesn't work properly, it means that the text box, listbox, combo box, drop-down
listbox, or group box is not associated with the text control or group box to which you assigned the
accelerator key—that is, in your dialog template, the description of the text control or group box does
not immediately precede the description of the control(s) that should be associated with it. As with
tabbing-order problems (discussed above), you can fix this problem by using a simple cut-and-paste
technique to adjust the order of the control descriptions in your template. First, click the toolbar Test
Dialog button to end the test; then cut the text control or group box from the dialog and immediately
paste it back in again; and finally, do the same with each of the controls that should be associated
with the text control or group box. The controls will now appear in the desired order in your template,
and the accelerator keys will work properly.

Incorporating a Dialog into a Macro
Once you have created a dialog or dialog controls, you can paste it into your macro via the Clipboard.
Follow these steps.

To incorporate a dialog or control into your macro:

1. Select the dialog or control that you want to incorporate into your macro.

2. Press Ctrl+C.

3. Open your macro and paste in the contents of the Clipboard at the desired point.

You can also select File>Save As on the Dialog Editor and save the dialog to a .DLG file. Later you
can open the macro in the Macro Editor and the saved dialog in the Dialog Editor, and copy the
dialog into the macro.

The dialog template or control is now described in statements in your macro.

Using Dialogs
After using the Dialog Editor to insert a custom dialog template into your macro, you'll need to make
the following modifications to your macro:

1. Create a dialog record with the Dim statement.

2. Put information into the dialog by assigning values to its controls.

3. Display the dialog with either the Dialog() function or the Dialog statement.

4. Retrieve values from the dialog after the user closes it.



Programming Macros

87

Creating a Dialog Record
To store the values retrieved from a custom dialog, create a dialog record with a Dim statement using
the following syntax:

Dim DialogRecord As DialogVariable

Here are some examples of how to create dialog records:
Dim b As UserDialog 'Define a dialog record "b"
Dim PlayCD As CDDialog 'Define dialog record PlayCD.

Here is a sample macro that illustrates how to create a dialog record named b within a dialog template
named UserDialog. Notice that the order of the statements within the macro is: the dialog template
precedes the statement that creates the dialog record, and the Dialog statement follows both of them.

Sub Main
'!
    Dim ListBox1$() 'Initialize listbox array.
    'Define the dialog template.
    Begin Dialog UserDialog ,,163,94,"Grocery Order"
        Text 13,6,32,8,"&Quantity:",.Text1
        TextBox 48,4,28,12,.TextBox1
        ListBox 12,28,68,32,ListBox1$,.ListBox1
        OKButton 112,8,40,14
        CancelButton 112,28,40,14
    End Dialog
    Dim b As UserDialog 'Create the dialog record.
    Dialog b 'Display the dialog.
End Sub

Putting Information into the Dialog
When you open and run the sample macro shown in the preceding subsection, you see a dialog like
the following:

To put information into this dialog, assign values to its controls by modifying the statements in your
macro that are responsible for displaying those controls to the user. The following table lists the dialog
controls to which you can assign values and the types of information you can control:

Control(s) Types of Information

Listbox, drop-down listbox, combo box Items

Text box Default text

Checkbox Values



SmarTerm Macro Guide

88

The following sections explain how to define and fill an array, set the default text in a text box, and
set the initial focus and tab order for the controls in a custom dialog.

Defining and Filling an Array
You can store items in the listbox shown in the example above by creating an array and then
assigning values to the elements of the array. For example, you could include the following lines to
initialize an array with three elements and assign the names of three common fruits to these elements
of your array:

Dim ListBox1$(3) 'Initialize listbox array.
ListBox1$(0) = "Apples"
ListBox1$(1) = "Oranges"
ListBox1$(2) = "Pears"

Setting Default Text in a Text Box
You can set the default value of the text box in your macro to 12 with the following assignment
statement. This assignment must follow the definition of the dialog record but precede the statement or
function that displays the custom dialog.

b.TextBox1 = "12"

Setting the Initial Focus and Controlling the Tabbing Order
You can determine which control has the focus when your custom dialog appears as well as the
tabbing order between controls by understanding two rules. First, the focus in a custom dialog is
always set initially to the first control to appear in the dialog template. Second, the order in which
subsequent controls appear within the dialog template determines the tabbing order. That is, pressing
the Tab key will change the focus from the first control to the second one, pressing the Tab key again
will change the focus to the third control, and so on.

Displaying the Custom Dialog
To display a custom dialog, use either the Dialog() function or the Dialog statement.

Using the Dialog() Function
Use the Dialog() function to determine how the user closed your custom dialog. For example, the
following statement returns a value when the user clicks an OK button or a Cancel button or takes
another action:

response% = Dialog(b)

The Dialog() function returns any of the following values:

Value Returned If

–1 The user clicked the OK button.

0 The user clicked the Cancel button.

>0 The user clicked a push button. The returned number represents which
button was clicked based on its order in the dialog template (1 is the first
push button, 2 is the second push button, and so on).



Programming Macros

89

Using the Dialog Statement
Use the Dialog statement when you don't need to determine how the user closed your dialog. You can
still retrieve other information from the dialog record, such as the value of a listbox or other dialog
control. The following is an example of the correct use of the Dialog statement:

Dialog b

Retrieving Values from the Custom Dialog
After displaying a custom dialog, the macro must retrieve the values of the dialog controls by
referencing the appropriate identifiers in the dialog record. The following example uses several of the
techniques described earlier to explain this process.

In this macro, the array named ListBox1 is filled with three elements ("Apples", "Oranges", and "Pears").
The default value of TextBox1 is set to 12. A variable named response is used to store information
about how the custom dialog was closed. An identifier named ListBox1 is used to determine whether
the user chose "Apples", "Oranges", or "Pears" in the listbox named ListBox$. Finally, a Select

Case...End Select statement is used to display a message box appropriate to the manner in which the
user dismissed the dialog.

Sub Main
'!
    Dim ListBox1$(2) 'Initialize listbox array.
    Dim response%
    ListBox1$(0) = "Apples"
    ListBox1$(1) = "Oranges"
    ListBox1$(2) = "Pears"
    Begin Dialog UserDialog ,,163,94,"Grocery Order"
        'First control gets focus.
        Text 13,6,32,8,"&Quantity:",.Text1
        TextBox 48,4,28,12,.TextBox1
        ListBox 12,28,68,32,ListBox1$,.ListBox1
        OKButton 112,8,40,14
        CancelButton 112,28,40,14
    End Dialog
    Dim b As UserDialog 'Create the dialog record.
    'Set default value of the text box to 1 dozen.
    b.TextBox1 = "12"
    response% = Dialog(b) 'Display the dialog.
    Select Case response%
        Case -1
            Fruit$ = ListBox1$(b.ListBox1)
            MsgBox "Thank you for ordering " + _
            b.TextBox1 + " " + Fruit$ + "."
        Case 0
            MsgBox "Your order has been canceled."
    End Select
End Sub

Using a Dynamic Dialog in a Macro
The preceding section explained how to use a custom dialog in your macro. As you learned, you can
retrieve the values from dialog controls after the user dismisses the dialog by referencing the identifiers
in the dialog record.

You can also retrieve values from a custom dialog while the dialog is displayed, using a feature of
called dynamic dialogs.



SmarTerm Macro Guide

90

The following macro illustrates the most important concepts you'll need to understand in order to
create a dynamic dialog in your macro:

'Dim "Fruits" and "Vegetables" arrays here to make them
'accessible to all procedures.
Dim Fruits(2) As String
Dim Vegetables(2) As String
'Dialog procedure--must precede the procedure that defines
'the custom dialog.
Function DialogControl(ctrl$, action%, suppvalue%) As Integer

Select Case action%
Case 1

'Fill listbox with items before dialog is visible.
DlgListBoxArray "ListBox1", fruits
'Set default value to first item in listbox.
DlgValue "ListBox1", 0

Case 2
'Fill the listbox with names of fruits or vegetables
'when the user selects an option button.
If ctrl$ = "OptionButton1" Then

DlgListBoxArray "ListBox1", fruits
DlgValue "ListBox1", 0

ElseIf ctrl$ = "OptionButton2" Then
DlgListBoxArray "ListBox1", vegetables
DlgValue "ListBox1", 0

End If
End Select

End Function
Sub Main
'!

'Initialize array for use by ListBox statement in template.
Dim ListBox1$()
Dim Produce$
'Assign values to elements in the Fruits and Vegetables arrays.
Fruits(0) = "Apples"
Fruits(1) = "Oranges"
Fruits(2) = "Pears"
Vegetables(0) = "Carrots"
Vegetables(1) = "Peas"
Vegetables(2) = "Lettuce"
'Define the dialog template.
Begin Dialog UserDialog ,,163,94,"Grocery Order", .DialogControl

Text 13,6,32,8,"&Quantity:",.Text1 'First control
'in template gets the focus.

TextBox 48,4,28,12,.TextBox1
ListBox 12,28,68,32,ListBox1$,.ListBox1
OptionGroup .OptionGroup1

OptionButton 12,68,48,8,"&Fruit",.OptionButton1
OptionButton 12,80,48,8,"&Vegetables",.OptionButton2
OKButton 112,8,40,14
CancelButton 112,28,40,14

End Dialog
Dim b As UserDialog 'Create the dialog record.
'Set the default value of the text box to 1 dozen.
b.TextBox1 = "12"
response% = Dialog(b) 'Display the dialog.
Select Case response%

Case -1
If b.OptionGroup1 = 0 Then

produce$ = fruits(b.ListBox1)
Else

produce$ = vegetables(b.ListBox1)
End If
MsgBox "Thank you for ordering " & _



Programming Macros

91

b.TextBox1 & " " & produce$ & "."
Case 0

MsgBox "Your order has been canceled."
End Select

End Sub

The remainder of this section explains how to make a dialog dynamic by examining the workings of
this sample macro.

Making a Dialog Dynamic
The first thing to notice about the preceding macro, which is a more complex variation of the macro
described earlier in this chapter, is that an identifier named .DialogControl has been added to the
Begin Dialog statement. As you will learn in the following subsection, this parameter to the Begin

Dialog statement tells the compiler to pass control to a function procedure named DialogControl.

Using a Dialog Function
Before the compiler displays a custom dialog by executing a Dialog statement or Dialog() function, it
must first initialize the dialog. During this initialization process, the compiler checks to see whether
there is a dialog function defined in the dialog template. If so, it gives control to the dialog function,
allowing the macro to carry out certain actions, such as hiding or disabling dialog controls.

After completing its initialization, the compiler displays the custom dialog. When the user selects an
item in a listbox, clears a checkbox, or carries out certain other actions within the dialog, the compiler
will again call the dialog function.

In fact, the compiler also calls the dialog function repeatedly even while the user is not interacting
with the dialog. You can use this fact to update a dialog continuously.

Responding to User Actions
A dialog function can respond to six types of user actions:

Actio-
n

Description

1 This action is sent immediately before the dialog is shown for the first time.

2 This action is sent when:
• A button is clicked, such as OK, Cancel, or a push button.

• A checkbox's state has been modified.

• An option button is selected. In this case, ControlName$ contains the
name of the option button that was clicked, and SuppValue contains the
index of the option button within the option button group (0 is the first
option button, 1 is the second, and so on).

• The current selection is changed in a listbox, drop-down listbox, or
combo box. In this case, ControlName$ contains the name of the listbox,
combo box, or drop-down listbox, and SuppValue contains the index of
the new item (0 is the first item, 1 is the second, and so on).

3 This action is sent when the content of a text box or combo box has been changed
and that control loses focus.



SmarTerm Macro Guide

92

Actio-
n

Description

4 This action is sent when a control gains the focus.

5 This action is sent continuously when the dialog is idle.

6 This action is sent when the dialog is moved.

Using objects in an external OLE application
When SmarTerm is operated through an external OLE Automation controller, only those macro
commands relating directly to the SmarTerm objects are available. This means that another application
can use commands such as Session.Circuit.Connect, but not commands such as LTrim$ or Open. This is
not a great hardship, however, since programming commands not directly related to the operation of
SmarTerm should be available in the macro language for the controlling application.

To provide another application with OLE access to SmarTerm objects, you must include some basic
definitions in the controlling application's code. The following preamble will provide a controlling
application complete access to the SmarTerm objects:

' acquire access to SmarTerm for automation control
Dim Application as Object
Set Application = CreateObject("SmarTerm.Application")

' initialize a Session object by opening a session file
Dim Session as Object
Set Session = Application.Sessions.Open("Session1.STW")

' initialize a Circuit object for access to communications
' features

Dim Circuit as Object
Set Circuit = Session.Circuit

' initialize a Transfer object for access to file transfer
' features

Dim Transfer as Object
Set Transfer = Session.Transfer

Once you have included this preamble, you can then construct the rest of the controlling application's
macro code to access SmarTerm objects exactly as described in the online help.

Communicating with a host
Since the primary purpose of terminal emulation software is to communicate with a host, a high
proportion of the macro commands support host communication tasks, such as connecting to the host,
transferring data, and handling user interaction with the host. These tasks are handled by three
SmarTerm objects: Circuit, Session, and Transfer. In this section we discuss common host
communication tasks and provide generalized sample macros that should help you design your own
macros specific to the tasks you need to accomplish.



Programming Macros

93

Handling host connections
The macro commands that control host connection are all properties or methods of the SmarTerm
Circuit object. These commands fall into two groups:

• Connection commands (such as Circuit.Connect, Circuit.Connected, and Circuit.Disconnect),
which are common to all communication methods

• Setup commands, which are unique to each communication method

For example, suppose that you need to connect to multiple telnet hosts that all use the same display
and keyboard settings, but you can only make one connection at a time due to network cost
constraints. One way in which you can do this is to set up a single session file with the common
display and keyboard settings, then provide that session file with SmarTerm buttons that allow you to
connect to several hosts. Follow these steps:

1. Create a session. When asked for the connection settings, pick one of the hosts you routinely connect
to.

2. Set up the display, terminal type, keyboard map, and so forth, the way you want them. Then save the
session file.

3. Now use Tools>SmarTerm buttons to create a set of buttons, one for each host. Attach to each button
a macro like the following:

Sub Connect_ThisHost
'! Use this macro to connect to ThisHost.com

If Circuit.Connected = True Then 'Are we connected?
    If Circuit.TelnetHostname = "ThisHost.com" Then
        End 'Already connected to target host--quit!using se
    Else
        Session.Send "Logout" 'log off other host
        Circuit.Disconnect
    End If
End If
    Circuit.Telnet.Hostname = "ThisHost.com"
    Circuit.Connect
End Sub

For each SmarTerm button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". You may also need to change the logout command.

4. When you have created all your buttons, save them and save the session. From now on, when you
open the session you will have a set of SmarTerm buttons that allow you to switch from host to host.

Possible improvements
There are several improvements you could make to the host connection macro. First, you can add error-
checking to handle situations in which things do not go as planned. This is simplified by the fact that
the Circuit methods Circuit.Connect and Circuit.Disconnect are functions that return either True or
False, depending on whether they succeed or not. If we add a check for success into the sample above,
we get the following macro.

Sub Connect_ThisHost
'! Use this macro to connect to ThisHost.com
' Improved to check for success on connect and disconnect

If Circuit.Connected = True Then 'Are we connected?
    If Circuit.TelnetHostname = "ThisHost.com" Then
        End 'Already connected to target host--quit!
    Else



SmarTerm Macro Guide

94

        Session.Send "Logout" 'log off other host
        'Unable to disconnect?
If Circuit.Disconnect = False Then
            Session.Echo "Unable to disconnect from " +_
                Circuit.Telnethostname + ". Please contact IS."
            End 'Quit!
        End If
    End If
End If
    Circuit.Telnet.Hostname = "ThisHost.com"
    If Circuit.Connect = False Then ' Unable to connect?
        Session.Echo "Unable to connect to " +_
        Circuit.Telnethostname +_
            ". Please contact IS."
        End 'Quit!
    End If
End Sub

This macro is now a little more robust, and can at least let the user know that something is wrong.
You could also take another action, such as trying a different host name, switching to the IP address,
and so forth.

Another improvement might be to observe that all of the host connection macros attached to the
buttons are identical except for the host name and (potentially) the command required to log off. To
streamline the button macros and centralize the connection macro, you can take advantage of the
organization of SmarTerm macros into a collective. You can put the host-specific information in each
button macro, and then call a single host connection macro stored in the user macro file. Try this:

1. Use Tools>Macros to create a macro in the user macro file that will do the actual connecting. It might
look like this:

Sub ConnectToHost Hostname$
! Use this macro to connect to the host specified with Hostname$
' The actual hostname is passed in from the button macro.

If Circuit.Connected = True Then 'Are we connected?
    If Circuit.TelnetHostname = Hostname$ Then
        End 'Already connected to target host--quit!
    Else
        Session.Send LogoutCommand$ 'log off other host
        'Unable to disconnect?
        If Circuit.Disconnect = False Then
            Session.Echo "Unable to disconnect from " +_
                Circuit.Telnethostname + ". Please contact IS."
            End 'Quit!
        End If
    End If
End If
    Circuit.Telnet.Hostname = Hostname$
    If Circuit.Connect = False Then ' Unable to connect?
        Session.Echo "Unable to connect to " + Hostname$ +_
            ". Please contact IS."
        End 'Quit!
    End If
End Sub

2. At the top of the macro, add a public string variable that will hold the logout command for the
previous host:

Public LogoutCommand As String

Sub ConnectToHost Hostname$
.



Programming Macros

95

.

.
End Sub

3. Save the macro. Then use Tools>SmarTerm Buttons to create one button for each host. Attach the
following macro to each button:

Public LogoutCommand As String

Sub Connect_ThisHost
' This macro sets the public variable LogoutCommand$ to "quit"
' (which is used when the next host is connected to) and
' connects to ThisHost.com using the common macro ConnectToHost.

LogoutCommand$ = "quit"
ConnectToHost "ThisHost.com"

End Sub

As before, for each button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". You may also need to change the logout command.

4. Save the macros and the buttons.

You have now streamlined the macro in each button, which merely supply a little data to the central
ConnectToHost macro. If you now wanted to further improve the connection macro by adding more
error-checking, starting or stopping a logfile, and so on, you need only change the ConnectToHost
macro in one place, rather than in each button macro.

Sending and receiving data
The SmarTerm macro language handles all transfer of data between the host and SmarTerm, whether
text or files or keystrokes, with the Session object and the Transfer object. Use the Transfer object for
file transfer using one of the file transfer protocols SmarTerm supports (such as FTP, IND$FILE,
Kermit, XMODEM, YMODEM, or ZMODEM). Use the Session object to send and receive keystrokes,
to transfer text, and to read or write data directly to or from the terminal screen.

Note:
The Session and Transfer objects are those associated with the active session. If you have multiple
sessions available, you should make sure that the correct one is active before sending data to the
host.

Sending and receiving strings and keystrokes
There are two ways to send strings and keystrokes via a script to the host, one for text-based session
types and one for form-based session types. If you are using a text-based session type such as Digital
VT, Digital VT Graphics, Data General Dasher, ANSI, SCO ANSI, or Wyse, you embed the keystrokes
in a string and use the Session.Send or Session.SendLiteral method. If you are using a form-based
session type such as IBM 3270 or IBM 5250, you use the Session.Sendkey method, specifying the key
with a special mnemonic.

Using Session.Send and Session.SendLiteral

The Session.Send and Session.SendLiteral commands are really quite simple. All you need to do is
pass the string that you want sent to the host (or the screen, if the host is currently offline) to the
Session object. For example, to send your username to a login prompt (as is done by the Session_

Connect macro), you use the following command:
Session.Send "nguyenp" + chr(13)



SmarTerm Macro Guide

96

This sends the text "ngyuenp" to the host, followed by a carriage return (ASCII character number 13).
You can also specify the carriage-return right in the string with the built-in mnemonic "<CR>":

Session.Send "nguyenp<CR><LF>"

However, you cannot use built-in mnemonics for macro commands that do not relate to SmarTerm
objects. So, for example, you can assign the string to a string variable or string constant, and then pass
that variable or constant to the session:

Dim StringToSend As String
.
.
.
StringToSend = "nguyenp<CR><LF>"
Session.Send StringToSend

But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such as in a dialog definition.

When you use the Session.Send command, SmarTerm takes the string you specify, converts any
control characters you may have included to the form appropriate to the host connection (7-bit
controls or 8-bit controls), and performs any character translation that you may have set with the
Properties>Session Options>Character Translation tab. If you want to skip the character translation
step for some reason, use the Session.SendLiteral command. This command, which otherwise works
exactly like the Session.Send command, performs any 7-bit to 8-bit conversion but skips the character
translation step.

Using Session.Sendkey

The Session.Sendkey command (only supported for form-based session types such as IBM 3270 and
IBM 5250) allows you to send specific host keystrokes using standard mnemonics. These mnemonics
are listed in the online help for the command. For example, you can send a down arrow keystroke with
the following command:

Session.Sendkey "CURSORDOWN"

Note that, even though you use a standard mnemonic, the Session.SendKey command still requires you
to form the keystroke into a string. This allows you to chain keystrokes together for more complicated
procedures:

Session.Sendkey "CURSORDOWN" + "DELETEWORD" + "ENTER"

And, as with the Session.Send command, you can build the string elsewhere in the macro, assign it to
a variable or constant, and then pass that variable or constant on to the command:

Dim KeysToSend As String
.
.
.
KeysToSend = "CURSORDOWN" + "DELETEWORD" + "ENTER"
Session.Sendkey KeysToSend

But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such as in a dialog definition.

Transferring text
The SmarTerm Macro Language provides a number of commands that allow you to move text back
and forth between SmarTermand a text-based host. With the SmarTerm Session object you can paste
text to the host from a file on SmarTermand capture text from the host into a file on SmarTerm.



Programming Macros

97

Note:
If you routinely transfer large ASCII text files between SmarTermand a host and you want to
automate that process, you should consider using one of the file transfer protocols, such as FTP,
Kermit, XMODEM, and so forth. These protocols provide extra security for your data, as they can
detect and correct transmission errors and generally have a much higher throughput than straight
ASCII text transfer. See the next section for information on using macros for protocol-based file
transfer.

Transferring text from the host to SmarTerm

There are three ways to transfer text from the host to SmarTerm:

• Start up a text display command on the host and then use the Session.Capture command to save
everything the host sends in a file on SmarTerm.

• If the information is already on the screen, use the Session.ScreenToFile command to put a snapshot
of the text in the session window in a file on SmarTerm.

• Use the Session.Collect object to collect text from the host into an array of strings, and then use
file-handling commands to save the strings in a file. In this section we cover only the first option,
Screen.Capture. The second option, Session.ScreenToFile, is fully documented in the online help.
For the third option, Session.Collect, see Collect 46.

There are three Session.Capture commands:

• Session.CaptureFileHandling, which lets you set whether the PC file will be replaced, or appended
to

• Session.Capture, which starts a capture procedure

• Session.CaptureEnd, which ends the procedure

To use these commands properly, you also need to know the commands your host uses to display text
files. In the following example, we set up the capture file handling, then capture a text file on a
Digital VMS host to a file on the PC.

Sub CaptureHostFile
'! Capture the host file LOGIN.COM to the PC file VMSLOGIN.TXT

' First, make sure that any new capture will overwrite
' the old one
    Session.CaptureFileHandling = 0
    ' Actually, this is the default
' Now set up a LockStep object so everything stays in sync
    Dim LockStep As Object
    Set LockStep = Session.LockStep
    LockStep.Start

'Now, start up the capture
    Session.Capture("c:\vmslogin.txt")

' Now, display the host file
    Session.Send "TYPE LOGIN.COM"

' When the TYPE command is done, end the capture and
' close the file
    Session.EndCapture

' Don't forget to destroy the LockStep object!
Set LockStep = Nothing



SmarTerm Macro Guide

98

Transferring text from the SmarTerm server to the host

There are two ways in which to send text to the host:

• Use the Session.Send command (see Session_Connect macro 50) send individual strings to the host.

• Use the Session.TransmitFile command to send an ASCII text file to the host, displaying it in the
session window as it does so. To use this command properly, you need to know the host commands
for creating a text file, or those for starting a host application if you want to paste the text into a
file.

The following sample code provides a simple example using the VMS CREATE command.
Sub TransmitToHost
'! Send the PC file AUTOEXEC.BAT to the host file PCAUTO.TXT

' First, set up a LockStep object so everything stays in sync
    Dim LockStep As Object
    Set LockStep = Session.LockStep
    LockStep.Start

'Now, create the file on the host
    Session.Send "CREATE PCAUTO.TXT<CR>"

' Wait a moment for the host to do its work
    Sleep 2000

' Now, display the host file
    If Session.Transmit("c:\autoexec.bat") = True Then
        Session.Send "<^Z>" 'All done--close the host file
        Session.Send "File transmitted."
    Else
        Session.Send "<^Y>" 'Error--Cancel the file creation
        Session.Send "Unable to create file."
    End If

' Don't forget to destroy the LockStep object!
Set LockStep = Nothing

End Sub

Transferring files
The previous section explained how to use the Session object to move text between SmarTermand a
host. You can also move other kinds of files with these methods, but it is safer to use the Transfer

object. This section explains how to use the Transfer object to move files between SmarTermand a
host.

One difference between transferring text and transferring files is that there are a number of file transfer
protocols that may or may not be available, depending on what the host supports. Each protocol
provides different features and different interfaces. The session file always has a default transfer method
installed. It is probably best to make sure that the right file transfer protocol is active before trying to
use it. Use a block of code like the following:

'Check that we are using ZMODEM, and change to if we aren't

If Transfer.ProtocolName <> "ZMODEM" Then
    If Session.TransferProtocol "ZMODEM" = False Then
        Session.Send "Unable to select ZMODEM."
        End
    End If
End If



Programming Macros

99

Having settled which protocol you are using, you can then use it to transfer files. The details of each
file transfer protocol differ from each other. However, there are two commands that work with all
transfer protocols except FTP: Transfer.SendFile and Transfer.ReceiveFile. You use both commands
in much the same way, the only difference being that Transfer.SendFile sends a file to the host, while
Transfer.ReceiveFile receives a file from the host. The following example uses Transfer.SendFile.

Sub SendFileToHost
'!Sends the file AUTOEXEC.BAT to the host using ZMODEM

'Check that we are using ZMODEM, and change to if we aren't

    If Transfer.ProtocolName <> "ZMODEM" Then
        If Session.TransferProtocol "ZMODEM" = False Then
            Session.Send "Unable to select ZMODEM."
            End
        End If
    End If

' Now set up a LockStep object so everything stays in sync
    Dim LockStep As Object
    Set LockStep = Session.LockStep
    LockStep.Start

'Start ZMODEM on the host and wait for it to take effect
    Session.Send "zmodem<CR><LF>"
    sleep 2

'Now send the file
    If Transfer.SendFile("c:\autoexec.bat") = False Then
        Session.Send "Unable to transfer file."
        End
    Else
        Session.Send "File transferred."
    End If

' Don't forget to destroy the LockStep object!
Set LockStep = Nothing

End Sub

Compiling Macros
You can compile and save any macro file, which is then included in the collective. Compiled macros
files are available to all macro collectives in a given installation of SmarTerm, and they load and run
more quickly than uncompiled macros. They cannot be debugged dynamically with the macro editor,
however.

Note:
Compiled macro files are available to any collective. If you use more than one session type, or
regularly connect to more than one host, organize your macros carefully so that you don’t
accidentally call a macro for the wrong session type or host.

Follow these steps to compile a macro file:

1. Make sure that the macro file contains bug-free macros that work properly.

2. Save the macro file with a unique name that identifies the contents of the file. For example, save all of
the macros used to work on Host X as HOSTX.STM.



SmarTerm Macro Guide

100

3. Load the new file into the macro editor and select any of the macros in the file for editing.

4. Save the file as a compiled macro file by typing Ctrl+Shift+D (for safety’s sake, there is no menu
equivalent). The macro editor compiles and saves the contents of the entire macro file in a new file
with the same name but with the file extension .PCD. For example, the filename HOSTX.STM becomes
HOSTX.PCD.

SmarTerm saves the compiled macro file in the same folder as the source macro file, usually the
\MACROS folder. To use the new file, move (or copy) it to the SmarTerm program folder without
changing the name.

Note:
SmarTerm will only find and use compiled macro files if they use the .PCD file extension and reside
in the SmarTerm program folder.

Using compiled macros
When SmarTerm starts up, it looks for .PCD files in its program directory, loading any it finds. All the
macros in the compiled files are then automatically available to macro collectives for all session types.
You do not have to call the macros in a special way; they are simply available.



SYMBOLS

' (single quote)
Syntax

'text

Description
Causes the compiler to skip all characters between this character and the end of the current line.

Example
Sub Main
  'This whole line is treated as a comment.
  i$="Strings" 'This is a valid assignment with a comment.
  This line will cause an error (the apostrophe is missing).
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36

'! (description comment)
Syntax

’! text

Description
When used at the very top of a subroutine macro, causes the macro name to appear in the
Tools>Macros dialog. Any text following the ’! appears in the Description box on the Tools>Macros
dialog. A macro can have up to three lines beginning with ’! as long as they are at the very top of the
macro.

Note:
Functions never appear in the Tools>Macro dialog, even if they begin with description comments.

Example
Sub Main
  '!This line appears in the Tools>Macro dialog.
  ’!So does this line.
   ’!As does this line.
  ’!This line will not appear in the dialog
  i$="This descriptive macro is now over."
  MsgBox i$
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36



SmarTerm Macro Guide

102

- (subtraction)
Syntax 1

expression1 - expression2

Syntax 2
-expression

Description
Returns the difference between expression1 and expression2 or, in the second syntax, returns the
negation of expression.

expression1 - expression2
The type of the result is the same as that of the most precise expression, with the following
exceptions:

Expression One Expression Two Result

Long Single Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range.

When either or both expressions are variant, the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

• If the type of the result is an Integer variant that overflows, then the result is a Long variant.

• If the type of the result is a Long, Single, or Date variant that overflows, then the result is a Double

variant.

-expression
If expression is numeric, then the type of the result is the same type as expression. If expression is
Boolean, then the result is Integer.

Note:
In 2's complement arithmetic, unary minus may result in an overflow with Integer and Long variables
when the value of expression is the largest negative number representable for that data type. For
example, the following generates an overflow error:

Sub Main()
  Dim a As Integer
  a = -32768
  a = -a 'Generates overflow here.
End Sub

When negating variants, overflow will never occur because the result will be automatically promoted:
integers to longs and longs to doubles.

Example
Sub Main
  i% = 100
  j# = 22.55
  k# = i% - j#



Symbols

103

  Session.Echo "The difference is: " & k#
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

#Const
Syntax

#Const constname = expression

Description
Defines a preprocessor constant for use in the #If...Then...#Else statement. Internally, all
preprocessor constants are of type Variant. Thus, the expression parameter can be any type. Variables
defined using #Const can only be used within the #If...Then...#Else statement and other #Const
statements. Use the #Const statement to define constants that can be used within your code.

Example
#Const SUBPLATFORM = "NT"
#Const MANUFACTURER = "Windows"
#Const TYPE = "Workstation"
#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE
Sub Main
  #If PLATFORM = "Windows NT Workstation" Then
    Session.Echo "Running under Windows NT Workstation"
  #End If
End Sub

See Also
Macro Control and Compilation on page 36

#If...Then...#Else
Syntax

#If expression Then
[statements]
[#ElseIf expression Then
[statements]]

[#Else
[statements]]

#End If

Description
Causes the compiler to include or exclude sections of code based on conditions. The expression

represents any valid boolean expression evaluating to True of False. The expression may consist of
literals, operators, constants defined with #Const, and any of the following predefined constants:

Constant Value

Win32 True

Empty Empty

False False



SmarTerm Macro Guide

104

Constant Value

Null Null

True True

The expression can use any of the following operators: +, -, *, /, \, ^, + (unary), - (unary),
Mod, &, =, <>, >=, >, <=, <, And, Or, Xor, Imp, Eqv.

If the expression evaluates to a numeric value, then it is considered True if non-zero, False if zero. If
the expression evaluates to String not convertible to a number or evaluates to null, then a "Type
mismatch" error is generated.

Text comparisons within expression are always case-insensitive, regardless of the Option Compare
setting

You can define your own constants using the #Const directive, and test for these constants within the
expression parameter as shown below:

#Const VERSION = 2
Sub Main
  #If VERSION = 1 Then
    directory$ = "\apps\widget"
  #ElseIf VERSION = 2 Then
    directory$ = "\apps\widget32"
  #Else
    Session.Echo "Unknown version."
  #End If
End Sub

Any constant not already defined evaluates to Empty.

A common use of the #If...Then...#Else directive is to optionally include debugging statements in
your code. The following example shows how debugging code can be conditionally included to check
parameters to a function:

#Const DEBUG = 1
Sub ChangeFormat(NewFormat As Integer,StatusText As String)
  #If DEBUG = 1 Then
    If NewFormat <> 1 And NewFormat <> 2 Then
      Session.Echo "Parameter ""NewFormat"" is invalid."
      Exit Sub
    End If
    If Len(StatusText) > 78 Then
      Session.Echo "Parameter ""StatusText"" is too long."
      Exit Sub
    End If
  #End If
  Rem Change the format here...
End Sub

Excluded section are not compiled, allowing you to exclude sections of code that have errors or don’t
even represent valid syntax. For example, the following code uses the #If...Then...#Else statement to
include a multi-line comment:

Sub Main
  #If 0
    The following section of code causes the host to display the
    first line of a famous poem:
  #End If
  Session.Echo "Don’t let that horse eat that violin"
End Sub



Symbols

105

In the above example, since the expression #If 0 never evaluates to True, the text between that and
the matching #End If will never be compiled.

Example
#If Win32 Then
  Declare Sub GetWindowsDirectory Lib "KERNEL32" Alias _
    "GetWindowsDirectoryA" (ByVal DirName As String,ByVal _
    MaxLen As Long)
#End If

Sub Main
  Dim DirName As String * 256
  GetWindowsDirectory DirName,len(DirName)
  Session.Echo "Windows directory = " & DirName
End Sub

See Also
Macro Control and Compilation on page 36

& (concatenation)
Syntax

expression1 & expression2

Description
Returns the concatenation of expression1 and expression2. If both expressions are strings, then the
type of the result is String. Otherwise, the type of the result is a String variant. When nonstring
expressions are encountered, each expression is converted to a String variant. If both expressions are
Null, then a Null variant is returned. If only one expression is Null, then it is treated as a zero-length
string. Empty variants are also treated as zero-length strings.

Note:
In many instances, the plus (+) operator can be used in place of &. The difference is that + attempts
addition when used with at least one numeric expression, whereas & always concatenates.

Example
Sub Main
  s$ = "This string" & " is concatenated"
  s2$ = " with the & operator."
  Session.Echo s$ & s2$
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Character and String Manipulation on
page 33.

( ) (precedence)
Syntax 1

...(expression)...

Syntax 2
...,(parameter),...Description



SmarTerm Macro Guide

106

Parentheses override the normal precedence order of operators, forcing a subexpression to be evaluated
before other parts of the expression. For example, the use of parentheses in the following expressions
causes different results:

i = 1 + 2 * 3 'Assigns 7.

i = (1 + 2) * 3 'Assigns 9.

Use parentheses to make your code easier to read, removing any ambiguity in complicated expressions.
You can also use parentheses when passing parameters to functions or subroutines to force a given
parameter to be passed by value:

ShowForm i 'Pass i by reference.

ShowForm (i) 'Pass i by value.

Enclosing parameters within parentheses can be misleading. For example, the following statement
appears to be calling a function called ShowForm without assigning the result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the variable i by value. It
may be clearer to use the ByVal keyword in this case, which accomplishes the same thing:

ShowForm ByVal i

Note:
The result of an expression is always passed by value.

Example
Sub Main
  bill = False
  dave = True
  jim = True
  If (dave And bill) Or (jim And bill) Then
      Session.Echo "The required parties for the meeting are here."
  Else
    Session.Echo "Someone is late again!"
  End If

End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36

* (multiplication)
Syntax

expression1 * expression2

Description
Returns the product of expression1 and expression2. The result is the same type as the most precise
expression, with the following exceptions:



Symbols

107

Expression One Expression Two Result

Single Long Double

Boolean Boolean Integer

Date Date Double

When the * operator is used with variants, the following additional rules apply:

• Empty is treated as 0.

• If the type of the result is an Integer variant that overflows, then the result is automatically
promoted to a Long variant.

• If the type of the result is a Single, Long, or Date variant that overflows, then the result is
automatically promoted to a Double variant.

• If either expression is Null, then the result is Null.

Example
Sub Main
  s# = 123.55
  t# = 2.55
  u# = s# * t#
  Session.Echo s# & " * " & t# & " = " & u#
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36

. (dot)
Syntax 1

object.property

Syntax 2
structure.member

Description
Separates an object from a property or a structure from a structure member.

Examples
Use the period to separate an object from a property.

Sub Main
  Session.Echo Clipboard.GetText()
End Sub

Use the period to separate a structure from a member.
Type Rect
  left As Integer
  top As Integer
  right As Integer
  bottom As Integer
End Type

Sub Main
  Dim r As Rect



SmarTerm Macro Guide

108

  r.left = 10
  r.right = 12
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Objects on page 40.

/* and */ (C-style comment block)
Syntax

/* text
.
.
.
*/

Description
Causes the compiler to skip all characters between the /* pair and the */ pair.

Example
Sub Main
  /* This is the beginning of the comment block.
     nothing you read here will have any effect on the macro
And it doesn’t matter where the text appears, until
         the appearance of the second pair: */
  i$="The comment block is done" 'This is a valid assignment.
  MsgBox i$
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36

/ (division)
Syntax

expression1 / expression2

Description
Returns the quotient of expression1 and expression2. The type of the result is Double, with the
following exceptions:

Expression One Expression Two Result

Integer Integer Single

Single Single Single

Boolean Boolean Single

A runtime error is generated if the result overflows its legal range.

When either or both expressions is variant, then the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.



Symbols

109

• If both expressions are either Integer or Single variants and the result overflows, then the result is
automatically promoted to a Double variant.

Example
Sub Main
  i% = 100
  j# = 22.55
  k# = i% / j#
  Session.Echo "The quotient of i/j is: " & k#
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36

\ (integer division)
Syntax

expression1 \ expression2

Description
Returns the integer division of expression1 and expression2. Before the integer division is performed,
each expression is converted to the data type of the most precise expression. If the type of the
expressions is either Single, Double, Date, or Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

• If either expression is Null, then the result is Null.

• Empty is treated as an Integer of value 0.

Example
Sub Main
  s% = 100.99 \ 2.6
  Session.Echo "Integer division of 100.99\2.6 is: " & s%
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36.

^ (exponentiation)
Syntax

expression1 ^ expression2

Description
Returns expression1 raised to the power specified in expression2. The following are special cases:

Case Value

n^0 1

0^-n Undefined



SmarTerm Macro Guide

110

Case Value

0^+n 0

1^n 1

The type of the result is always double, except with Boolean expressions, in which case the result is
Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a fractional result.

Example
Sub Main
  s# = 2 ^ 5 'Returns 2 to the 5th power.
  r# = 16 ^ .5 'Returns the square root of 16.
  Session.Echo "2 to the 5th power is: " & s#
  Session.Echo "The square root of 16 is: " & r#
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36.

_ (line continuation)
Syntax

text1 _
text2

Description
The line-continuation character, which allows you to split a single statement onto more than one line.
You cannot use the line-continuation character within strings and must precede it with white space
(either a space or a tab). You can follow the line-continuation character with a comment:

i = 5 + 6 & _ 'Continue on the next line.
  "Hello"

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
'The line-continuation operator is useful when concatenating
'long strings.
mg = "This line is a line of text that" + crlf + "extends" _

+ "beyond the borders of the editor" + crlf + "so it" _
+ "is split into multiple lines"

'It is also useful for separating and continuing long
'calculation lines.
b# = .124
a# = .223
s# = ( (((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

(((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5) ) * 2.00
Session.Echo mg & crlf & "The value of s# is: " & s#

End Sub

See Also



Symbols

111

Keywords, Data Types, Operators, and Expressions on page 34; Character and String Manipulation on
page 33.

+ (addition/concatenation)
Syntax

expression1 + expression2

Description
Adds or concatenates two expressions. Addition operates differently depending on the type of the two
expressions:

Expression One Expression Two Result

Numeric Numeric Perform a numeric add.

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a string variant.

Variant Numeric Perform a variant add.

Empty variant Empty variant Return an integer variant, value 0.

Empty variant Any data type Return the non-empty operand unchanged.

Null variant Any data type Return null.

Variant Variant Add if either is numeric; otherwise, concatenate.

When using + to concatenate two variants, the result depends on the types of each variant at runtime.
You can remove any ambiguity by using the & operator.

Numeric add
A numeric add is performed when both expressions are numeric (i.e., not variant or string). The result
is the same type as the most precise expression, with the following exceptions:

Expression One Expression Two Result

Single Long Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range.

Variant add
If both expressions are variants, or one expression is Numeric and the other expression is Variant, then
a variant add is performed. The rules for variant add are the same as those for normal numeric add,
with the following exceptions:

• If the type of the result is an Integer variant that overflows, then the result is a Long variant.



SmarTerm Macro Guide

112

• If the type of the result is a Long, Single, or Date variant that overflows, then the result is a Double

variant.

Example
Sub Main
  i$ = "Concatenation" + " is fun!"
  j% = 120 + 5 'Addition of numeric literals
  k# = j% + 2.7 'Addition of numeric variable
  Session.Echo "This concatenation becomes: '" i$ + _
    Str(j%) + Str(k#) & "'"
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36; Character and String Manipulation on page 33.

<, <=, <>, =, >, >= (comparison)
See Comparison Operators (topic); Keywords, Data Types, Operators, and Expressions on page 34.

= (assignment)
Syntax

variable = expression

Description
Assigns the result of an expression to a variable. When assigning expressions to variables, internal
type conversions are performed automatically between any two numeric quantities. Thus, you can
freely assign numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting from larger to smaller types. This occurs when the larger type
contains a numeric quantity that cannot be represented by the smaller type. For example, the following
code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer
amount = 400123 'Assign a value out of range for int.
quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Note:
The assignment operator (=) cannot be used to assign objects. Use the Set statement instead.

Example
Sub Main
  a$ = "This is a string"
  b% = 100
  c# = 1213.3443
  Session.Echo a$ & "," & b% & "," & c#
End Sub

See Also
Macro Control and Compilation on page 36



A

Abs
Syntax

Abs(expression)

Description
Returns the absolute value of expression. If expression is Null, then Null is returned. Empty is treated
as 0. The type of the result is the same as that of expression, with the following exceptions:

• If expression is an Integer that overflows its legal range, then the result is returned as a Long. This
only occurs with the largest negative Integer:

Dim a As Variant
Dim i As Integer
i = -32768
a = Abs(i) 'Result is a Long.
i = Abs(i) 'Overflow·!

• If expression is a Long that overflows its legal range, then the result is returned as a Double. This
only occurs with the largest negative Long:

Dim a As Variant
Dim l As Long
l = -2147483648
a = Abs(l) 'Result is a Double.
l = Abs(l) 'Overflow!

• If expression is a Currency value that overflows its legal range, an overflow error is generated.

Example
Sub Main
  s1% = Abs(-10.55)
  s2& = Abs(-10.55)
  s3! = Abs(-10.55)
  s4# = Abs(-10.55)
  Session.Echo "The absolute values are: " & s1% & "," & s2& & "," & s3! & ","_
& s4#
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

And
Syntax

result = expression1 And expression2

Description
Performs a logical or binary conjunction on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical conjunction is performed as follows:



SmarTerm Macro Guide

114

Expression One Expression Two Result

True True True

True False False

True Null Null

False True False

False False False

False Null Null

Null True Null

Null False False

Null Null Null

Binary conjunction
If the two expressions are Integer, then a binary conjunction is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long, and a binary conjunction is
then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

Bit in Expression One Bit in Expression Two Result

1 1 1

0 1 0

1 0 0

0 0 0

Examples
Sub Main
n1 = 1001
n2 = 1000
b1 = True
b2 = False

'Perform a numeric bitwise And and store the result in N3.
n3 = n1 And n2

'Performs a logical And on B1 and B2.
If b1 And b2 Then
   Session.Echo "b1 and b2 are True; n3 is: " & n3
Else
   Session.Echo "b1 and b2 are False; n3 is: " & n3
End If

End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



A

115

AnswerBox
Syntax

AnswerBox(prompt [,[button1] [,[button2] [,[button3] [,[title] [,helpfile,
context]]]]]]])

Description
Displays a dialog prompting the user for a response and returns an Integer indicating which button
was clicked (1 for the first button, 2 for the second, and so on).AnswerBox takes the following
parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can be any
expression convertible to a string. The compiler resizes the dialog to hold
the entire contents of prompt, up to a maximum width of 5/8 of the width
of the screen and a maximum height of 5/8 of the height of the screen. The
compiler word-wraps any lines too long to fit within the dialog and
truncates all lines beyond the maximum number of lines that fit in the
dialog. You can insert a carriage-return/line-feed character in a string to
cause a line break in your message. A runtime error is generated if this
parameter is null.

button1 The text for the first button. If omitted, then "OK and "Cancel" are used. A
runtime error is generated if this parameter is null.

button2 The text for the second button. A runtime error is generated if this
parameter is null.

button3 The text for the third button. A runtime error is generated if this parameter
is null.

title String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's
help. If this parameter is specified, then helpfile must also be specified.

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

If both the helpfile and context parameters are specified, then context-sensitive help can be invoked
using the help key F1. Invoking help does not remove the dialog.

Example
Display a dialog containing three buttons. Display an additional message based on which of the three
buttons is selected.

Sub Main
  r% = AnswerBox("Copy files?", "Save", "Restore", "Cancel")
  Select Case r%
    Case 1
      Session.Echo "Files will be saved."



SmarTerm Macro Guide

116

    Case 2
       Session.Echo "Files will be restored."
    Case Else
       Session.Echo "Operation canceled."
  End Select
End Sub

See Also
User Interaction on page 39

Any (data type)
Description

Use with the Declare statement to indicate that type checking is not to be performed with a given
argument. For example, given the following declaration:

Declare Sub Foo Lib "FOO.DLL" (a As Any)

the following calls are valid:
Foo 10
Foo "Hello, world."

Example
Call FindWindow to determine whether Program Manager is running. This example uses the Any

keyword to pass a NULL pointer, which is accepted by the FindWindow function.
Declare Function FindWindow32 Lib "user32" Alias "FindWindowA" _
(ByVal Class As Any,ByVal Title As Any) As Long

Sub Main
  Dim hWnd As Variant
    hWnd = FindWindow32("PROGMAN",0&)
  If hWnd <> 0 Then
    Session.Echo "Program manager is running, window handle is " & hWnd
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

AppActivate
Syntax

AppActivate title | taskID,[wait]

Description
Activates an application given its name or task ID. The AppActivate statement takes the following
named parameters:

Parameter Description

title A string containing the name of the application to be activated.

taskID A number specifying the task ID of the application to be activated.



A

117

Parameter Description

Acceptable task IDs are returned by the Shell function.

wait An optional boolean value indicating whether the compiler will wait for
calling application to be activated before activating the specified application.
If False (the default), then the compiler will activate the specified application
immediately.

Note:
When activating applications using the task ID, it is important to declare the variable used to hold
the task ID as a Variant.

Applications don’t always activate immediately. To compensate, the AppActivate statement will wait a
maximum of 10 seconds before failing, giving the activated application plenty of time to become
activated.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if that application
is currently displaying a modal dialog.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Examples
Activate the Calculator.

Sub Main AppActivate
 "Calculator"
End Sub

Run another application, then activate it.
Sub Main
  Dim id as variant
  id = Shell("Notepad",7)      'Run Notepad minimized.
  AppActivate "Calculator"      'Activate Calculator.
  AppActivate id          'Now activate Notepad.
End Sub

See Also
Operating System Control on page 38

AppClose
Syntax

AppClose [title | taskID]



SmarTerm Macro Guide

118

Description
Closes the named application.

The title parameter is a String containing the name of the application. If the title parameter is
absent, then the AppClose statement closes the active application. Or, you can specify the ID of the
task as returned by the Shell function.

A runtime error results if the application being closed is not enabled, as is the case if that application
is currently displaying a modal dialog.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example
Sub Main
  If AppFind$("Microsoft Excel") = "" Then
     Session.Echo "Excel is not running."
    Exit Sub
  End If
  AppActivate "Microsoft Excel"
          AppClose "Microsoft Excel"
          End Sub

See Also
Operating System Control on page 38

AppFind, AppFind$
Syntax

AppFind[$] (title | taskID)

Description
Returns a String containing the full name of the application matching either title or taskID.

The title parameter specifies the title of the application to find. If there is no exact match, the
compiler will find an application whose title begins with title. Or, you can specify the ID of the task
as returned by the Shell function.

The AppFind$ functions returns a String, whereas the AppFind function returns a String variant. If the
specified application cannot be found, then AppFind$ returns a zero-length string and AppFind returns
Empty. Using AppFind allows you detect failure when attempting to find an application with no caption
(i.e., Empty is returned instead of a zero-length String).

AppFind$ is generally used to determine whether a given application is running. The following
expression returns True if Microsoft Word is running:

AppFind$("Microsoft Word")

Example
Sub Main
  If AppFind$("Microsoft Excel") <> "" Then
    AppActivate "Microsoft Excel"



A

119

  Else
    Session.Echo "Excel is not running."
  End If
End Sub

See Also
Operating System Control on page 38

AppGetActive$
Syntax

AppGetActive$()

Description
Returns a String containing the name of the application. If no application is active, the AppGetActive$

function returns a zero-length string.

You can use AppGetActive$ to retrieve the name of the active application. You can then use this name
in calls to routines that require an application name.

Example
Sub Main
  n$ = AppGetActive$()
  AppMinimize n$
End Sub

See Also
Operating System Control on page 38

AppGetPosition
Syntax

AppGetPosition x,y,width,height [,title | taskID]

Description
Retrieves the position of the named application. The AppGetPosition statement takes the following
parameters:

Parameter Description

x, y Names of integer variables to receive the position of the application's
window.

width, height Names of integer variables to receive the size of the application's
window.

title A string containing the name of the application. If the title parameter
is omitted, then the active application is used.

taskID A number specifying the task ID of the application to be activated.
Acceptable task IDs are returned by the Shell function.



SmarTerm Macro Guide

120

The x, y, width, and height variables are filled with the position and size of the application's window.
If an argument is not a variable, then the argument is ignored, as in the following example, which only
retrieves the x and y parameters and ignores the width and height parameters:

Dim x as integer, y as integerAppGetPosition x,y,0,0,"Program Manager"

The position and size of the window are returned in twips (1440th parts of an inch).

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example
Sub Main
  Dim x As Integer, y As Integer
  Dim cx As Integer, cy As Integer
  AppGetPosition x,y,cx,cy,"Program Manager"
End Sub

See Also
Operating System Control on page 38

AppGetState
Syntax

AppGetState[([title | taskID])]

Description
Returns an Integer specifying the state of the specified top-level window. The AppGetState function
returns any of the following values:

If Window Is AppGetState Returns Value

Maximized ebMinimized 1

Minimized ebMaximized 2

Restored ebRestored 3

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppGetState function returns the name of the active application.

Or, you can specify the ID of the task as returned by the Shell function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example
Sub Main
  If AppFind$("Untitled - Notepad") = "" Then



A

121

    Session.Echo "Can't find Untitled - Notepad."
    Exit Sub
  End If
  AppActivate "Untitled - Notepad"  'Activate ProgMan
  state = AppGetState        'Save its state.
  AppMinimize          'Minimize it.
  Session.Echo "Notepad is now minimized. Select OK to restore it."
  AppActivate "Untitled - Notepad"
  AppSetState state        'Restore it.
End Sub

See Also
Operating System Control on page 38

AppHide
Syntax

AppHide [title | taskID]

Description
Hides the named application. If the named application is already hidden, the AppHide statement will
have no effect.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppHide statement hides the active application. Or, you can specify the ID of the task as returned
by the Shell function.

AppHide generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example
Sub Main
  'See whether Untitled - Notepad is running.
  If AppFind$("Untitled - Notepad") = "" Then Exit Sub
  AppHide "Untitled - Notepad"
  Session.Echo "Untitled - Notepad is now hidden. Press OK to show it once again."
  AppShow "Untitled - Notepad"
End Sub

See Also
Operating System Control on page 38

Application (object)
The Application object provides access to aspects of SmarTerm that are global to all session types,
such as the exact product name and version, the locations of the user files, and so forth.

Application.ActiveSession
Syntax

Application.ActiveSession



SmarTerm Macro Guide

122

Description
Returns an object representing SmarTerm’s current session.

Example
Dim Active as Object
Set Active = Application.ActiveSession

Application.Application
Syntax

Application.Application

Description
Returns SmarTerm’s application object.

Example
Dim App as ObjectSet App = Application.Application

See Also
Application and Session Features on page 37

Application.Caption
Syntax

Application.Caption

Description
Returns or sets SmarTerm’s application window caption (string).

Example
Return SmarTerm's main window caption and set it to "SmarTerm"

Sub Main
  Dim CurrentCaption as String
  CurrentCaption = Application.Caption
  Session.Echo "Current window caption is " & CurrentCaption
  Application.Caption = "SmarTerm"
End Sub

See Also
Session.Caption; Application and Session Features on page 37

Application.CommandLine
Syntax

Application.CommandLine

Description
Returns the command line from when the application was started (string). The command line switch "-

$" or "/$" causes SmarTerm to ignore all command line arguments that follow it. Additional characters
can be appended to the switch (e.g., "-$hello") and still be recognized. This can be useful for placing
parameters on the command line that are intended for access by a macro.

Example
Sub Main
  Dim StCmdLine as String
  StCmdLine = Application.CommandLine
  Session.Echo "Current command line is " & StCmdLine
End Sub

See Also



A

123

Session.Caption; Application and Session Features on page 37

Application.DoMenuFunction
Syntax

Application.DoMenuFunction menuitem$

where menuitem$ is the menu item to trigger (string).

Description
Triggers an application-based menu action in SmarTerm.Possible values:

FileExit PropertiesOptions

FileNew ToolsRestoreAll

FileOpen ToolsUndoRestore

FilePageSetup ViewFullScreen

FileSaveWorkspace ViewMenuBar

HelpAboutSmarTermOffice ViewStatusBar

HelpMacroGuide ViewToolbar

HelpSmarTermHelpTopics ViewWorkbook

HelpTechnicalSupport WindowArrangeIcons

HelpUserHelp WindowCascade

PropertiesLanguage WindowTile

Example
Sub Main
Application.DoMenuFunction "ViewFullScreen"

End Sub

See Also
Session.DoMenuFunction; Application and Session Features on page 37

Application.FlashIcon
Syntax

Application.FlashIcon

Description
Returns or sets whether SmarTerm’s session icon should blink when new information is received from
a host (boolean).

Example
Sub Main
Dim FlashState as Boolean
FlashState = Application.FlashIcon
If FlashState = FALSE then
Session.Echo "Setting SmarTerm session icon to flash"
Application.FlashIcon = TRUE

End If
End Sub

See Also



SmarTerm Macro Guide

124

Session.DoMenuFunction; Application and Session Features on page 37

Application.InstalledLanguages
Syntax

Application.InstalledLanguages(index)

where index is the index of the language value to retrieve (integer).

Description
Returns a value representing the installed language corresponding to the index value provided
(integer). This function should be called initially with the index set to 1. This will return a non-zero
value if a language has been retrieved. While the value returned is non-zero, increment the index by
one and continue calling. This will retrieve as many languages as have been installed.

Possible values are:

Value Constant Meaning

1031 smlGERMAN German.

1033 smlENGLISH English.

1036 smlFRENCH French.

1034 smlSPANISH Spanish.

Example
Sub Main
Dim LanguageChoices() as Integer
Dim Continue as Boolean
Dim i, Value as Integer
Continue = True
i = 1
Do
Value = Application.InstalledLanguages (I)
If Value <> 0 Then

Redim Preserve LanguageChoices(i)
LanguageChoices(i-1) = Value
i = i + 1

Else
Continue = False

End If
Loop While Continue = True

End Sub

See Also
Application.StartupLanguage; Session.Language; Application and Session Features

Application.Parent
Syntax

Application.Parent

Description
Returns the SmarTerm application's parent object (which is always Nothing).

Example
Dim Parent as Object
Parent = Application.Parent



A

125

See Also
Application and Session Features on page 37

Application.Product
Syntax

Application.Product

Description
Returns a string identifying the SmarTerm product in use.

Example
Sub Main
  Dim ProdName as String
  ProdName = Application.Product
  Session.Echo "The SmarTerm product name is " & ProdName
End Sub

See Also
Application.Version; Application and Session Features on page 37

Application.Quit
Syntax

Application.Quit

Description
Terminates the SmarTerm application, including all open sessions.

Example
Sub Main
  Dim nMsg as integer
  nMsg = Session.Echo ("This script will stop SmarTerm. OK?",ebYesNo)
  if nMsg = ebYes then
    Application.Quit
  End If
End Sub

See Also
Circuit.Disconnect; Application and Session Features on page 37

Application.Sessions (collection)
Syntax

See specific uses of this collection.

Description
Returns an object representing the collection of sessions within SmarTerm (object). The Sessions
collection object supports access to all sessions running within the SmarTerm application. This
object’s methods and properties will be of primary use when accessing SmarTerm through an external
OLE Automation controller.

Example
This code is meant to be run from an external OLE Automation controller in which the Application,
Session, Circuit, and Transfer objects are not predefined.

Dim Application As Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object



SmarTerm Macro Guide

126

Dim SessionFileSpec As String
Set Application = CreateObject("SmarTerm.Application")
SessionFileSpec = Application.UserSessionsLocation & "\session1.stw"
Set Session = Application.Sessions.Open(SessionFileSpec)
Set Circuit = Session.Circuit
Set Transfer = Session.Transfer

This code is meant to be run from an external controller to attach to an existing SmarTerm process and
locate a session captioned "MyHost".

Dim TotalSessions, I as Integer
Dim TestSession as Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object
Dim FoundMatch as Boolean
Set Application = GetObject(, "SmarTerm.Application")
TotalSessions = Application.Sessions.Count
FoundMatch = False
If TotalSessions > 0 Then
    For I = 0 to (TotalSessions - 1)
        Set TestSession = Application.Sessions.Item(I)
        If TestSession.Caption = "Session1" Then
            FoundMatch = True
            Exit For
        End If
    Next I
End If
If FoundMatch Then
    Set Session = TestSession
    Set Circuit = Session.Circuit
    Set Transfer = Session.Transfer
End If

Similar to above, but for the case in which the automation controller supports a 'For Each' statement
that iterates through a collection.

Dim TestSession as Object
Dim Session As Object
Dim Circuit As Object
Dim Transfer As Object
Dim FoundMatch as Boolean
Set Application = GetObject(, "SmarTerm.Application")
TotalSessions = Application.Sessions.Count
FoundMatch = False
For Each TestSession In Application.Sessions
    If TestSession.Caption = "Session1" Then
        FoundMatch = True
        Exit For
    End If
Next
If FoundMatch Then
    Set Session = TestSession
    Set Circuit = Session.Circuit
    Set Transfer = Session.Transfer
End If

See Also
Application and Session Features on page 37; Objects on page 40

Application.Sessions.Application
Syntax

Application.Sessions.Application



A

127

Description
Returns the SmarTerm application object.

Example
Dim App as ObjectSet App = Application.Sessions.Application

See Also
Application and Session Features on page 37; Objects on page 40

Application.Sessions.Count
Syntax

Application.Sessions.Count

Description
Returns an integer containing the number of sessions maintained by the Sessions collection.

Example
See the examples for Application.Sessions.

See Also
Application and Session Features on page 37

Application.Sessions.Item
Syntax

Application.Sessions.Item(sessionindex%)

where sessionindex% is an integer, index of the session to access.

Description
Returns a session object of the specified session ID.

Example
See the examples for Application.Sessions.

See Also
Application and Session Features on page 37

Application.Sessions.Open
Syntax

Application.Sessions.Open sessionfile$

where sessionfile$ is the name of the session file to open.

Description
Returns a session object after opening the specified session. Returns Nothing if the method fails.

Example
See the examples for Application.Sessions.

See Also
Application and Session Features on page 37; Objects on page 40

Application.Sessions.Parent
Syntax

Application.Sessions.Parent

Description



SmarTerm Macro Guide

128

Returns SmarTerm’s parent object.

Example
Dim Parent as ObjectParent = Application.Sessions.Parent

See Also
Application and Session Features on page 37; Objects on page 40

Application.StartupLanguage
Syntax

Application.StartupLanguage

Description
Returns the startup language that was selected during Setup (integer). Possible values are:

Value Constant Meaning

1031 smlGERMAN German.

1033 smlENGLISH English.

1036 smlFRENCH French.

1034 smlSPANISH Spanish.

Example
Report an error in the language chosen as the startup language

Sub Main
  Dim StartupLanguage as Integer
  StartupLanguage = Application.StartupLanugage
  Select Case StartupLanguage
    Case 1031   ' German
            Session.Echo "Ein Fehler ist aufgetreten."
    Case 1033   ' English
            Session.Echo "An error has occurred."
    Case 1036   ' French
            Session.Echo "Une erreur est survenue."
    Case 1034   ' Spanish
        Session.Echo "Ocurrió un error."
  End Select
End Sub

See Also
Application.InstalledLanguages; Session.Language; Application and Session Features on page 37

Application.SuppressRefocus
Syntax

Application.SuppressRefocus= true|false

Description
Returns or sets the state of the focus when control returns to SmarTerm (Boolean). If false (the default),
a macro that launches another application (such as Notepad) returns the focus to SmarTerm as soon as
the macro ends. This means that, if the other application typically displays a window requiring user
input, that window may be covered by SmarTerm’s session window. If Application.SuppressRefocus is
true, then the focus returns to SmarTerm at the end of the macro only if no other applications have



A

129

been launched. This allows the other application’s window to remain in the foreground until dismissed
by the user.

Note:
Application.SuppressRefocus is always reset to FALSE when the macro ends. You must reset it to
TRUE every time you wish to supress automatic refocus.

Example
Sub Main
'! Launches NOTEPAD.EXE and lets it keep focus.
 Dim TaskID As Variant
 TaskID = Shell("notepad", ebNormalFocus)
 Application.SuppressReFocus TRUE
End Sub

See Also
Application and Session Features on page 37; User Interaction on page 39

Application.UserHelpFile
Syntax

Application.UserHelpFile

Description
Returns or sets the name of the SmarTerm user help file (string).

Example
Sub Main
   Dim HelpFile as String
   HelpFile = Application.UserHelpFile
   Session.Echo "Current help file was " & HelpFile
   Session.Echo "Changing help file to VAXMAIL"
   Application.UserHelpFile = "VAXMAIL.HLP"
End Sub

See Also
Application.UserHelpMenu; Application.ViewUserHelp; Application and Session Features on page
37; User Interaction on page 39

Application.UserHelpMenu
Syntax

Application.UserHelpMenu

Description
Returns or sets the menu choice for SmarTerm’s user help.

Example
Sub Main
   Dim HelpMenu as String
   HelpMenu = Application.UserHelpMenu
   Session.Echo "Current help file was " & HelpMenu
   Session.Echo "Changing help menu for VAX Mail"
   Application.UserHelpMenu = "How to use VAX Mail"
End Sub

See Also
Application.SuppressRefocus; Application.ViewUserHelp; Application and Session Features on page
37; User Interaction on page 39



SmarTerm Macro Guide

130

Application.UserHotSpotsLocation
Syntax

Application.UserHotSpotsLocation

Description
Returns or sets the file location for SmarTerm’s user HotSpots (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserHotSpotsLocation
  Application.UserHotSpotsLocation = "c:\hotspots"
End Sub

See Also
Application and Session Features on page 37

Application.UserKeyMapsLocation
Syntax

Application.UserKeyMapsLocation

Description
Returns or sets the file location for SmarTerm’s user keyboard maps (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserKeyMapsLocation
  Application.UserKeyMapsLocation = "c:\keymaps"
End Sub

See Also
Application and Session Features on page 37

Application.UserMacrosLocation
Syntax

Application.UserMacrosLocation

Description
Returns or sets the file location for SmarTerm’s user macros (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserMacrosLocation
  Application.UserMacrosLocation = "c:\macros"
End Sub

See Also
Application and Session Features on page 37

Application.UserPhoneBookLocation
Syntax

Application.UserPhoneBookLocation

Description



A

131

Returns or sets the file location for SmarTerm’s user phonebook (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserPhoneBookLocation
  Application.UserPhoneBookLocation = "c:\phonebk"
End Sub

See Also
Application and Session Features on page 37; Host Connections on page 35

Application.UserSessionsLocation
Syntax

Application.UserSessionsLocation

Description
Returns or sets the file location for SmarTerm’s user session files (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserSessionsLocation
  Application.UserSessionsLocation = "c:\sessions"
End Sub

See Also
Application and Session Features on page 37

Application.UserButtonPicturesLocation
Syntax

Application.UserButtonPicturesLocation

Description
Returns or sets the file location for SmarTerm’s user Buttons graphic files (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserButtonPicturesLocation
  Application.UserButtonPicturesLocation = "c:\butnpix"
End Sub

See Also
Application and Session Features on page 37

Application.UserSmarTermButtonsLocation
Syntax

Application.UserSmarTermButtonsLocation

Description
Returns or sets the file location for user SmarTerm Buttons files (string).

Example
Sub Main
  Dim Location as String
  Location = Application.UserSmarTermButtonsLocation



SmarTerm Macro Guide

132

  Application.UserSmarTermButtonsLocation = "c:\buttons"
End Sub

See Also
Application and Session Features on page 37

Application.UserTransfersLocation
Syntax

Application.UserTransfersLocation

Description
Returns or sets the file location for SmarTerm file transfers.

Example
Sub Main
  Dim Location as String
  Location = Application.UserTransfersLocation
  Application.UserTransfersLocation = "c:\transfer"
End Sub

See Also
Application and Session Features on page 37

Application.Version
Syntax

Application.Version

Description
Returns a string identifying the version number of SmarTerm’s macro engine.

Example
Sub Main
  Dim MacroVersion as String
  MacroVersion = Application.Version
  Session.Echo "SmarTerm's macro version number is " & MacroVersion
End Sub

See Also
Application.Product; Application and Session Features on page 37

Application.ViewUserHelp
Syntax

Application.ViewUserHelp

Description
Launches the user defined help file in the help viewer.

Example
Sub Main
  Application.ViewUserHelp
End Sub

See Also
Application.SuppressRefocus; Application.UserHelpMenu; Application and Session Features on page
37; User Interaction on page 39



A

133

Application.Visible
Syntax

Application.Visible

Description
Returns or sets the visible state of the SmarTerm application (boolean). This property can be used to
make SmarTerm invisible.

Example
Sub Main
  Dim Visible as Boolean
  Visible = Application.Visible
  If Visible = True Then
     Session.Echo "Hiding SmarTerm"
     Application.Visible = False
  End If
End Sub

See Also
S

Application.WindowState
Syntax

Application.WindowState

Description
Returns or sets the state of the SmarTerm application window (integer). Possible values are:

Value Constant Meaning

0 smlMINIMIZE The window is minimized.

1 smlRESTORE The window is restored.

2 smlMAXIMIZE The window is maximized.

Example
Sub Main
  Dim WinState as Integer
  WinState = Application.WindowState
  If WinState = smlMINIMIZE Then
     Application.WindowState = smlMAXIMIZE
  End If
End Sub

See Also
Session.WindowState; Application and Session Features on page 37

AppList
Syntax

AppList AppNames$()

Description



SmarTerm Macro Guide

134

Fills an array with the names of all open applications. The AppNames$ parameter must specify either a
zero- or one-dimensional dynamic String array or a one-dimensional fixed String array. If the array is
dynamic, then it will be redimensioned to match the number of open applications. For fixed arrays,
AppList first erases each array element, then begins assigning application names to the elements in the
array. If there are fewer elements than will fit in the array, then the remaining elements are unused. The
compiler returns a runtime error if the array is too small to hold the new elements.

After calling this function, you can use LBound and UBound to determine the new size of the array.

Example
Sub Main
AppList apps
'Check to see whether any applications were found.
If ArrayDims(apps) = 0 Then Exit Sub
For i = LBound(apps) To UBound(apps)
AppMinimize apps(i)

Next i
End Sub

See Also
Operating System Control on page 38

AppMaximize
Syntax

AppMaximize [title | taskID]

Description
Maximizes the named application.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppMaximize function maximizes the active application. Or, you can specify the ID of the task as
returned by the Shell function.

If the named application is maximized or hidden, the AppMaximize statement will have no effect.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMaximize generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example
Sub Main
AppMaximize "Untitled - Notepad"
'Maximize Untitled - Notepad.
If AppFind$("NotePad") <> "" Then
AppActivate "NotePad"

'Set the focus to NotePad.
AppMaximize 'Maximize it.

End If



A

135

End Sub

See Also
Operating System Control on page 38

AppMinimize
Syntax

AppMinimize [title | taskID]

Description
Minimizes the named application.

The title parameter is a String containing the name of the desired application. If it is omitted, then
the AppMinimize function minimizes the active application. Or, you can specify the ID of the task as
returned by the Shell function.

If the named application is minimized or hidden, the AppMinimize statement will have no effect.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMinimize generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example
Sub Main
AppMinimize "Untitled - Notepad"
'Maximize Untitled - Notepad.
If AppFind$("NotePad") <> "" Then
AppActivate "NotePad"

'Set the focus to NotePad.
AppMinimize 'Maximize it.

End If
End Sub

See Also
Operating System Control on page 38

AppMove
Syntax

AppMove x,y [,title | taskID]

Description
Sets the upper left corner of the named application to a given location. The AppMove statement takes
the following parameters:



SmarTerm Macro Guide

136

Parameter Description

x, y Integer coordinates specifying the upper left corner of the new location of
the application, relative to the upper left corner of the display.

title String containing the name of the application to move. If this parameter is
omitted, then the active application is moved.

taskID A number specifying the task ID of the application to be activated.
Acceptable task IDs are returned by the Shell function.

If the named application is maximized or hidden, the AppMove statement will have no effect.

The x and y parameters are specified in twips.

AppMove will accept x and y parameters that are off the screen.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppMove generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog.

Example
Sub Main
Dim x%,y%
AppActivate "Untitled - Notepad" 'Activate Program Mgr.
AppGetPosition x%,y%,0,0 'Retrieve its position.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
AppMove x% + 10,y% 'Nudge it 10 pixels

End Sub

See Also
Operating System Control on page 38

AppRestore
Syntax

AppRestore [title | taskID]

Description
Restores the named application.

The title parameter is a String containing the name of the application to restore. If this parameter is
omitted, then the active application is restored. Or, you can specify the ID of the task as returned by
the Shell function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is



A

137

"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppRestore will have an effect only if the main window of the named application is either maximized
or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not enabled, as is the case if that
application is currently displaying a modal dialog.

Example
Sub Main
If AppFind$("Untitled - Notepad") = "" Then Exit Sub
AppActivate "Untitled - Notepad"
AppMinimize "Untitled - Notepad"
Session.Echo "Untitled - Notepad is now minimized. Press OK to restore it."
AppRestore "Untitled - Notepad"

End Sub

See Also
Operating System Control on page 38

AppSetState
Syntax

AppSetState newstate [,title | taskID]

Description
Maximizes, minimizes, or restores the named application, depending on the value of newstate. The
AppSetState statement takes the following parameters:

Parameter Description

newstate An integer specifying the new state of the window.

title A string containing the name of the application to change. If omitted,
then the active application is used.

taskID A number specifying the task ID of the application to be activated.
Acceptable task IDs are returned by the Shell function.

The newstate parameter can be any of the following values:

Value Constant Description

1 ebMinimized The named application is minimized.

2 ebMaximized The named application is maximized.

3 ebRestored The named application is restored.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.



SmarTerm Macro Guide

138

Example
See AppGetState (function).

See Also
Operating System Control on page 38

AppShow
Syntax

AppShow [title | taskID]

Description
Makes the named application visible.

The title parameter is a String containing the name of the application to show. If this parameter is
omitted, then the active application is shown. Or, you can specify the ID of the task as returned by the
Shell function.

If the named application is already visible, AppShow will have no effect.

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

AppShow generates a runtime error if the named application is not enabled, as is the case if that
application is displaying a modal dialog.

Example
See AppHide (statement).

See Also
Operating System Control on page 38

AppSize
Syntax

AppSize width,height [,title | taskID]

Description
Sets the width and height of the named application. The AppSize statement takes the following
parameters:

Parameter Description

width, height Integer coordinates specifying the new size of the application.

title String containing the name of the application to resize. If this
parameter is omitted, then the active application is use.



A

139

Parameter Description

taskID A number specifying the task ID of the application to be activated.
Acceptable task IDs are returned by the Shell function.

The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized or maximized).

The title parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches title, then a second search is
performed for applications whose title string begins with title. If more than one application is found
that matches title, then the first application encountered is used.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is
"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog when an AppSize statement is executed.

Example
Sub Main
Dim w%,h%
AppGetPosition 0,0,w%,h% 'Get current width/height.
x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.
AppSize w%,h% 'Change to new size.

End Sub

See Also
Operating System Control on page 38

AppType
Syntax

AppType [(title | taskID)]

Description
Returns an Integer indicating the executable file type of the named application:

Returns If the file type is

ebDos DOS executable

ebWindows Windows executable

The title parameter is a String containing the name of the application. If this parameter is omitted,
then the active application is used. Or, you can specify the ID of the task as returned by the Shell

function.

Under Windows 98/Me, applications adhere to a convention where the caption contains the name of
the file before the name of the application. For example, under NT, the caption for Notepad is



SmarTerm Macro Guide

140

"Notepad - (Untitled)", whereas under Windows 98/Me, the caption is "Untitled - Notepad". You must
keep this in mind when specifying the title parameter.

Example
This example creates an array of strings containing the names of all the running Windows
applications. It uses the AppType command to determine whether an application is a Windows app or a
DOS app.

Sub Main
Dim apps$(),wapps$()
AppList apps 'Retrieve a list of all Windows and DOS apps.
If ArrayDims(apps) = 0 Then
Session.Echo "There are no running applications."
Exit Sub

End If
'Create an array to hold only the Windows apps.
ReDim wapps$(UBound(apps))
n = 0 'Copy the Windows apps from one array to the target array.
For i = LBound(apps) to UBound(apps)
If AppType(apps(i)) = ebWindows Then
wapps(n) = apps(i)
n = n + 1

End If
Next i
If n = 0 Then 'Make sure at least one Windows app was found.
Session.Echo "There are no running Windows applications."
Exit Sub

End If
ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
'Let the user pick one.
index% = SelectBox("Windows Applications","Select a Windows application:",wapps)

End Sub

See Also
Operating System Control on page 38

ArrayDims
Syntax

ArrayDims(arrayvariable)

Description
Returns an Integer indicating the number of dimensions in the array. A return value of 0 indicates that
the array has not yet been dimensioned. This function can be used to determine whether a given array
contains any elements or if the array is initially created with no dimensions and then redimensioned
by another function, such as the FileList function, as shown in the following example.

Example
This example allocates an empty (null-dimensioned) array, fills the array with a list of filenames,
which resizes the array, then tests the array dimension.

Sub dimensions

Dim f$()
Dim message$
Dims% = Arraydims(f$)
Message$ = "The array size is "

If Dims% = 0 Then
   Session.Echo "The array is empty"



A

141

Else
   For i% = 1 To Dims%
      If i < Dims Then
         Message$ = Message$ & (Ubound(f$,i) - Lbound(f$,i)+1) & " X "
      Else
         Message$ = Message$ & (Ubound(f$,i) - Lbound(f$,i)+1)
      End If
   Next i%
   Session.Echo Message$
End If

End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Arrays (topic)
Declaring array variables

Arrays are declared using any of the following statements:
Dim
Public
Private

For example:
Dim a(10) As Integer
Public LastNames(1 to 5,-2 to 7) As Variant
Private

Arrays of any data type can be created, including Integer, Long, Single, Double, Boolean, Date, Variant,
Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following range:
-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed arrays
The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a fixed array will
always require the same amount of storage. Fixed arrays can be declared with the Dim, Private, or
Public statement by supplying explicit dimensions. The following example declares a fixed array of
ten strings:

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a
structure containing fixed-length arrays:

Type Foo
  rect(4) As Integer
  colors(10) As Integer
End Type

Only fixed arrays can appear within structures.



SmarTerm Macro Guide

142

Dynamic arrays
Dynamic arrays are declared without explicit dimensions, as shown below:

Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:
Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times.
When redimensioning an array, the old array is first erased unless you use the Preserve keyword, as
shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing arrays
Arrays are always passed by reference. When you pass an array, you can specify the array name by
itself, or with parentheses as shown below:

Dim a(10) As String
FileList a 'Both of these are OK
FileList a()

Querying arrays
Use these functions to retrieve information about arrays:

Use this function To

LBound Retrieve the lower bound of an array. A runtime error is generated
if the array has no dimensions.

UBound Retrieve the upper bound of an array. A runtime error is generated
if the array has no dimensions.

ArrayDims Retrieve the number of dimensions of an array. This function
returns 0 if the array has no dimensions.

Operations on arrays
The following table indicates the functions that operate on arrays:

Command Action

ArraySort Sort an array of integers, longs, singles, doubles, currency, booleans,
dates, or variants.

FileList Fill an array with a list of files in a given directory.

DiskDrives Fill an array with a list of valid drive letters.

AppList Fill an array with a list of running applications.

SelectBox Display the contents of an array in a listbox.



A

143

Command Action

PopupMenu Display the contents of an array in a popup menu.

ReadIniSection Fill an array with the item names from a section in an INI file.

FileDirs Fill an array with a list of folders.

Erase Erase all the elements of an array.

ReDim Establish the bounds and dimensions of an array.

Dim Declare an array.

ArraySort
Syntax

ArraySort array()

Description
Sorts a single-dimensioned array in ascending order. If a string array is specified, then the routine sorts
alphabetically in ascending order using case-sensitive string comparisons. If a numeric array is
specified, the ArraySort statement sorts smaller numbers to the lowest array index locations. There is a
runtime error if you specify an array with more than one dimension.

When sorting an array of variants, the following rules apply:

• A runtime error is generated if any element of the array is an object.

• String is greater than any numeric type.

• Null is less than String and all numeric types.

• Empty is treated as a number with the value 0.

• String comparison is case-sensitive (this function is not affected by the Option Compare setting).

Example
Sub Main
  Dim f$()
  FileList f$,"c:\*.*"
  ArraySort f$
  Session.Echo "Files: <CR><LF>"
  For i= 0 to UBound(f$)
    Session.Echo f$(i) & "<CR><LF>"
  Next i
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34.

Asc, AscB, AscW
Syntax

Asc(string)
AscB(string)
AscW(string)

Description



SmarTerm Macro Guide

144

Returns an Integer containing the numeric code for the first character of string. On single-byte
systems, this function returns a number between 0 and 255, whereas on MBCS systems, this function
returns a number between -32768 and 32767. On wide platforms, this function returns the MBCS
character code after converting the wide character to MBCS.

To return the value of the first byte of a string, use the AscB function. This function is used when you
need the value of the first byte of a string known to contain byte data rather than character data. On
single-byte systems, the AscB function is identical to the Asc function.

The AscW function returns the character value native to that platform. For example, on Win32
platforms, this function returns the UNICODE character code.

The following table summarizes the values returned by these functions:

Function String Format Return Value

Asc SBCS First byte of string (between 0 and 255)

MBCS First character of string (between -32769 and 32767)

Wide First character of string after conversion to MBCS.

AscB SBCS First byte of string.

MBCS First byte of string.

Wide First byte of string.

AscW SBCS Same as Asc.

MBCS Same as Asc.

Wide Wide character native to operating system.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  s$ = InputBox("Please enter a string.","Enter String")
  If s$ = "" Then End 'Exit if no string entered.
  For i = 1 To Len(s$)
    mesg = mesg & Asc(Mid$(s$,i,1)) & crlf
  Next i
  Session.Echo "The Asc values of the string are:" & mesg
End Sub

See Also
Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$; Character and String Manipulation on page 33

AskBox, AskBox$
Syntax

AskBox[$](prompt$ [,[default$] [,[title$][,helpfile,context]]])

Description
Displays a dialog requesting input from the user and returns that input as a String. The AskBox/AskBox$

functions take the following parameters:



A

145

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog
is sized to the appropriate width depending on the width of prompt$. A
runtime error is generated if prompt$ is null.

default$ String containing the initial content of the text box. The user can return
the default by immediately selecting OK. A runtime error is generated if
default$ is null.

title$ String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's
help. If this parameter is specified, then helpfile must also be specified.

The AskBox$ function returns a String containing the input typed by the user in the text box. A zero-
length string is returned if the user selects Cancel.

The AskBox function returns a String variant containing the input typed by the user in the text box. An
Empty variant is returned if the user selects Cancel.

When the dialog is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by AskBox$.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Example
Sub Main
s$ = AskBox$("Type in the filename:")
Session.Echo "The filename was: " & s$

End Sub

See Also
User Interaction on page 39

AskPassword, AskPassword$
Syntax

AskPassword[$](prompt$ [,[title] [,helpfile,context]])

Description
Returns a String containing the text that the user typed. Unlike the AskBox/AskBox$ functions, the user
sees asterisks in place of the characters that are actually typed. This allows the hidden input of
passwords. The AskPassword/AskPassword$ functions take the following parameters:



SmarTerm Macro Guide

146

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog
is sized to the appropriate width depending on the width of prompt$. A
runtime error is generated if prompt$ is null.

title$ String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's
help. If this parameter is specified, then helpfile must also be specified.

When the dialog is first displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

The AskPassword$ function returns the text typed into the text box, up to a maximum of 255
characters. A zero-length string is returned if the user selects Cancel.

The AskPassword function returns a String variant. An Empty variant is returned if the user selects
Cancel.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Example
Sub Main
s$ = AskPassword$("Type in the password:")
Session.Echo "The password entered is: " & s$

End Sub

See Also
User Interaction on page 39

Atn
Syntax

Atn(number)

Description
Returns the angle (in radians) whose tangent is number. Some helpful conversions:

• Pi (3.1415926536) radians = 180 degrees.

• 1 radian = 57.2957795131 degrees.

• 1 degree = .0174532925 radians.

Example
Sub Main
  a# = Atn(1.00)
  Session.Echo "1.00 is the tangent of " & a# & " radians (45 degrees)."
End Sub

See Also



A

147

Numeric, Math, and Accounting Functions on page 36



B

Beep
Syntax

Beep

Description
Makes a single system beep.

Example
Sub Main

For i = 1 To 5
Beep
Sleep(200)

Next i
Session.Echo "You have an upcoming appointment!"

End Sub

See Also
Operating System Control on page 38

Begin Dialog
Syntax

Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$] [,style]]]
Dialog Statements

End Dialog

Description
Defines a dialog template for use with the Dialog statement and function. A dialog template is
constructed by placing any of the following statements between the Begin Dialog and End Dialog

statements (no other statements besides comments can appear within a dialog template).

Note:
It is easier to construct a dialog using the dialog editor.

Picture PictureButton OptionButton

OptionGroup CancelButton Text

TextBox GroupBox DropListBox

ListBox ComboBox CheckBox

PushButton OKButton

The Begin Dialog statement requires the following parameters:



SmarTerm Macro Guide

149

Parameter Description

x, y Integer coordinates specifying the position of the upper left corner of
the dialog relative to the parent window. These coordinates are in
dialog units. If either coordinate is unspecified, then the dialog will be
centered in that direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog (in
dialog units).

DialogName Name of the dialog template. Once a dialog template has been created,
a variable can be dimensioned using this name.

title$ String containing the name to appear in the title bar of the dialog.

.DlgProc Name of the dialog function. The routine specified by .DlgProc will be
called when certain actions occur during processing of the dialog. (See
DlgProc [prototype] for additional information about dialog functions.)
If this parameter is omitted, then the compiler processes the dialog
using the default dialog processing behavior.

PicName$ String specifying the name of a DLL containing pictures. This DLL is
used as the origin for pictures when the picture type is 10. If this
parameter is omitted, then no picture library will be used.

style Specifies extra styles for the dialog. It can be any of the following
values:
0 Dialog does not contain a title or close box.
1 Dialog contains a title and no close box.
2 (or omitted) Dialog contains both the title and close box.

There is an error if the dialog template contains no controls.

A dialog template must have at least one PushButton, OKButton, or CancelButton statement. Otherwise,
there will be no way to close the dialog.

Dialog units are defined as 1/4 the width of the font in the horizontal direction and 1/8 the height of
the font in the vertical direction.

Any number of user dialoges can be created, but each one must be created using a different name as
the DialogName. Only one user dialog may be invoked at any time.

Expression Evaluation within the dialog Template
The Begin Dialog statement creates the template for the dialog. Any expression or variable name that
appears within any of the statements in the dialog template is not evaluated until a variable is
dimensioned of type DialogName. The following example shows this behavior:

MyTitle$ = "Hello, World"
Begin Dialog MyTemplate 16,32,116,64,MyTitle$
  OKButton 12,40,40,14
End Dialog
MyTitle$ = "Sample Dialog"
Dim Dummy As MyTemplate
rc% = Dialog(Dummy)

The above example creates a dialog with the title "Sample Dialog".

Expressions within dialog templates cannot reference external subroutines or functions.



B

150

All controls within a dialog use the same font. The fonts used for the text and text box controls can be
changed explicitly by setting the font parameters in the Text and TextBox statements. A maximum of
128 fonts can be used within a single dialog, although the practical limitation may be less.

Example
Sub Main
  Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
    Text 4,8,108,8,"Are you sure you want to exit?"
    CheckBox 32,24,63,8,"Save Changes",.SaveChanges
    OKButton 12,40,40,14
    CancelButton 60,40,40,14
  End Dialog
  Dim QuitDialog As QuitDialogTemplate
  rc% = Dialog(QuitDialog)
End Sub

See Also
User Interaction on page 39

Boolean (data type)
Syntax

Boolean

Description
A data type capable of representing the logical values True and False. Boolean variables are used to
hold a binary value—either True or False. There is no type-declaration character for Boolean variables.
Variables can be declared as Boolean using the Dim, Public, or Private statement. Internally, a Boolean

variable is a 2-byte value holding –1 (for True) or 0 (for False). When appearing as a structure member,
Boolean members require 2 bytes of storage; When used within binary or random files, 2 bytes of
storage are required.

Any type of data can be assigned to Boolean variables. Boolean variables that have not yet been
assigned are given an initial value of False.When assigning, non-0 values are converted to True, and 0
values are converted to False. Variants can hold Boolean values when assigned the results of
comparisons or the constants True or False. When passed to external routines, Boolean values are sign-
extended to the size of an integer on that platform (either 16 or 32 bits) before pushing onto the stack.

See Also
Keywords, Data Types, Operators, and Expressions on page 34

ByRef
Syntax

...,ByRef parameter,...

Description
Used within the Sub...End Sub, Function...End Function, or Declare statement to specify that a given
parameter can be modified by the called routine.

Note:
Passing a parameter by reference means that the caller can modify that variable's value.



SmarTerm Macro Guide

151

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a parameter. The absence
of the ByVal keyword is sufficient to force a parameter to be passed by reference:

MySub ByVal i 'Pass i by value.
MySub ByRef i 'Illegal (will not compile).
MySub i 'Pass i by reference.

Example
Sub Test(ByRef a As Variant)
  a = 14
End Sub

Sub Main
  b = 12
  Test b
  Session.Echo "The ByRef value is: " & b 'Displays 14.
End Sub

See Also
( ) (precedence), ByVal; Keywords, Data Types, Operators, and Expressions on page 34; Macro
Control and Compilation on page 36

ByVal
Syntax

...ByVal parameter...

Description
Forces a parameter to be passed by value rather than by reference. The ByVal keyword can appear
before any parameter passed to any function, statement, or method to force that parameter to be passed
by value. Passing a parameter by value means that the caller cannot modify that variable's value.
Enclosing a variable within parentheses has the same effect as the ByVal keyword:

Foo ByVal i 'Forces i to be passed by value.
Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (i.e., routines defined using the Declare statement), the
ByVal keyword forces the parameter to be passed by value regardless of the declaration of that
parameter in the Declare statement. The following example shows the effect of the ByVal keyword used
to passed an Integer to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)
i% = 6
Foo ByVal i% 'Pass a 2-byte Integer.
Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer, the first call to Foo will have
unpredictable results.

Example
Sub Foo(a As Integer)
  a = a + 1
End Sub

Sub Main
  Dim i As Integer
  i = 10
  Foo i
  Session.Echo "The ByVal value is: " & i 'Displays 11
                  '(Foo changed the value).
  Foo ByVal i



B

152

  Session.Echo "The ByVal value is still: " & i 'Displays 11 Foo did not _
change the value).
End Sub

See Also
( ) (precedence), ByRef; Keywords, Data Types, Operators, and Expressions on page 34; Macro
Control and Compilation on page 36



C

Call
Syntax

Call subroutine_name [(arguments)]

Description
Transfers control to the given subroutine, optionally passing the specified arguments. Using this
statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute subroutines;
functions cannot be executed with this statement. The subroutine to which control is transferred by the
Call statement must be declared outside of the calling procedure, as shown in the following example.

Examples
This example uses the Call statement to pass control to another function.

Sub Example_Call(s$)
  'This subroutine is declared externally to Main and displays
  'the text passed in the parameter s$.
  Session.Echo "Call: " & s$
End Sub

Sub Main
'This example assigns a string variable to display, then calls
'subroutine Example_Call, passing parameter s$ to be displayed within
'the subroutine.

  s$ = "DAVE"
  Example_Call s$
  Call Example_Call("SUSAN")
End Sub

See Also
Macro Control and Compilation on page 36

CancelButton
Syntax

CancelButton x, y, width, height [,.Identifier]

Description
Defines a Cancel button that appears within a dialog template. This statement can only appear within
a dialog template (i.e., between the Begin Dialog and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog, causing the Dialog function to
return 0. (Note: A dialog function can redefine this behavior.) Pressing the Esc key or double-clicking
the close box will have no effect if a dialog does not contain a CancelButton statement.

The CancelButton statement requires the following parameters:



SmarTerm Macro Guide

154

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog
units) relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

.Identifier Optional parameter specifying the name by which this control can be
referenced by statements in a dialog function (such as DlgFocus and
DlgEnable). If this parameter is omitted, then the word "Cancel" is used.

A dialog must contain at least one OKButton, CancelButton, or PushButton statement; otherwise, the
dialog cannot be dismissed.

Example
Sub Main
  Begin Dialog SampleDialogTemplate 37,32,48,52,"Sample"
    OKButton 4,12,40,14,.OK
    CancelButton 4,32,40,14,.Cancel
  End Dialog
  Dim SampleDialog As SampleDialogTemplate
  r% = Dialog(SampleDialog)
  If r% = 0 Then Session.Echo "Cancel was pressed!"
End Sub

See Also
User Interaction on page 39

CBool
Syntax

CBool(expression)

Description
Converts expression to True or False, returning a Boolean value. The expression parameter is any
expression that can be converted to a Boolean. A runtime error is generated if expression is Null.

All numeric data types are convertible to Boolean. If expression is zero, then the CBool returns False;
otherwise, CBool returns True. Empty is treated as False.

If expression is a String, then CBool first attempts to convert it to a number, then converts the number
to a Boolean. A runtime error is generated if expression cannot be converted to a number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example
Sub Main
  Dim IsNumericOrDate As Boolean
  s$ = "34224.54"
  IsNumericOrDate = CBool(IsNumeric(s$) Or IsDate(s$))
  If IsNumericOrDate = True Then
    Session.Echo s$ & " is either a valid date or number!"
  Else
    Session.Echo s$ & " is not a valid date or number!"
  End If
End Sub



C

155

See Also
Keywords, Data Types, Operators, and Expressions on page 34

CCur
Syntax

CCur(expression)

Description
Converts any expression to a Currency. This function accepts any expression convertible to a Currency,
including strings. A runtime error is generated if expression is Null or a String not convertible to a
number. Empty is treated as 0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Currency.

When used with variants, this function guarantees that the variant will be assigned a Currency (VarType
6).

Example
Sub Main
  i$ = "100.44"
  Session.Echo "The currency value is: " & CCur(i$)
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

CDate, CVDate
Syntax

CDate(expression)
CVDate(expression)

Description
Converts expression to a date, returning a Date value. The expression parameter is any expression that
can be converted to a Date. A runtime error is generated if expression is Null.

If expression is a String, an attempt is made to convert it to a Date using the current country settings.
If expression does not represent a valid date, then an attempt is made to convert expression to a
number. A runtime error is generated if expression cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.

Note:
The CDate and CVDate functions are identical.

Example
Sub Main
  Dim date1 As Date
  Dim date2 As Date
  Dim diff As Date
  date1 = CDate(#1/1/1994#)
  date2 = CDate("February 1, 1994")
  diff = DateDiff("d",date1,date2)



SmarTerm Macro Guide

156

  Session.Echo "The date difference is " & CInt(diff) & " days."
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Time and Date Access on page 39

CDbl
Syntax

CDbl(expression)

Description
Converts any expression to a Double. This function accepts any expression convertible to a Double,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Double.

When used with variants, this function guarantees that the variant will be assigned a Double (VarType
5).

Example
Sub Main
  i% = 100
  j! = 123.44
  Session.Echo "The double value is: " & CDbl(i% * j!)
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

ChDir
Syntax

ChDir path

Description
Changes the current directory of the specified drive to path. This routine will not change the current
drive. (See ChDrive [statement].)

Example
Const crlf = $(13) + Chr$(10)

Sub Main
  save$ = CurDir$
  ChDir ("C:\")
  Session.Echo "Old: " & save$ & crlf & "New: " & CurDir$
  ChDir (save$)
  Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also
Drive, Folder, and File Access on page 34

ChDrive
Syntax



C

157

ChDrive drive

Description
Changes the default drive to the specified drive. Only the first character of drive is used. Also, drive is
not case-sensitive. If drive is empty, then the current drive is not changed.

Example
Const crlf$ = Chr$(13) + Chr$(10)

Sub Main
  cd$ = CurDir$
  save$ = Mid$(CurDir$,1,1)
  If save$ = "D" Then
    ChDrive("C")
  Else
    ChDrive("D")
  End If
  Session.Echo "Old: " & save$ & crlf & "New: " & CurDir$
  ChDrive (save$)
  Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also
Drive, Folder, and File Access on page 34

CheckBox
Syntax

CheckBox x, y, width, height, title$, .Identifier

Description
Defines a checkbox within a dialog template. Checkbox controls are either on or off, depending on the
value of .Identifier. This statement can only appear within a dialog template (i.e., between the Begin

Dialog and End Dialog statements). The CheckBox statement requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog
units) relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control (in dialog
units).

title$ String containing the text that appears within the checkbox. This text
may contain an ampersand character to denote an accelerator letter,
such as "&Font" for Font (indicating that the Font control may be
selected by pressing the F accelerator key).

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
an integer variable whose value corresponds to the state of the
checkbox (1 = checked; 0 = unchecked). This variable can be accessed
using the syntax: DialogVariable.Identifier.



SmarTerm Macro Guide

158

When the dialog is first created, the value referenced by .Identifier is used to set the initial state of
the checkbox. When the dialog is dismissed, the final state of the checkbox is placed into this
variable. By default, the .Identifier variable contains 0, meaning that the checkbox is unchecked.

Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example
Sub Main
  Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"
    GroupBox 4,4,84,40,"GroupBox"
    CheckBox 12,16,67,8,"Include heading",.IncludeHeading
    CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
    OKButton 104,8,40,14,.OK
    CancelButton 104,28,40,14,.Cancel
  End Dialog
  Dim SaveOptions As SaveOptionsTemplate
  SaveOptions.IncludeHeading = 1 'Checkbox initially on.
  SaveOptions.ExpandKeywords = 0 'Checkbox initially off.
  r% = Dialog(SaveOptions)
  If r% = -1 Then
    Session.Echo "OK was pressed."
  End If
End Sub

See Also
User Interaction on page 39

Choose
Syntax

Choose(index,expression1,expression2,...,expression13)

Description
Returns the expression at the specified index position. The index parameter specifies which expression
is to be returned. If index is 1, then expression1 is returned; if index is 2, then expression2 is returned,
and so on. If index is less than 1 or greater than the number of supplied expressions, then Null is
returned.

The index parameter is rounded down to the nearest whole number.

The Choose function returns the expression without converting its type. Each expression is evaluated
before returning the selected one.

Example
Sub Main
  Dim a As Variant
  Dim c As Integer
  c% = 2
  a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)
  ’Display the date passed as a parameter:
  Session.Echo "Item " & c% & " is '" & a & "'"
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$
Syntax



C

159

Chr[$](charcode)
ChrB[$](charcode)
ChrW[$](charcode)

Description
Returns the character the value of which is charcoode. The Chr$, ChrB$, and ChrW$ functions return a
String, whereas the Chr, ChrB, and ChrW functions return a String variant. These functions behave
differently depending on the string format:

Function String Format Value between Returns

Chr[$] SBCS 0 and 255 1-byte character string.

MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 2-byte character string.

ChrB[$] SBCS 0 and 255 1-byte character string.

MBCS 0 and 255 1-byte character string.

Wide 0 and 255

ChrW[$] SBCS 0 and 255 1-byte character string (same as Chr and
Chr$ functions)

MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 2-byte character string.

The Chr$ function can be used within constant declarations, as in the following example:
Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:

Function Use

Chr$(9) Tab

Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)

Chr$(26) End-of-file

Chr$(0) Null

Examples
Concatenates carriage return (13) and line feed (10) in crlf$, then displays a multiple-line message
using crlf$ to separate lines.

Sub Main
  crlf$ = Chr$(13) + Chr$(10)
  Session.Echo "First line." & crlf$ & "Second line."
  'Fills an array with the ASCII characters for ABC and
  'displays their corresponding characters.
  Dim a%(2)



SmarTerm Macro Guide

160

  For i = 0 To 2
    a%(i) = (65 + i)
  Next I
  Session.Echo "The first three elements of the array are: " & Chr$(a%(0)) & Chr$(a%(1))
& Chr$(a%(2))
End Sub

See Also
Character and String Manipulation on page 33

CInt
Syntax

CInt(expression)

Description
Converts expression to an Integer. This function accepts any expression convertible to an Integer,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0. The passed
numeric expression must be within the valid range for integers:

-32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a numeric expression
to an Integer. Note that integer variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to an Integer

variant (VarType 2).

Example
Sub Main
  '(1) Assigns i# to 100.55 and displays its integer representation (101).
  i# = 100.55
  Session.Echo "The value of CInt(i) = " & CInt(i#)
  '(2) Sets j# to 100.22 and displays the CInt
  'representation (100).
  j# = 100.22
  Session.Echo "The value of CInt(j) = " & CInt(j#)
  '(3) Assigns k% (integer) to the CInt sum of j# and k% and
  'displays k% (201).
  k% = CInt(i# + j#)
   Session.Echo "The integer sum of 100.55 and 100.22 is: " & k%
  '(4) Reassigns i# to 50.35 and recalculates k%, then
  'displays the result (note rounding).
  i# = 50.35
  k% = CInt(i# + j#)
  Session.Echo "The integer sum of 50.35 and 100.22 is: " & k%
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Circuit (object)
Circuit methods and properties indicate the scope of their action by their name by incorporating the
appropriate communication method in the name (such as Circuit.LATHostName). Properties and
methods common to all communication methods do not incorporate a communication method name



C

161

(such as Circuit.AssertBreak). As of this version of SmarTerm, the supported communication methods
are LAT, modem, serial, SNA, and Telnet.

Circuit.AssertBreak
Syntax

Circuit.AssertBreak

Description
Asserts a communications break and returns a boolean representing the completion status. This method
asserts a communications Break condition appropriate for the communications method being used.

Example
Sub Main
  Dim BreakStatus as Boolean
  BreakStatus = Circuit.AssertBreak()
  If BreakStatus = FALSE Then
     Session.Echo "An error occurred"
  End If
End Sub

See Also
Host Connections on page 35; Objects on page 40

Circuit.AutoConnect
Syntax

Circuit.AutoConnect

Description
Returns or sets the communication method's autoconnect state (boolean).

Example
Sub Main
  Dim StAuto as Boolean
  StAuto = Circuit.AutoConnect
  If StAuto = False Then
     Session.Echo "Turning autoconnect on"
     Circuit.AutoConnect = True
  End If
End Sub

See Also
Host Connections on page 35

Circuit.Connect
Syntax

Circuit.Connect

Description
Establishes a connection to a host and always returns a value of True. Use Circuit.Connected if you
want to check connection status.

Example
Sub Main
  If Circuit.Connected Then
     If Circuit.Disconnect = FALSE Then
        Session.Echo "Disconnect error"
     End If



SmarTerm Macro Guide

162

  End If
  Circuit.TelnetPortNumber = 21
  Circuit.TelnetHostName = "SomeHost.com"
  If Circuit.Connect = FALSE Then
     Session.Echo "Connect error"
  End If
End Sub

See Also
Host Connections on page 35

Circuit.Connected
Syntax

Circuit.Connected

Description
Returns a boolean representing the session's connection state.

Example
Sub Main
  If Circuit.Connected Then
     Circuit.Disconnect
  End If
End Sub

See Also
Host Connections on page 35

Circuit.Disconnect
Syntax

Circuit.Disconnect

Description
Disconnects from the host and returns a boolean representing the completion status.

Example
Sub Main
  If Circuit.Connected Then
     Circuit.Disconnect
  End If
End Sub

See Also
Host Connections on page 35

Circuit.LATHostName
Syntax

Circuit.LATHostName

Description
Returns or sets the host name for the LAT communications driver (string).

Example
Sub Main
  Dim HostName as String
  HostName = Circuit.LATHostName
  If HostName <> "LATHost1" Then
     Session.Echo "Setting the host to LATHost1 to read your email"



C

163

     Circuit.LATHostName = "LATHost1"
  End If
End Sub

See Also
Host Connections on page 35

Circuit.LATPassword
Syntax

Circuit.LATPassword

Description
Returns or sets the password for the LAT communications driver (string).

Example
Sub Main
  Dim Password, NewPass as String
  Password = Circuit.LATPassword
  If Password = "" Then
     NewPass = AskPassword$("Type in your LAT password.")
     Circuit.LATPassword = NewPass
End Sub

See Also
Host Connections on page 35

Circuit.LATSavePassword
Syntax

Circuit.LATSavePassword

Description
Returns or sets if a password will be saved for the LAT communications driver.

Example
Sub Main
  Dim SavePassState as Boolean
  SavePassState = Circuit.LATSavePassword
  If SavePassState = True Then
     Session.Echo "For security reasons, you cannot save your password"
     Circuit.LATSavePassword = False
  End If
End Sub

See Also
Host Connections on page 35

Circuit.ModemAlt1Number
Syntax

Circuit.ModemAlt1Number

Description
Returns or sets the first alternate phone number to be used when making a modem connection (string).

Example
Sub Main
Dim PhoneNumberAlt1 as String
PhoneNumberAlt1 = Circuit.ModemAlt1Number



SmarTerm Macro Guide

164

If PhoneNumberAlt1 = "" Then
Circuit.ModemAlt1Number = "555-1234"

End If
End Sub

See Also
Host Connections on page 35

Circuit.ModemAlt2Number
Syntax

Circuit.ModemAlt2Number

Description
Returns or sets the second alternate phone number to be used when making a modem connection
(string).

Example
Sub Main
Dim PhoneNumberAlt2 as String
PhoneNumberAlt2 = Circuit.ModemAlt2Number
If PhoneNumberAlt2 = "" Then

Circuit.ModemAlt2Number = "555-1212"
End If

End Sub

See Also
Host Connections on page 35

Circuit.ModemAlt3Number
Syntax

Circuit.ModemAlt3Number

Description
Returns or sets the third alternate phone number to be used when making a modem connection (string).

Example
Sub Main
Dim PhoneNumberAlt3 as String
PhoneNumberAlt3 = Circuit.ModemAlt3Number
If PhoneNumberAlt3 = "" Then

Circuit.ModemAlt3Number = "555-1212"
End If

End Sub

See Also
Host Connections on page 35

Circuit.ModemAreaCode
Syntax

Circuit.ModemAreaCode

Description
Returns or sets the area code to be used when making a modem connection (string).

Example
Sub Main
Dim AreaCode as String



C

165

AreaCode = Circuit.ModemAreaCode
If AreaCode = "" Then

Circuit.ModemAreaCode = "800"
End If

End Sub

See Also
Host Connections on page 35

Circuit.ModemCountryCode
Syntax

Circuit.ModemCountryCode

Description
Returns or sets the current country code.

Example
See example for Circuit.ModemGetCountryCodeString.

See Also
Host Connections on page 35

Circuit.ModemGetCountryCodeString
Syntax

Circuit.ModemGetCountryCodeString index

where index is a 1-based index into the set of country code strings.

Description
Returns a string representing the indexed country code.

Example
Option base 1
Sub Main

Dim TotalStrings as Integer
Dim CountryCodes(TotalStrings) as String
Dim i as Integer
'Fill the CountryCodes array
TotalStrings = Circuit.ModemTotalCountryCodes
For i = 1 to TotalStrings

CountryCodes(i) = Circuit.ModemGetCountryCodeString(i)
Next i
Session.Echo "Current country code: " & Circuit.ModemCountryCode
'Choose a new country code
Circuit.ModemCountryCode = CountryCodes(4)
Session.Echo "New country code: " & Circuit.ModemCountryCode

End Sub

See Also
Host Connections on page 35

Circuit.ModemPhoneNumber
Syntax

Circuit.ModemPhoneNumber

Description
Returns or sets the primary phone number to be used when making a modem connection (string).

Example



SmarTerm Macro Guide

166

Sub Main
Dim PhoneNumber as String
PhoneNumber = Circuit.ModemPhoneNumber
Session.Echo "The current phone number is " & PhoneNumber
Circuit.ModemPhoneNumber = "555-1212"

End Sub

See Also
Host Connections on page 35

Circuit.ModemTotalCountryCodes
Syntax

Circuit.ModemTotalCountryCodes

Description
Returns an integer representing the total number of country code strings available through the
Circuit.ModemGetCountryCodeString method.

Example
See example for Circuit.ModemGetCountryCodeString.

See Also
Host Connections on page 35

Circuit.ModemUseCodes
Syntax

Circuit.ModemUseCodes

Description
Returns or sets whether or not the country code and area code values should be used when dialing
(boolean).

Example
Sub Main
Dim CurrentUseCodes as Boolean
CurrentUseCodes = Circuit.ModemUseCodes
If CurrentUseCodes = FALSE Then
Session.Echo "The country code and area code will be used"

Circuit.ModemUseCodes = True
End If

End Sub

See Also
Host Connections on page 35

Circuit.SendRawToHost
Syntax

Circuit.SendRawToHost (data, datalength)

Description
Sends data to host without character translation and without 8 bit to 7 bit control mapping. Returns
the operation’s completion status (boolean). Parameters are:



C

167

Parameter Description

data Variant, the data to send.

Datalength Integer, size of the data (in bytes)

Example
Sub Main
  Dim fSuccess as Boolean
  fSuccess = Circuit.SendRawToHost("12345", 5)
  If fSuccess = FALSE Then
     Session.Echo "An error occurred."
  End If
End Sub

See Also
Host Connections on page 35

Circuit.SerialBaudRate
Syntax

Circuit.SerialBaudRate

Description
Returns or sets the serial driver's current baud rate (long integer)

Circuit.SerialBaudRate accepts or returns one of the following values: 1200, 2400, 4800, 9600,

14400, 19200, 38400, 57600, or 115200.

Example
Sub Main
Dim BaudRate as Long
BaudRate = Circuit.SerialBaudRate
If BaudRate < 9600 Then

Session.Echo "This connection needs a baud rate of at least 9600 baud"
Circuit.SerialBaudRate = 9600

End If
End Sub

See Also
Host Connections on page 35

Circuit.SerialBreakDuration
Syntax

Circuit.SerialBreakDuration

Description
Returns or sets an integer containing the serial driver's current break duration value (integer).
Circuit.SerialBreakDuration accepts or returns one of the following values:

Value Definition

375 Break duration of 375ms

2000 Break duration of 2000ms

Example



SmarTerm Macro Guide

168

Sub Main
Dim BreakTime as Integer
BreakTime = Circuit.SerialBreakDuration
Circuit.SerialBreakDuration = 375

End Sub

See Also
Host Connections on page 35

Circuit.SerialDataBits
Syntax

Circuit.SerialDataBits

Description
Returns or sets the serial driver's current data bits value (integer). Circuit.SerialDataBits accepts or
returns one of the following values:

Value Definition

7 Configure for 7 data bits.

8 Configure for 8 data bits.

Example
Sub Main
Dim DataBits as Integer
DataBits = Circuit.SerialDataBits
If DataBits = 7 Then

Session.Echo "This connection requires an 8-bit connection"
Circuit.SerialDataBits = 8

End If
End Sub

See Also
Host Connections on page 35

Circuit.SerialFlowControl
Syntax

Circuit.SerialFlowControl

Description
Returns or sets the serial driver's current flow control setting (integer). Possible values are:

Value Constant Meaning

0 smlNOFLOWCONTROL No flow control.

1 smlXONXOFF XON/XOFF flow control.

2 smlRTSCTS RTS/CTS flow control.

3 smlDTRDSR DTR/DSR flow control.

Example
Sub Main
Dim FlowControl as Integer



C

169

FlowControl = Circuit.SerialFlowControl
If FlowControl = smlRTSCTS Then

Circuit.SerialFlowControl = smlXONXOFF
End If

End Sub

See Also
Host Connections on page 35

Circuit.SerialParity
Syntax

Circuit.SerialParity

Description
Returns or sets the serial driver's current parity setting (integer). Possible values are:

Value Constant Meaning

0 smlNOPARITY No parity.

1 smlODDPARITY Odd parity.

2 smlEVENPARITY Even parity.

3 smlMARKPARITY Mark parity.

4 smlSPACEPARITY Space parity.

Example
Sub Main
Dim Parity as Integer
Parity = Circuit.SerialParity
Circuit.SerialParity = smlODDPARITY

End Sub

See Also
Host Connections on page 35

Circuit.SerialPort
Syntax

Circuit.SerialPort

Description
Returns or sets the serial driver's current port number (integer). Circuit.SerialPort accepts or returns a
value within the range: 1 - 255.

Example
Sub Main
Dim ComPort as Integer
ComPort = Circuit.SerialPort
If ComPort > 2 Then

Session.Echo "Setting communications port to COM1"
Circuit.SerialPort = 1

End If
End Sub

See Also
Host Connections on page 35



SmarTerm Macro Guide

170

Circuit.SerialReceiveBufferSize
Syntax

Circuit.SerialReceiveBufferSize

Description
Returns or sets the serial driver's current receive buffer size (integer). Accepts or returns one of the
following values: 512, 1024, 2048, 4096, or 8192.

Example
Sub Main
Dim ReceiveBufferSize as Integer
ReceiveBufferSize = Circuit.SerialReceiveBufferSize
If ReceiveBufferSize < 8192 Then

Session.Echo "Changing your Buffer size to 8192"
Circuit.SerialReceiveBufferSize = 8192

End If
End Sub

See Also
Circuit.Connect (method)

Circuit.SerialStopBits
Syntax

Circuit.SerialStopBits

Description
Returns or sets the serial driver's current stop bits value (integer). This property accepts or returns one
of the following values:

Value Definition

1 1 stop bit

2 2 stop bits

Example
Sub Main
Dim StopBits as Integer
StopBits = Circuit.SerialStopBits
If StopBits <> 1 Then

Session.Echo "This connection requires 1 stop bit"
Circuit.SerialStopBits = 1

End If
End Sub

See Also
Host Connections on page 35

Circuit.SerialTransmitBufferSize
Syntax

Circuit.SerialTransmitBufferSize

Description



C

171

Returns or sets the serial driver's current transmit buffer size (integer).
Circuit.SerialTransmitBufferSize accepts or returns one of the following values: 512, 1024, 2048,

4096, or 8192.

Example
Sub Main
Dim TransmitBufferSize as Integer
TransmitBufferSize = Circuit.SerialTransmitBufferSize
If TransmitBufferSize < 8192 Then

Session.Echo "Changing your Buffer size to 8192"
Circuit.SerialTransmitBufferSize = 8192

End If
End Sub

See Also
Host Connections on page 35

Circuit.Setup
Syntax

Circuit.Setup setupstring$

where setupstring$ is the string containing the setup specifications (string).

Description
Sets SmarTerm communications parameters. This method is provided primarily for the support of PSL
scripts.

The syntax of the string expression is identical between communication methods, although meaning
varies somewhat. Specify setup options one at a time with their own Circuit.Setup statements, or more
than one at a time, if you keep all options and settings within the quotation marks, separating the
setup statements with commas:

Circuit.Setup "baudrate = 2400, parity = NONE, stopbits = 1"

Serial COM1-COM4
Serial Port
portname= COM1 | COM2 | COM3 | COM4
Circuit.Setup "portname = COM1"
Baud Rate
baudrate= 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600
Circuit.Setup "baudrate = 2400"
Data Bits
bytesize= 7 | 8
Circuit.Setup "bytesize = 7"
Stop Bits
stopbits= 1 | 2
Circuit.Setup "stopbits = 1"
Parity
parity= NONE | ODD | EVEN | MARK | SPACE
Circuit.Setup "parity = even"
Break Duration
breaktime= 375 | 2000
Circuit.Setup "breaktime = 2000"
Flow Control
flowcontrol= XON/XOFF | RTS/CTS | DTR/DSR | NONE
Circuit.Setup "flowcontrol = dtr/dsr"
Receive Buffer Size
receivequeuesize= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "receivequeuesize = 512"
Transmit Buffer Size



SmarTerm Macro Guide

172

transmitqueuesize= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "transmitqueuesize = 512"
Autoconnect on configuration open
autoconnect= TRUE | FALSE
Circuit.Setup "autoconnect = true"

Telnet
Host name or IP Address
hostname= ASCII string of no more than 60 characters
Circuit.Setup "hostname = unixbox"
Port Number
portnumber= Decimal number between 1 and 32767 inclusive
Circuit.Setup "portnumber = 391"
Break Mode
breakmode= INTERRUPT | BREAK
Circuit.Setup "breakmode = interrupt"
Character Mode
charmode= ASCII | BINARY
Circuit.Setup "charmode = ascii"
Auto-connect on configuration open
autoconnect= TRUE | FALSE
Circuit.Setup "autoconnect = true"

See Also
Host Connections on page 35

Circuit.SNALogicalUnit
3270 sessions only

Syntax
Circuit.SNALogicalUnit

Description
Returns or sets the LU (logical unit) to which the SmarTerm session connects. Triggers an application-
based menu action in SmarTerm. The LU is the access point into the SNA network, allowing
SmarTerm to reach a particular host service (for example, a mainframe application LU). The pool name
is a name you assign to a set of LUs with the same capabilities. When the session connects, it is
automatically given the first available LU in the pool.

Example
Sub Main
Circuit.SNALogicalUnit "LU2"

End Sub

See Also
Host Connections on page 35

Circuit.SNAProtocol
3270 sessions only

Syntax
Circuit.SNAProtocol

Description
Returns or sets the transfer protocol for the SmarTerm session. Possible values are:



C

173

Value Description

IPX/SPX Internetwork Packet Exchange/Sequenced Packet Exchange. Novell's protocol
used by Novell NetWare. A router with IPX routing can interconnect local area
networks so that Novell NetWare clients and servers can communicate.

TCP/IP Transmission Control Protocol over Internet Protocol. The most common transport
layer protocol used on Ethernet and the Internet. This property is supported in
NetWare for SAA connections only.

Example
'This example
Sub Main

Circuit.SNAProtocol "TCP/IP"
End Sub

See Also
Host Connections on page 35

Circuit.SNAServerName
3270 and 5250 sessions only

Syntax
Circuit.SNAServerName

Description
NetWare for SAA connections only.

Returns or sets the name of the server to which the session connects.

Example
'This example
Sub Main

Circuit.SNAServerName " "
End Sub

See Also
Host Connections on page 35

Circuit.SuppressConnectErrorDialog
Syntax

Circuit.SuppressConnectErrorDialog

Description
Returns or sets the display of SmarTerm connection error dialogs (boolean). If TRUE (the default), then
SmartTerm connection error dialogs are not displayed (however, other connection dialogs like Telnet
dialogs are displayed). If FALSE, then all connection error dialogs are displayed (SmarTerm dialogs
and Telnet dialogs for example).

Common to all communications methods.

Example
'This example attempts to connect to one of two hosts.
'using Telnet. If the macro cannot connect to one host,
'it attempts toconnect to the other without informing
'the user of the error



SmarTerm Macro Guide

174

Sub Main

Dim fConnected As Boolean
fConnected = FALSE

'First, turn off connection error dialogs.
Circuit.SuppressConnectErrorDialog = TRUE

'Now, try to connect to the first host
Circuit.TelnetHostName = "MyHost1"
Circuit.Connect

'Give the host 5 seconds to connect. If it connects,
'then go to the next block.
For Seconds = 1 to 5'
   Sleep (1000)
   If Circuit.Connected = TRUE then
      fConnected = TRUE
      Exit For
   End If
Next Seconds

'Now, turn connection error dialogs back on
Circuit.SuppressConnectErrorDialog = FALSE

'Now determine if we connected to the first host.
'If not, try connecting to the second.
If fConnected = FALSE Then
   Circuit.TelnetHostName = "MyHost2"
   Circuit.Connect
End If

End Sub

See Also
Host Connections on page 35

Circuit.TelnetBreakMode
Syntax

Circuit.TelnetBreakMode

Description
Returns or sets the Telnet driver's current break mode setting (integer). Possible values are:

Value Constant Meaning

0 smlBREAK Set the break mode to break.

1 smlINTERRUPT Set the break mode to
interrupt.

Example
Sub Main
  Dim BrkMode as Integer
  BrkMode = Circuit.TelnetBreakMode
  If BrkMode = smlBREAK Then
     Session.Echo "Using Interrupt break mode for this connection"
     Circuit.TelnetBreakMode = smlINTERRUPT



C

175

  End If
End Sub

See Also
Host Connections on page 35

Circuit.TelnetCharacterMode
Syntax

Circuit.TelnetCharacterMode

Description
Returns or sets the Telnet driver's current character mode setting (integer). Possible values are:

Value Constant Meaning

0 smlASCII Set the character mode to ASCII.

1 smlBINARY Set the character mode to binary.

Example
Sub Main
  Dim CharMode as Integer
  CharMode = Circuit.TelnetCharacterMode
  If CharMode = smlASCII Then
     Session.Echo "Changing character mode setting to Binary"
     Circuit.TelnetCharacterMode = smlBinary
  End If
End Sub

See Also
Host Connections on page 35

Circuit.TelnetHostName
Syntax

Circuit.TelnetHostName

Description
Returns or sets the Telnet driver's current host name (string).

Example
Sub Main
  Dim HostName as String
  HostName = Circuit.TelnetHostName
  If HostName = "BrokenHost.com" Then
     Session.Echo "BrokenHost is currently down. Try WorkingHost.com"
Circuit.TelnetHostName = "WorkingHost.com"
  End If
End Sub

See Also
Host Connections on page 35

Circuit.TelnetPortNumber
Syntax

Circuit.TelnetPortNumber



SmarTerm Macro Guide

176

Description
Returns or sets the Telnet driver's current port number (string).

Example
Sub Main
  Dim Port as String
  Port = Circuit.TelnetPortNumber
  If Port <> 23 Then
     Session.Echo "Setting the port to 23 for a Telnet connection"
     Circuit.TelnetPortNumber = 23
  End If
End Sub

See Also
Host Connections on page 35

Clipboard (object)
Clipboard$ (function)
Syntax

Clipboard$[()]

Description
Returns a String containing the contents of the Clipboard. If the Clipboard doesn't contain text or the
Clipboard is empty, then a zero-length string is returned.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also
Clipboard$ (statement); Operating System Control on page 38

Clipboard$ (statement)
Syntax

Clipboard$ NewContent$

Description
Copies NewContent$ into the Clipboard.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
Clipboard$ "Hello out there!"
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also
Clipboard$ (function); Operating System Control on page 38



C

177

Clipboard.Clear
Syntax

Clipboard.Clear

Description
Clears the Clipboard by removing any content.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
Clipboard$ "Hello out there!"
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also
Clipboard$ (function); Operating System Control on page 38

Clipboard.GetFormat
Syntax

WhichFormat = Clipboard.GetFormat(format)

Description
Returns True if data of the specified format is available in the Clipboard; returns False otherwise. This
method is used to determine whether the data in the Clipboard is of a particular format. The format
parameter is an Integer representing the format to be queried:

Format Value Description

ebCFText 1 Text

ebCFBitmap 2 Bitmap

ebCFMetafile 3 Metafile

ebCFDIB 8 Device-independent bitmap (DIB)

ebCFPalette 9 Color palette

ebCFUnicodeText 13 Unicode text

Example
Sub Main
Clipboard$ "Hello out there!"
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$
Clipboard.Clear
Session.Echo "The text in the Clipboard is:" & crlf & Clipboard$

End Sub

See Also
Clipboard$ (function); Operating System Control on page 38

Clipboard.GetText
Syntax

text$ = Clipboard.GetText([format])



SmarTerm Macro Guide

178

Description
Returns the text contained in the Clipboard. The format parameter, if specified, must be ebCFText (1).
The format parameter must be either ebCFText or ebCFUnicodeText. If the format parameter is omitted,
then the compiler first looks for text of the specified type depending on the platform:

Platform Clipboard Format

Windows NT UNICODE

Windows
98/Me

MBCS

Example
Option Compare Text
Sub Main
If Clipboard.GetFormat(1) Then
If Instr(Clipboard.GetText(1),"total",1) = 0 Then
Session.Echo "The Clipboard doesn't contain the word ""total."""

Else
Session.Echo "The Clipboard contains the word ""total""."

End If
Else
Session.Echo "The Clipboard does not contain text."

End If
End Sub

See Also
Clipboard$ (function); Operating System Control on page 38

Clipboard.SetText
Syntax

Clipboard.SetText data$ [,format]

Description
Copies the specified text string to the Clipboard. The data$ parameter specifies the text to be copied to
the Clipboard. The format parameter, if specified, must be ebCFText (1). The format parameter must be
either ebCFText or ebCFUnicodeText. If the format parameter is omitted, then the compiler places the
text into the clipboard in the following format depending on the platform:

Platform Clipboard Format

Windows NT UNICODE

Windows
98/Me

MBCS

Example
Sub Main
If Not Clipboard.GetFormat(1) Then Exit Sub
Clipboard.SetText UCase$(Clipboard.GetText(1)),1

End Sub

See Also
Clipboard$ (function); Operating System Control on page 38



C

179

CLng
Syntax

CLng(expression)

Description
Converts expression to a Long. This function accepts any expression convertible to a Long, including
strings. A runtime error is generated if expression is Null. Empty is treated as 0. The passed expression
must be within the following range:

-2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Long. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to a long variant
(VarType 3).

Example
This example displays the results for various conversions of i and j (note rounding).

Sub Main
    i% = 100
    j& = 123.666
    Session.Echo "The result is: " & CLng(i% * j&) 'Displays 12367.
    Session.Echo "The variant type is: " & Vartype(CLng(i%))
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Close
Syntax

Close [[#] filenumber [,[#] filenumber]...]

Description
Closes the specified files. If no arguments are specified, then all files are closed.

Example
Sub Main
  Open "test1" For Output As #1
  Open "test2" For Output As #2
  Open "test3" For Random As #3
  Open "test4" For Binary As #4
  Session.Echo "The next available file number is :" & FreeFile()
  Close #1 'Closes file 1 only.
  Close #2, #3 'Closes files 2 and 3.
  Close 'Closes all remaining files(4).
  Session.Echo "The next available file number is :" & FreeFile()
End Sub

See Also
Drive, Folder, and File Access on page 34



SmarTerm Macro Guide

180

ComboBox
Syntax

ComboBox x,y,width,height,ArrayVariable,.Identifier

Description
Defines a combo box within a dialog template. When the dialog is invoked, the combo box will be
filled with the elements from the specified array variable. This statement can only appear within a
dialog template (i.e., between the Begin Dialog and End Dialog statements). The ComboBox statement
requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog
units) relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Single-dimensioned array used to initialize the elements of the combo
box. If this array has no dimensions, then the combo box will be
initialized with no elements. A runtime error results if the specified
array contains more than one dimension. ArrayVariable can specify an
array of any fundamental data type (structures are not allowed). Null
and empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the edit field
of the combo box. This variable can be accessed using the syntax:
DialogVariable.Identifier.

When the dialog is invoked, the elements from ArrayVariable are placed into the combo box. The
.Identifier variable defines the initial content of the edit field of the combo box. When the dialog is
dismissed, the .Identifier variable is updated to contain the current value of the edit field.

Example
Sub Main
  Dim days$(6)
  days$(0) = "Monday"
  days$(1) = "Tuesday"
  days$(2) = "Wednesday"
  days$(3) = "Thursday"
  days$(4) = "Friday"
  days$(5) = "Saturday"
  days$(6) = "Sunday"
  Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"
    OKButton 76,8,40,14,.OK
    Text 8,10,39,8,"&Weekdays:"
    ComboBox 8,20,60,72,days$,.Days
  End Dialog
  Dim DaysDialog As DaysDialogTemplate
  DaysDialog.Days = "Tuesday"
  r% = Dialog(DaysDialog)
  Session.Echo "You selected: " & DaysDialog.Days
End Sub



C

181

See Also
User Interaction on page 39

Comments (topic)
Comments can be added to macro code in the following manner:

• All text between a single quotation mark and the end of the line is ignored:
Session.Echo "Hello" 'Displays a message box.

• The REM statement causes the compiler to ignore the entire line:
REM This is a comment.

• You can also use C-style multiline comment blocks /*...*/, as follows:
Session.Echo "Before comment"
/* This stuff is all commented out.
This line, too, will be ignored.
This is the last line of the comment. */
Session.Echo "After comment"

Note:
C-style comments can be nested.

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36

Comparison Operators (topic)
Syntax

expression1 [< | > | <= | >= | <> | =] expression2

Description
Returns True or False depending on the operator. The comparison operators are listed in the following
table:

Operator Returns True If

> expression1 is greater than expression2

< expression1 is less than expression2

<= expression1 is less than or equal to expression2

>= expression1 is greater than or equal to expression2

<> expression1 is not equal to expression2

= expression1 is equal to expression2

This operator behaves differently depending on the types of the expressions, as shown in the following
table:



SmarTerm Macro Guide

182

Expression One Expression Two Result

Numeric Numeric Numeric comparison (see below).

String String String comparison (see below).

Numeric String Compile error.

Variant String String comparison (see below).

Variant Numeric Variant comparison (see below).

Null variant Any data type Null.

Variant Variant Variant comparison (see below).

String comparisons
If the two expressions are strings, then the operator performs a text comparison between the two string
expressions, returning True if expression1 is less than expression2. The text comparison is case-
sensitive if Option Compare is Binary; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase characters in a string sort greater than uppercase
characters, so a comparison of "a" and "A" would indicate that "a" is greater than "A".

Numeric comparisons
When comparing two numeric expressions, the less precise expression is converted to be the same type
as the more precise expression.

Dates are compared as doubles. This may produce unexpected results as it is possible to have two
dates that, when viewed as text, display as the same date when, in fact, they are different. This can be
seen in the following example:

Sub Main
  Dim date1 As Date
  Dim date2 As Date
  date1 = Now
  date2 = date1 + 0.000001 'Adds a fraction of a second.
  Session.Echo date2 = date1 'Prints False (the dates are different).
  Session.Echo date1 & "," & date2 'Prints two dates that arethe same.
End Sub

Variant comparisons
When comparing variants, the actual operation performed is determined at execution time according to
the following table:

Variant One Variant Two Result

Numeric Numeric Numeric comparison.

String String String comparison.

Numeric String Number less than string.

Null Any other data type Null.



C

183

Variant One Variant Two Result

Numeric Empty Compares number to 0.

String Empty Compares string to a zero-length string.

Examples
Sub Main
  'Tests two literals and displays the result.
  If 5 < 2 Then
    Session.Echo "5 is less than 2."
  Else
    Session.Echo "5 is not less than 2."
  End If
  'Tests two strings and displays the result.
  If "This" < "That" Then
    Session.Echo "'This' is less than 'That'."
  Else
    Session.Echo "'That' is less than 'This'."
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Const
Syntax

Const name [As type] = expression [,name [As type] = expression]...

Description
Declares a constant for use within the current macro. The name is only valid within the current macro.
Constant names must follow these rules:

• Must begin with a letter.

• May contain only letters, digits, and the underscore character.

• Must not exceed 80 characters in length.

• Cannot be a reserved word.

Constant names are not case-sensitive. The expression must be assembled from literals or other
constants. Calls to functions are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration character, as
shown below:

Const a% = 5 'Constant Integer whose value is 5
Const b# = 5 'Constant Double whose value is 5.0
Const c$ = "5" 'Constant String whose value is "5"
Const d! = 5 'Constant Single whose value is 5.0
Const e& = 5 'Constant Long whose value is 5

The type can also be given by specifying the As type clause:
Const a As Integer = 5 'Constant Integer whose value is 5
Const b As Double = 5 'Constant Double whose value is 5.0
Const c As String = "5" 'Constant String whose value is "5"



SmarTerm Macro Guide

184

Const d As Single = 5 'Constant Single whose value is 5.0
Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:
Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then the compiler chooses the most imprecise type that completely
represents the data, as shown below:

Const a = 5 'Integer constant
Const b = 5.5 'Single constant
Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or function. Constants defined
outside of all subroutines and functions can be used anywhere within that macro. The following
example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1
  Const DefFile = "foobar.txt"
  Session.Echo DefFile 'Displays "foobar.txt".
End Sub

Sub Test2
  Session.Echo DefFile 'Displays "default.txt".
End Sub

Example
Const crlf = Chr$(13) + Chr$(10)

Const s$ As String = "This is a constant."
Sub Main
  Session.Echo s$ & crlf & "The constants are shown above."
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Constants (topic)
Constants are variables that cannot change value during macro execution. You can define your own
constants using the Const statement; preprocessor constants are defined using #Const. The following
constants are predefined by the compiler.

Application State Constants
Constant Value Description

ebMinimized 1 The application is minimized.

ebMaximized 2 The application is maximized.

ebRestored 3 The application is restored.

Application.WindowState, Session.WindowState



C

185

Constant Value Description

smlMINIMIZE 0 The window is minimized.

smlRESTORE 1 The window is restored.

smlMAXIMIZE 2 The window is maximized.

Character Constants

Constant Value Description

ebBack Chr$(8) String containing a backspace.

ebCr Chr$(13) String containing a carriage return.

ebCrLf Chr$(13) & Chr$(10) String containing a carriage-return linefeed
pair.

ebFormFeed Chr$(11) String containing a form feed.

ebLf Chr$(10) String containing a line feed.

ebNullChar Chr$(0) String containing a single null character.

ebNullString 0 Special string value used to pass null
pointers to external routines.

ebTab Chr$(9) String containing a tab.

ebVerticalTab Chr$(12) String containing a vertical tab.

Circuit.SerialFlowControl
Constant Value Description

smlNOFLOWCONTROL 0 No flow control.

smlXONXOFF 1 XON/XOFF flow control.

smlRTSCTS 2 RTS/CTS flow control.

smlDTRDSR 3 DTR/DSR flow control.

Circuit.SerialParity
Constant Value Description

smlNOPARITY 0 No parity.

smlODDPARITY 1 Odd parity.

smlEVENPARITY 2 Even parity.



SmarTerm Macro Guide

186

Constant Value Description

smlMARKPARITY 3 Mark parity.

smlSPACEPARITY 4 Space parity.

Circuit.TelnetBreakMode

Constant Value Description

smlBREAK 0 Set the breakmode to break.

SmlINTERRUPT 1 Set the breakmode to interrupt.

Circuit.TelnetCharacterMode

Constant Value Description

smlASCII 0 Set the character mode to ASCII.

smlBINARY 1 Set the character mode to binary.

Clipboard Constants
Constant Value Description

ebCFText 1 Text.

ebCFBitmap 2 Bitmap.

ebCFMetafile 3 Metafile.

ebCFDIB 8 Device-independent bitmap.

ebCFPalette 9 Palette.

ebCFUnicode 13 Unicode text.

Compiler Constants

Constant Value

Win32 True

Empty Empty

False False

Null Null

True True



C

187

Date Constants

Constant Value Description

ebUseSunday 0 Use the date setting as specified by the current locale.

ebSunday 1 Sunday.

ebMonday 2 Monday.

ebTuesday 3 Tuesday.

ebWednesday 4 Wednesday.

ebThursday 5 Thursday.

ebFriday 6 Friday.

ebSaturday 7 Saturday.

ebFirstJan1 1 Start with week in which January 1 occurs.

ebFirstFourDays 2 Start with first week with at least four days in the new
year.

ebFirstFullWeek 3 Start with first full week of the year.

File Constants

Constant Value Description

ebNormal 0 Read-only, archive, subdir, and none.

ebReadOnly 1 Read-only files.

ebHidden 2 Hidden files.

ebSystem 4 System files.

ebVolume 8 Volume labels.

ebDirectory 16 Subdirectory.

ebArchive 32 Files that have changed since the last backup.

ebNone 64 Files with no attributes.

File Type Constants
Constant Value Description

ebDOS 1 A DOS executable file.

ebWindows 2 A Windows executable file.



SmarTerm Macro Guide

188

Font Constants
Constant Value Description

ebRegular 1 Normal font (i.e., neither bold nor italic).

ebItalic 2 Italic font.

ebBold 4 Bold font.

ebBoldItalic 6 Bold-italic font.

IMEStat Constants

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 IME disabled.

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

Math Constants

Constant Value Description

PI 3.1415... Value of PI.

Session.EventWait

Constant Value Description

smlWAITSUCCESS 1 Successful match.

smlWAITTIMEOUT -1 Timeout.

smlWAITMAXEVENTS -2 Maximum events seen.

smlWAITERROR -15 Miscellaneous error.



C

189

MsgBox Constants

Constant Value Description

ebOKOnly 0 Displays only the OK button.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Cancel and Retry buttons.

ebCritical 16 Displays the stop icon.

EbQuestion 32 Displays the question icon.

EbExclamation 48 Displays the exclamation icon.

EbInformation 64 Displays the information icon.

EbApplicationModal 0 The current application is suspended until the dialog is
closed.

EbDefaultButton1 0 First button is the default button.

EbDefaultButton2 256 Second button is the default button.

EbDefaultButton3 512 Third button is the default button.

EbSystemModal 4096 All applications are suspended until the dialog is closed.

EbOK 1 Returned from MsgBox indicating that OK was pressed.

EbCancel 2 Returned from MsgBox indicating that Cancel was
pressed.

EbAbort 3 Returned from MsgBox indicating that Abort was pressed.

EbRetry 4 Returned from MsgBox indicating that Retry was pressed.

EbIgnore 5 Returned from MsgBox indicating that Ignore was
pressed.

ebYes 6 Returned from MsgBox indicating that Yes was pressed.

ebNo 7 Returned from MsgBox indicating that No was pressed.

Session.Capture File Handling
Constant Value Description

smlOVERWRITE 0 Overwrite an existing file.



SmarTerm Macro Guide

190

Constant Value Description

smlAPPEND 1 Append to an existing file.

smlPROMPTOVAPP 2 Prompt whether to overwrite or append.

Session.KeyWait, Session.Collect

Constant Value Description

smlWAITSUCCESS 1 Successful match.

smlWAITTIMEOUT -1 Timeout.

smlWAITMAXCHARS -2 Maximum chars seen.

smlWAITERROR -15 Miscellaneous error.

Session.StringWait

Constant Value Description

smlWAITSUCCESS >=1 Successful match.

smlWAITTIMEOUT -1 Timeout.

smlWAITMAXCHARS -2 Maximum chars seen.

smlWAITERROR -15 Miscellaneous error.

Session.ConfigInfo

Constant Value Description

smlSESSIONPATH 0 Full path of the SmarTerm session (STW) file.

smlINSTALLPATH 2 Full path to where SmarTerm is installed.

Session.EmulationInfo

Constant Value Description

smlEMUFAMILY 0 The emulation family.

smlEMULEVEL 1 The emulation level.

Session.KeyWait



C

191

Constant Value Description

smlKEYWEXACT 1 Non-case folded character/ASCII code

smlKEYWNONEXACT 2 Non-case folded character/ASCII code

smlKEYWSCAN 3 PC scan code

smlKEYWVIRTUAL 4 Virtual key code (Windows specific)

smlKEYWDECKEY 5 Emulation specific key code (DECKEY in PSL)

smlKEYWBUTTON 6 Locator button

smlKEYWCOUNT 7 Any key, (Use the count)

Session.Language, Application.InstalledLanguages,
Application.StartupLanguage

Constant Value Description

smlGERMAN 1031 German.

smlENGLISH 1033 English.

smlFRENCH 1036 French.

smlSPANISH 1034 Spanish.

Shell Constants
Constant Value Description

ebHide 0 Application is initially hidden.

ebNormalFocus 1 Application is displayed at the default position and has
the focus.

ebMinimizedFocus 2 Application is initially minimized and has the focus.

ebMaximizedFocus 3 Application is maximized and has the focus.

ebNormalNoFocus 4 Application is displayed at the default position and
does not have the focus.

ebMinimizedNoFocus 6 Application is minimized and does not have the focus.

Macro Language Constants



SmarTerm Macro Guide

192

Constant Value Description

True -1 Boolean value True.

False 0 Boolean value False.

Empty Empty Variant of type 0, indicating that the variant is uninitialized.

Nothing 0 Value indicating that an object variable no longer references a
valid object.

Null Null Variant of type 1, indicating that the variant contains no data.

String Conversion Constants

Constant Value Description

ebUpperCase 1 Converts string to uppercase.

ebLowerCase 2 Converts string to lowercase.

ebProperCase 3 Capitalizes the first letter of each word.

ebWide 4 Converts narrow characters to wide characters.

ebNarrow 8 Converts wide characters to narrow characters.

ebKatakana 16 Converts Hiragana characters to Katakana characters.

ebHiragana 32 Converts Katakana characters to Hiragana characters.

ebUnicode 64 Converts string from MBCS to UNICODE.

ebFromUnicode 128 Converts string from UNICODE to MBCS.

Variant Constants

Description Constant Value

ebEmpty 0 Variant has not been initialized.

ebNull 1 Variant contains no valid data.

ebInteger 2 Variant contains an integer.

ebLong 3 Variant contains a long.

ebSingle 4 Variant contains a single.

ebDouble 5 Variant contains a double.

ebCurrency 6 Variant contains a currency.

ebDate 7 Variant contains a date.



C

193

Description Constant Value

ebString 8 Variant contains a string.

ebObject 9 Variant contains an Object.

ebError 10 Variant contains an Error.

ebBoolean 11 Variant contains a boolean.

ebVariant 12 Variant contains an array of variants.

ebDataObject 13 Variant contains a data object.

ebArray 8192 Added to any of the other types to indicate an array of that
type.

Cos
Syntax

Cos(number)

Description
Returns a Double representing the cosine of number. The number parameter is a Double specifying an
angle in radians.

Example
Sub Main
    c# = Cos(3.14159 / 4)
    Session.Echo "The cosine of 45 degrees is: " & c#
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

CreateObject
Syntax

CreateObject(class)

Description
Creates an OLE Automation object and returns a reference to that object. The class parameter specifies
the application used to create the object and the type of object being created. It uses the following
syntax:

"application.class",

where application is the application used to create the object and class is the type of the object to
create.

At runtime, CreateObject looks for the given application and runs that application if found. Once the
object is created, its properties and methods can be accessed using the dot syntax (e.g.,
object.property = value).



SmarTerm Macro Guide

194

There may be a slight delay when an automation server is loaded (this depends on the speed with
which a server can be loaded from disk). This delay is reduced if an instance of the automation server
is already loaded.

Examples
This example uses CreateObject to instantiate a Visio object. It then uses the resulting object to create
a new document.

Sub Main
Dim Visio As Object
Dim doc As Object
Dim page As Object
Dim shape As Object
Set Visio = CreateObject("visio.application")
'Create Visio object.
Set doc = Visio.Documents.Add("") 'Create a new doc.
Set page = doc.Pages(1) 'Get first page.
Set shape = page.DrawRectangle(1,1,4,4)
shape.text = "Hello, world." 'Set text within shape.

End Sub

See Also
Objects on page 40; DDE Access on page 40

CSng
Syntax

CSng(expression)

Description
Converts expression to a Single. This function accepts any expression convertible to a Single,
including strings. A runtime error is generated if expression is Null. Empty is treated as 0.0. A runtime
error results if the passed expression is not within the valid range for Single.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a Single.

When used with variants, this function guarantees that the expression is converted to a Single variant
(VarType 4).

Example
Sub Main
  s$ = "100"
  Session.Echo "The single value is: " & CSng(s$)
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

CStr
Syntax

CStr(expression)

Description
Converts expression to a String. Unlike Str$ or Str, the string returned by CStr will not contain a
leading space if the expression is positive. Further, the CStr function correctly recognizes thousands



C

195

and decimal separators for your locale. Different data types are converted to String in accordance with
the following rules:

Data Type CStr Returns

Any numeric type A string containing the number without the leading space for
positive values

Date A string converted to a date using the short date format

Boolean A string containing either "True" or "False"

Null variant A runtime error

Empty variant A zero-length string

Example
Sub Main
  s# = 123.456
  Session.Echo "The string value is: " & CStr(s#)
End Sub

See Also
Character and String Manipulation on page 33; Keywords, Data Types, Operators, and Expressions on
page 34

CurDir, CurDir$
Syntax

CurDir[$][(drive)]

Description
Returns the current directory on the specified drive. If no drive is specified or drive is zero-length,
then the current directory on the current drive is returned. CurDir$ returns a String, whereas CurDir

returns a String variant. There is a runtime error if drive is invalid.

Example
Const crlf = Chr$(13) + Chr$(10)
Sub Main
  save$ = CurDir$
  ChDir ("..")
  Session.Echo "Old directory: " & save$ & crlf & "New directory: " & CurDir$
  ChDir (save$)
  Session.Echo "Directory restored to: " & CurDir$
End Sub

See Also
Drive, Folder, and File Access on page 34

Currency (data type)
Syntax

Currency

Description



SmarTerm Macro Guide

196

Use to declare variables capable of holding fixed-point numbers with 15 digits to the left of the
decimal point and 4 digits to the right. Currency variables are used to hold numbers within the
following range:

-922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving money.

The type-declaration character for Currency is @.

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing within a
structure, currency values require 8 bytes of storage. When used with binary or random files, 8 bytes of
storage are required.

See Also
Keywords, Data Types, Operators, and Expressions on page 34

CVar
Syntax

CVar(expression)

Description
Converts expression to a Variant.

Note:
Use of this function is not required because assignment to variant variables automatically performs
the necessary conversion:

Sub Main()
  Dim v As Variant
  v = 4 & "th" 'Assigns "4th" to v.
  Session.Echo "You came in: " & v
  v = CVar(4 & "th") 'Assigns "4th" to v.
  Session.Echo "You came in: " & v
End Sub

Example
Sub Main
  Dim s As String
  Dim a As Variant
  s = CStr("The quick brown fox ")
  mesg = CVar(s & "jumped over the lazy dog.")
  Session.Echo mesg
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

CVErr
Syntax

CVErr(expression)

Description



C

197

This function converts an expression into a user-defined error number. A runtime error is generated
under the following conditions:

• If expression is Null.

• If expression is a number outside the legal range for errors, which is as follows:
0 <= expression <= 65535

• If expression is boolean.

• If expression is a String that can't be converted to a number within the legal range.

Empty is treated as 0.

Example
Sub Main
  Session.Echo "The error is: " & CStr(CVErr(2046))
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



D

Date (data type)
Syntax

Date

Description
Is capable of holding date and time values. Date variables are used to hold dates within the following
range:

January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

-6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the number of days
since midnight, December 30, 1899, and the fractional part holds the number of seconds as a fraction
of the day. For example, the number 32874.5 represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when used with binary
or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e., December 30, 1899).

Date literals
Literal dates are specified using pound signs:

Dim d As Date
d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs at runtime,
using the current country settings. This is a problem when interpreting dates such as 1/2/1990. If the
date format is M/D/Y, then this date is January 2, 1990. If the date format is D/M/Y, then this date is
February 1, 1990. To remove any ambiguity when interpreting dates, use the universal date format:

date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965, using the universal date format:
Dim d As Date
d = #1965/6/3 10:23:45#

Dates and Year 2000 Calculations
The Date object in Persoft's macro language always stores the year with 4 digits, regardless of how the
date was entered. However, if a year is specified with only two digits, and that year is less than 30,
then the macro language assumes a twenty-first century date. Otherwise, it assumes a twentieth-century
date. In pseudocode, the decision looks like this:

If 0 < two-digit year < 30 Then
   year = 2000 + two-digit year



SmarTerm Macro Guide

199

Else
   year = 1900 + two-digit year
End If

For example, if you specify the date 1/1/29, the macro language stores it as 1/1/2029 and all
calculations will assume the year to be 2029: However, if you specify the date 1/1/30, then the macro
language stores it as 1/1/1930.

Compensating for dates specifying two-digit years
Because the macro language calculates years correctly given four-digit dates, our recommendation is
that at all times dates in your macros specify the year with four digits. Ensuring that this is the case
may require you to revise your macros if one or more date sources specify two-digit years. There are
three possible sources for dates specifying two-digit years:

• Date literals (such as #1/1/24#)

• Macro input routines that allow users to specify two-digit years

• Legacy data in a source that contains dates specifying two-digit years

Date literals

If you have date literals specifying two-digit years, the solution is simple: revise the macros to specify
all four digits of years in the date literals. Since date literals are marked off on either end with the
pound (#) character, it's easy to use the Macro Editor or any ASCII text editor to search macros for date
literals.

For example, the following macro incorrectly sets the default startup date to 2029 by specifying the
date literal with a two-digit year:

Sub testdate1
'!Example of the incorrect definition of a date literal
  Dim StartupDate#, DefaultStartupDate#
  DefaultStartupDate= #7/12/29# 'This is the problem definition

  ' Make sure that StartupDate is defined:
  ' Note that 12/30/1899 is the zero-point for dates.
  If StartupDate# = 0 Then
     MsgBox "StartupDate= " & Format(StartupDate#, "long date")
     StartupDate#= DefaultStartupDate#
  End If

  MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

This macro has a routine that makes sure that StartupDate# is at least set to a default value before later
performing operations on it. Unfortunately, the default value (DefaultStartupDate#) is not clearly
specified with a four-digit year. You might not catch this error unless the StartupDate# variable was
undefined for some reason, and so became set to 7/12/2029. To correct this error, search through your
macros and make sure that date literals specify all four digits for the year:

Sub testdate2
'!Example of the correct definition of a date literal
  Dim StartupDate#, DefaultStartupDate#
  DefaultStartupDate= #7/12/1929# 'This is the corrected definition

  ' Make sure that StartupDate is defined:
  ' Note that 12/30/1899 is the zero-point for dates.
  If StartupDate# = 0 Then
     MsgBox "StartupDate= " & Format(StartupDate#, "long date")
     StartupDate#= DefaultStartupDate#
  End If



D

200

  MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

Date input

If you have macro input routines that allow users to specify two-digit years, the solution is to revise
the macros to check for four-digit years, forcing the user to re-specify the date if they fail to comply.
The following code fragment provides a simple check (although it does not check for other input
errors).

Sub testdate3
'! Example showing how to check for a 4-digit year in user input.
   Dim strDate$, strMonth$, strDay$, strYear$, EnteredDate#

   Do While len(strYear$) < 4 'Loop until the year has 4 digits:
      StrDate$= InputBox("Enter date (MM/DD/YYYY): ", "Date Converted")

      If StrDate$ = "" Then 'Clicked OK without entering a date,
         Exit Sub 'so we quit the macro
      End If

      'Parse each item in the date
      strMonth$ = Item$(strDate$, 1, 1, "/")
      strDay$ = Item$(strDate$, 2, 2, "/")
      strYear$ = Item$(strDate$, 3, 3, "/")
   Loop

   'OK, the year finally has 4 digits. Confirm the date:
   EnteredDate# = CDate(strDate$)
   MsgBox "Date entered: " & strDate$

End Sub

When you run this macro, an input box appears asking for the date and indicating the correct format. If
you click OK without entering anything, the macro ends. Otherwise, it loops as long as the year has
fewer than four digits, redisplaying the input box for a correct date. When the macro detects that the
year has been correctly entered, then it displays a message box confirming the date.

Legacy data

If you have legacy data in a source that specifies dates using only two digits for the year, which
cannot be changed to specify four digits for the year, and you anticipate adding new data to that
source, your macros will have to compensate. How you compensate will depend upon what kind of
date information is being stored, and what operations you need to perform on the dates.

For example, if you need to calculate the span of years between a date stored in the database and
today, and you know that a negative timespan would be an error, you can test for a negative timespan
and then correct it if it occurs. The following code fragment provides a simple example.

Sub testdate4
'!Example showing how to correct for 2-digit dates in legacy data

   Dim date1 As Date
   Dim date2 As Date
   Dim diff As Date
   date1 = #1/1/24# 'This date would come from the database
   date2 = Date 'This is the current date

'Now calculate the elapsed years: date2 - date1
   diff = DateDiff("yyyy",date1,date2)
   MsgBox "The raw date difference is: " & CDbl(diff) & " years."



SmarTerm Macro Guide

201

'Now run the correction routine. If the elapsed timeperiod is negative, then
'subtract a century from date1 and recalculate. Otherwise, everything is fine.
   If CInt(diff)<0 Then
      date1= DateAdd("yyyy", -100, date1)
      MsgBox "The corrected date1 year is: " & DatePart("yyyy", date1)
      diff = DateDiff("yyyy",date1, date2)
      MsgBox "The corrected date difference is " & CDbl(diff) & " years."
   Else
      MsgBox "The date difference, " & CDbl(diff) & " years, was correct."
   End if

End Sub

This macro first calcuates the number of years between date1# and date2#. If the result is negative,
then the macro subtracts a century from date1# and recalculates the difference. To verify that the macro
does not subtract a century from valid dates, replace the line defining date1# as #1/1/24# to define the
year with four digits: #1/1/1924#.

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Time and Date Access on page 39

Date, Date$ (functions)
Syntax

Date[$][()]

Description
Returns the current system date. The Date$ function returns the date using the short date format. The
Date function returns the date as a Date variant.

Use the Date/Date$ statements to set the system date.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  TheDate$ = Date$()
  Date$ = "01/01/95"
  Session.Echo "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date$()
  Date$ = TheDate$
  Session.Echo "Restored date to: " & TheDate$
End Sub

See Also
Time and Date Access on page 39

Date, Date$ (statements)
Syntax

Date[$] = newdate

Description
Sets the system date to the specified date. The Date$ statement requires a string variable using one of
the following formats:

MM-DD-YYYY
MM-DD-YY



D

202

MM/DD/YYYY
MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is a two-digit day between 1 and 31, and YYYY is
a four-digit year between 1/1/100 and 12/31/9999.

The Date statement converts any expression to a date, including string and numeric values. Unlike the
Date$ statement, Date recognizes many different date formats, including abbreviated and full month
names and a variety of ordering options. If newdate contains a time component, it is accepted, but the
time is not changed. An error occurs if newdate cannot be interpreted as a valid date.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  TheDate$ = Date$()
  Date$ = "01/01/95"
  Session.Echo "Saved date: " & TheDate$ & crlf & "Changed date: " & _
Date$()
  Date$ = TheDate$
  Session.Echo "Restored date to: " & TheDate$
End Sub

See Also
Time and Date Access on page 39

DateAdd
Syntax

DateAdd(interval, number, date)

Description
Returns a Date variant representing the sum of date and a specified number (number) of time intervals
(interval). This function adds a specified number (number) of time intervals (interval) to the specified
date (date). The following table describes the named parameters to the DateAdd function:

Parameter Description

interval String expression indicating the time interval used in the addition.

number Integer indicating the number of time intervals you wish to add. Positive
values result in dates in the future; negative values result in dates in the past.

date Any expression convertible to a date string expression. An example of a valid
date/time string would be "January 1, 1993".

The interval parameter specifies what unit of time is to be added to the given date. It can be any of
the following:

Time Interval

"y" Day of the year



SmarTerm Macro Guide

203

Time Interval

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

To add days to a date, you may use either day, day of the year, or weekday, as they are all equivalent
("d", "y", "w").

The DateAdd function will never return an invalid date/time expression. The following example adds
two months to December 31, 1992:

s# = DateAdd("m", 2, "December 31, 1992")

In this example, s$ is returned as the double-precision number equal to "February 28, 1993", not
"February 31, 1993".

There is a runtime error if you try subtracting a time interval that is larger than the time value of the
date.

Example
Sub Main
  Dim sdate$
  sdate$ = Date$
  NewDate# = DateAdd("yyyy", 4, sdate$)
  NewDate# = DateAdd("m", 3, NewDate#)
  NewDate# = DateAdd("ww", 2, NewDate#)
  NewDate# = DateAdd("d", 1, NewDate#)
  s$ = "Four years, three months, two weeks, and one day from now: "
  s$ = s$ & Format(NewDate#, "long date")
  Session.Echo s$
End Sub

See Also
Time and Date Access on page 39

DateDiff
Syntax

DateDiff(interval, date1, date2 [, [firstdayofweek] [,firstweekofyear]])

Description
Returns a Date variant representing the number of given time intervals between date1 and date2. The
following describes the named parameters:



D

204

Parameter Description

interval String expression indicating the specific time interval you wish to find
the difference between. An error is generated if interval is null.

date1 Any expression convertible to a date. An example of a valid date/time
string would be "January 1, 1994".

date2 Any expression convertible to a date. An example of a valid date/time
string would be "January 1, 1994".

firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed
(i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that containing January 1 (i.e., the constant
ebFirstJan1 as described below).

The following lists the valid time interval strings and the meanings of each. The Format$ function uses
the same expressions

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

To find the number of days between two dates, you may use either day or day of the year, as they are
both equivalent ("d", "y").

The time interval weekday ("w") will return the number of weekdays occurring between date1 and
date2, counting the first occurrence but not the last. However, if the time interval is week ("ww"), the
function will return the number of calendar weeks between date1 and date2, counting the number of
Sundays. If date1 falls on a Sunday, then that day is counted, but if date2 falls on a Sunday, it is not
counted.

The firstdayofweek parameter, if specified, can be any of the following constants:



SmarTerm Macro Guide

205

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

The firstdayofyear parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebfirstjan1 1 The first week of the year is that in which January 1 occurs
(the default).

ebfirstfourdays 2 The first week of the year is that containing at least four days
in the year.

ebfirstfullweek 3 The first week of the year is the first full week of the year.

The DateDiff function will return a negative date/time value if date1 is a date later in time than date2.
If date1 or date2 are Null, then Null is returned.

Example
Sub Main
  today$ = Format(Date$,"Short Date")
  NextWeek = Format(DateAdd("d", 14, today$),"Short Date")
  DifDays# = DateDiff("d", today$, NextWeek)
  DifWeek# = DateDiff("w", today$, NextWeek)
  s$ = "The difference between " & today$ & " and " & NextWeek
  s$ = s$ & " is: " & DifDays# & " days or " & DifWeek# & " weeks"
  Session.Echo s$
End Sub

See Also
Time and Date Access on page 39

DatePart
Syntax

DatePart(interval, date [, [firstdayofweek] [,firstweekofyear]])

Description



D

206

Returns an Integer representing a specific part of a date/time expression. The DatePart function
decomposes the specified date and returns a given date/time element. The following table describes the
named parameters:

Parameter Description

interval String expression that indicates the specific time interval you wish to
identify within the given date.

date Any expression convertible to a date. An example of a valid date/time
string would be "January 1, 1995".

firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed
(i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that containing January 1 (i.e., the constant
ebFirstJan1 as described bellow).

The following table lists the valid time interval strings and the meanings of each. The Format$

function uses the same expressions.

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

The firstdayofweek parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebsunday 1 Sunday (the default)



SmarTerm Macro Guide

207

Constant Value Description

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

The firstdayofyear parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebfirstjan1 1 The first week of the year is that in which January 1 occurs
(the default).

ebfirstfourdays 2 The first week of the year is that containing at least four days
in the year.

ebfirstfullweek 3 The first week of the year is the first full week of the year.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  today$ = Date$
  qtr = DatePart("q",today$)
  yr = DatePart("yyyy",today$)
  mo = DatePart("m",today$)
  wk = DatePart("ww",today$)
  da = DatePart("d",today$)
  s$ = "Quarter: " & qtr & crlf
  s$ = s$ & "Year : " & yr & crlf
  s$ = s$ & "Month : " & mo & crlf
  s$ = s$ & "Week : " & wk & crlf
  s$ = s$ & "Day : " & da & crlf
  Session.Echo s$
End Sub

See Also
Time and Date Access on page 39

DateSerial
Syntax

DateSerial(year, month, day)

Description



D

208

Returns a Date variant representing the specified date. The DateSerial function takes the following
named parameters:

Named Parameter Description

year Integer between 100 and 9999

month Integer between 1 and 12

day Integer between 1 and 31

Example
Sub Main
  tdate# = DateSerial(1993,08,22)
  Session.Echo "The DateSerial value for August 22, 1993, is: " & tdate#
End Sub

See Also
Time and Date Access on page 39

DateValue
Syntax

DateValue(date)

Description
Returns a Date variant representing the date contained in the specified string argument.

Example
Sub Main
  tdate$ = Date$
  tday = DateValue(tdate$)
  Session.Echo tdate & " date value is: " & tday$
End Sub

See Also
Time and Date Access on page 39

Day
Syntax

Day(date)

Description
Returns the day of the month specified by date. The value returned is an Integer between 0 and 31
inclusive. The date parameter is any expression that converts to a Date.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  CurDate = Now()
  Session.Echo "Today is day " & Day(CurDate) & " of the month." & _
crlf & _ "Tomorrow is day " & Day(CurDate + 1)
End Sub

See Also



SmarTerm Macro Guide

209

Time and Date Access on page 39

DDB
Syntax

DDB(cost, salvage, life, period [,factor])

Description
Calculates the depreciation of an asset for a specified period of time using the double-declining
balance method. The double-declining balance method calculates the depreciation of an asset at an
accelerated rate. The depreciation is at its highest in the first period and becomes progressively lower
in each additional period. DDB uses the following formula to calculate the depreciation:

DDB =((Cost-Total_depreciation_from_all_other_periods) * 2)/Life

The DDB function uses the following named parameters:

Parameter Description

cost Double representing the initial cost of the asset

salvage Double representing the estimated value of the asset at the end of its predicted
useful life

life Double representing the predicted length of the asset's useful life

period Double representing the period for which you wish to calculate the
depreciation

factor Depreciation factor determining the rate the balance declines. If this parameter
is missing, then 2 is assumed (double-declining method).

The life and period parameters must be expressed using the same units. For example, if life is
expressed in months, then period must also be expressed in months.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  s$ = "Depreciation Table" & crlf & crlf
  For yy = 1 To 4
    CurDep# = DDB(10000.0,2000.0,10,yy)
    s$ = s$ & "Year " & yy & " : " & CurDep# & crlf
  Next yy
  Session.Echo s$
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

DDEExecute
Syntax

DDEExecute channel, command$

Description



D

210

Executes a command in another application. The DDEExecute statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

command$ String containing the command to be executed. The format of command$ 
depends on the receiving application.

If the receiving application does not execute the instructions, there is a runtime error.

Example
This example selects a cell in an Excel spreadsheet.

Sub Main
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also
DDE Access on page 40

DDEInitiate
Syntax

DDEInitiate(application$, topic$)

Description
Initializes a DDE link to another application and returns a unique number subsequently used to refer
to the open DDE channel. The DDEInitiate statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with which a
DDE conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

This function returns 0 if the compiler cannot establish the link. This will occur under any of the
following circumstances:

• The specified application is not running.

• The topic was invalid for that application.

• Memory or system resources are insufficient to establish the DDE link.

Example
This example selects a range of cells in an Excel spreadsheet.

Sub Main



SmarTerm Macro Guide

211

q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also
DDE Access on page 40

DDEPoke
Syntax

DDEPoke channel, DataItem, value

Description
Sets the value of a data item in the receiving application associated with an open DDE link. The
DDEPoke statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

DataItem Data item to be set. This parameter can be any expression convertible to a
string. The format depends on the server.

Value The new value for the data item. This parameter can be any expression
convertible to a string. The format depends on the server. A runtime error is
generated if value is null.

Example
This example pokes a value into an Excel spreadsheet.

Sub Main
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDEPoke ch%,"R1C1","980"
DDETerminate ch%

End Sub

See Also
DDE Access on page 40

DDERequest, DDERequest$
Syntax

DDERequest[$](channel,DataItem$)

Description
Returns the value of the given data item in the receiving application associated with the open DDE
channel. DDERequest$ returns a String, whereas DDERequest returns a String variant. The
DDERequest/DDERequest$ functions take the following parameters:



D

212

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error results if channel is invalid.

DataItem$ String containing the name of the data item to request. The format for this
parameter depends on the server.

The format for the returned value depends on the server.

Example
This example gets a value from an Excel spreadsheet.

Sub Main
ch% = DDEInitiate("Excel","c:\excel\test.xls")
s$ = DDERequest$(ch%,"R1C1")
DDETerminate ch%
Session.Echo s$

End Sub

See Also
DDE Access on page 40

DDESend
Syntax

DDESend application$, topic$, DataItem, value

Description
Initiates a DDE conversation with the server as specified by application$ and topic$ and sends that
server a new value for the specified item. The DDESend statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.

DataItem Data item to be set. This parameter can be any expression convertible to a
string. The format depends on the server.

Value New value for the data item. This parameter can be any expression
convertible to a string. The format depends on the server. A runtime error is
generated if value is null.

The DDESend statement performs the equivalent of the following statements:
ch% = DDEInitiate(application$, topic$)
DDEPoke ch%, item, data
DDETerminate ch%

Example
This code sets the content of the first cell in an Excel spreadsheet.



SmarTerm Macro Guide

213

Sub Main
On Error Goto Trap1
DDESend "Excel","c:\excel\test.xls","R1C1","Hello, world."
On Error Goto 0
'Add more lines here.

Exit Sub
Trap1:
MsgBox "Error sending data to Excel."

End Sub

See Also
DDE Access on page 40

DDETerminate
Syntax

DDETerminate channel

Description
Closes the specified DDE channel. The channel parameter is an Integer containing the DDE channel
number returned from DDEInitiate. An error will result if channel is invalid. All open DDE channels
are automatically terminated when the macro ends.

Example
This code sets the content of the first cell in an Excel spreadsheet.

Sub Main
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also
DDE Access on page 40

DDETerminateAll
Syntax

DDETerminateAll

Description
Closes all open DDE channels. All open DDE channels are automatically terminated when the macro
ends.

Example
This code selects the contents of the first cell in an Excel spreadsheet.

Sub Main
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
DDEExecute ch%,cmd$
DDETerminateAll

End Sub

See Also
DDE Access on page 40



D

214

DDETimeout
Syntax

DDETimeout milliseconds

Description
Sets the number of milliseconds that must elapse before any DDE command times out. The
milliseconds parameter is a Long and must be within the following range:

0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example
Sub Main
q$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDETimeout(20000)
cmd$ = "[Select(" & q$ & "R1C1:R8C1" & q$ & ")]"
DDEExecute ch%,cmd$
DDETerminate ch%

End Sub

See Also
DDE Access on page 40

Declare
Syntax

Declare {Sub | Function} name[TypeChar] [{[ParameterList]}] [As type]

Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System |
StdCall] [Lib "LibName$" [Alias "AliasName$"]] [([ParameterList])] [As type]

The first syntax is for prototyping subroutines and functions for later portions of the macro or for other
members of the macro collective, while the second syntax is for declaring compiled routines stored in
external .DLL files. In both cases, ParameterList is a comma-separated list of the following (up to 30
parameters are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description
Declare statements must appear outside of any Sub or Function declaration. Declare statements are only
valid during the life of the macro in which they appear. The Declare statement uses the following
parameters:

Parameter Description

name Any valid name. When you declare functions, you can include a type-
declaration character to indicate the return type. This name is specified as a
normal keyword— i.e., it does not appear within quotes.

TypeChar An optional type-declaration character used when defining the type of data
returned from functions. It can be any of the following characters: #, !, $, @,
%, or &. For external functions, the @ character is not allowed. Type-



SmarTerm Macro Guide

215

Parameter Description

declaration characters can only appear with function declarations, and take
the place of the As type clause. Currency data cannot be returned from
external functions. Therefore, the @ type-declaration character cannot be
used when declaring external functions.

Decl Optional keyword indicating that the external subroutine or function uses
the C calling convention. With C routines, arguments are pushed right to
left on the stack and the caller performs stack cleanup.

Pascal Optional keyword indicating that this external subroutine or function uses
the Pascal calling convention. With Pascal routines, arguments are pushed
left to right on the stack and the called function performs stack cleanup.

System Optional keyword indicating that the external subroutine or function uses
the System calling convention. With System routines, arguments are pushed
right to left on the stack, the caller performs stack cleanup, and the number
of arguments is specified in the AL register.

StdCall Optional keyword indicating that the external subroutine or function uses
the StdCall calling convention. With StdCall routines, arguments are
pushed right to left on the stack and the called function performs stack
cleanup.

LibName$ Must be specified if the routine is stored in an external .DLL file. This
parameter specifies the name of the library or code resource containing the
external routine and must appear within quotes. The LibName$ parameter can
include an optional path specifying the exact location of the library or code
resource. Alias name that must be given to provide the name of the routine
if the name parameter is not the routine's real name. For example, the
following two statements declare the same routine:

Declare Function GetCurrentTime Lib "user" () As Integer

Declare Function GetTime Lib "user" Alias "GetCurrentTime"
_As Integer

Use an alias when the name of an external routine conflicts with the name
of an internal routine or when the external routine name contains invalid
characters. The AliasName$ parameter must appear within quotes.

type Indicates the return type for functions. For external functions, the valid
return types are: integer, long, string, single, double, date, boolean, and data
objects. Currency, variant, fixed-length strings, arrays, OLE Automation
objects, and user-defined types cannot be returned by external functions.

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type variant. Furthermore, all parameters that follow the first
optional parameter must also be optional. If this keyword is omitted, then
the parameter being defined is required when calling this subroutine or
function.



D

216

Parameter Description

ByVal Optional keyword indicating that the caller will pass the parameter by
value. Parameters passed by value cannot be changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the parameter by
reference. Parameters passed by reference can be changed by the called
routine. If neither ByVal or ByRef are specified, then ByRef is assumed.

ParameterNam-
e

Name of the parameter, which must follow naming conventions:
Must start with a letter; may contain letters, digits, and the underscore
character (_). Punctuation and type-declaration characters are not allowed.
The exclamation point (!) can appear within the name as long as it is not the
last character, in which case it is interpreted as a type-declaration character.
Must not exceed 80 characters in length. Also, ParameterName can end with
an optional type-declaration character specifying the type of that parameter
(i.e., any of the following characters: %, &, !, #, @).

() Indicates that the parameter is an array.

ParameterTyp-
e

Specifies the type of the parameter (e.g., integer, string, variant, and so on).
The As ParameterType clause should only be included if ParameterName does
not contain a type-declaration character. In addition to the default data
types, ParameterType can specify any user-defined structure, OLE
Automation object, or data object . If the data type of the parameter is not
known in advance, then the Any keyword can be used. This forces the
compiler to relax type checking, allowing any data type to be passed in
place of the given argument. For example:
Declare Sub Convert Lib "mylib" (a As Any)

The Any data type can only be used when passing parameters to external
routines.

Prototying macro subroutines and functions
Functions that need to be accessible to other members of the macro collective must be prototyped with
the Declare statement. This prototyping is optional for subroutines unless you have also required
explicit type-checking with the Option Explicit statement.

The following sample shows how to prototype subroutines and functions, and how to call those
subroutines and functions from other macros in the collective. See Modules and collectives 49 for
more information on which modules can provide subroutines and functions, and which modules can
access them.

Adding and subtracting via prototypes
In this example, we create a small palette of SmarTerm Buttons that ask for two numbers and either
add them or multiply them. Follow these steps:

1. Use the Tools>Macros command to add a subroutine called Add to the user macro file. The macro
should look like this:

Sub Add(x As Double, y As Double)
   '! Add two numbers.
   Msgbox x & " plus " & y & " equals " & x + y
End Sub



SmarTerm Macro Guide

217

2. While you have the user macro file open, add the following function after the Add subroutine.
Function Multiply(x As Double, y As Double) As Double
   'Multiply two numbers together.
   Multiply = x * y
End Function

Then save and close the user macro file.

3. Now create a new palette of SmarTerm Buttons called Math. It should have two buttons, an Add
button and a Multiply button.

4. Edit the Add button to attach an embedded macro called GetSum. GetSum should look like this:
Sub GetSum
   '! Add to numbers by calling Add( ) in the user macro file.
   Dim x As Double
   Dim y As Double
   x = InputBox("Enter the first number.", "Addition Example")
   y = InputBox("Enter the first number.", "Addition Example")

   Add x,y ’Using the Add subroutine in the user macro file

End Sub

Save the macro and close the macro editor.

5. Now edit the Multiply button to attach an embedded macro called GetProduct. GetProduct should
look like this:

Sub GetProduct
   'Multiply two numbers using the Multiply function in the user macro file
   Dim Product
   Dim x As Double
   Dim y As Double
   x = InputBox("Enter the first number.", "Multiplication Example")
   y = InputBox("Enter the first number.", "Multiplication Example")

   Product = Multiply(x,y) ’Using the Multiply function in the user macro file

   Msgbox x & " times " & CStr(y) & " equals " & Product, ebOKOnly, "Muliplication"
End Sub

6. Don’t save and close the macro file just yet. While you have this macro open, scroll to the top of the
editor and insert the following lines to the very beginning of the file:

Option Explicit
Declare Sub Add(x As Double, y As Double)
Declare Function Multiply(x As Double, y as Double) As Double

The first line sets the compiler to require type-checking. You must add this line to be able to access
external functions. The next line prototypes the Add subroutine, and the third line prototypes the
Multiply function.

7. Now save and close the macro file, save the palette and close the palette editor, and try out your new
Buttons. You can confirm that subroutines are available without Option Explicit by commenting out
the Option Explicit statement in the Buttons macro and then trying out the Buttons again. The Add
Button will work, while the Multiply Button will halt with an error message.



D

218

Declaring routines in external .DLL files
The following sections describe some of the issues involved in calling routines stored in external .DLL
files. This is a very powerful feature of the macro language, as it gives you access to any routine in
any accessible .DLL file on the computer. However, because of differences in calling conventions and
data representation, it can be tricky to implement.

Passing parameters
By default, the compiler passes arguments by reference. Many external routines require a value rather than a
reference to a value. The ByVal keyword does this. For example, this C routine:

void MessageBeep(int);

would be declared as follows:
Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

As an example of passing parameters by reference, consider the following C routine which requires a
pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

This routine would be declared as follows (notice the ByRef keyword in the third parameter):
Declare Function SystemParametersInfo Lib "user" (ByVal action As Integer, _
ByVal uParam As Integer,ByRef pInfo As Integer, ByVal updateINI As Integer) _
As Integer

Strings can be passed by reference or by value. When they are passed by reference, a pointer to a
pointer to a null-terminated string is passed. When they are passed by value, the compiler passes a
pointer to a null-terminated string (i.e., a C string).

When passing a string by reference, the external routine can change the pointer or modify the
contents of the existing. If an external routine modifies a passed string variable (regardless of
whether the string was passed by reference or by value), then there must be sufficient space
within the string to hold the returned characters. This can be accomplished using the Space

function, as shown in the following example:
Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal length%)

Sub Main
  Dim s As String
  s = Space(128)
  GetWindowsDirectory s,128
End Sub

Another alternative to ensure that a string has sufficient space is to declare the string with a fixed
length:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal dirname$, ByVal length%)

Sub Main
  Dim s As String * 128
  GetWindowsDirectory s,len(s)
End Sub

Calling conventions with external routines
For external routines, the argument list must exactly match that of the referenced routine. When calling
an external subroutine or function, the compiler needs to be told how that routine expects to receive



SmarTerm Macro Guide

219

its parameters and who is responsible for cleanup of the stack. The following table describes the macro
language’s calling conventions and how these translate to those supported by C.

Macro
Call

C Call Characteristics

StdCall _stdcall Arguments are pushed right to left. The called function performs
stack cleanup. This is the default.

Pascal pascal Arguments are pushed left to right. The called function performs
stack cleanup

Cdecl cdec1 Arguments are pushed right to left. The caller performs stack
cleanup.

Passing null pointers
For external routines defined to receive strings by value, the compiler passes uninitialized strings as
null pointers (a pointer whose value is 0). The constant ebNullString can be used to force a null
pointer to be passed as shown below:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main
  Foo ebNullString 'pass a null pointer
End Sub

Another way to pass a null pointer is to declare the parameter that is to receive the null pointer as type
Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main
  Foo ByVal 0& 'Pass a null pointer.
End Sub

Passing data to external routines
The following table shows how the different data types are passed to external routines:

Data Type Passed As

ByRef Boolean Pointer to a 2-byte value containing –1 or 0.

ByVal Boolean 2-byte value containing –1 or 0.

ByVal Integer Pointer to a 2-byte short integer.

ByRef Integer

ByVal Long Pointer to a 4-byte long integer.

ByRef Long 4-byte long integer.

ByRef Single Pointer to a 4-byte IEEE floating-point value (a float).

ByVal Single 4-byte IEEE floating-point value (a float).



D

220

Data Type Passed As

ByRef Double Pointer to an 8-byte IEEE floating-point value (a double).

ByVal Double 8-byte IEEE floating-point value (a double).

ByVal String A pointer to a null-terminated string. With strings containing embedded
nulls (Chr$(0)), it is not possible to determine which null represents the
end of the string; therefore, the first null is considered the string
terminator. An external routine can freely change the content of a string.
It cannot, however, write beyond the end of the null terminator.

ByRef String A pointer to a pointer to a null-terminated string. With strings containing
embedded nulls (Chr$(0)), it is not possible to determine which null
represents the end of the string; therefore, the first null is considered the
string terminator. An external routine can freely change the content of a
string. It cannot, however, write beyond the end of the null terminator.

ByRef Variant A pointer to a 16-byte variant structure. This structure contains a 2-byte
type (the same as that returned by the VarType function), followed by 6-
bytes of slop (for alignment), followed by 8-bytes containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte type (the
same as that returned by the VarType function), followed by 6-bytes of
slop (for alignment), followed by 8-bytes containing the value.

ByVal Object For data objects, a 4-byte unsigned long integer. This value can only be
used by external routines written specifically for the macro language. For
OLE Automation objects, a 32-bit pointer to an LPDISPATCH handle is
passed.

ByRef Object For data objects, a pointer to a 4-byte unsigned long integer that
references the object. This value can only be used by external routines
written specifically for the macro language. For OLE Automation objects,
a pointer to an LPDISPATCH value is passed.

ByVal User-
defined type

The entire structure is passed to the external routine. It is important to
remember that structures in the macro language are packed on 2-byte
boundaries, meaning that the individual structure members may not be
aligned consistently with similar structures declared in C.

ByRef User-
defined type

A pointer to the structure. It is important to remember that structures in
the macro language are packed on 2-byte boundaries, meaning that the
individual structure members may not be aligned consistently with similar
structures declared in C.

Arrays A pointer to a packed array of elements of the given type. Arrays can
only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Only variable-length strings can be passed to external routines; fixed-length strings are automatically
converted to variable-length strings.



SmarTerm Macro Guide

221

The compiler passes data to external functions consistent with that routine's prototype as defined by
the Declare statement. There is one exception to this rule: you can override ByRef parameters using the
ByVal keyword when passing individual parameters. The following example shows a number of
different ways to pass an Integer to an external routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main
  Dim i As Integer
  i = 6
  Foo 6 'Passes a temporary integer (value 6) by
            'reference
  Foo i 'Passes variable "i" by reference
  Foo (i) 'Passes a temporary integer (value 6) by
            'reference
  Foo i + 1 'Passes temporary integer (value 7) by
            'reference
  Foo ByVal i 'Passes i by value
End Sub

The above example shows that the only way to override passing a value by reference is to use the
ByVal keyword.

Note:
Use caution when using the ByVal keyword in this way. The external routine Foo expects to receive
a pointer to an Integer—a 32-bit value; using ByVal causes the compiler to pass the Integer by
value—a 16-bit value. Passing data of the wrong size to any external routine will have unpredictable
results.

Returning values from external routines
The compiler supports the following values returned from external routines: Integer, Long, Single,
Double, String, Boolean, and all object types. When returning a String, the compiler assumes that the
first null-terminator is the end of the string.

Calling external routines
The compiler makes a copy of all data passed to external routines. This allows other simultaneously
executing macros to continue executing before the external routine returns.

Care must be exercised when passing the same by-reference variable twice to external routines. When
returning from such calls, the compiler must update the real data from the copies made prior to calling
the external function. Since the same variable was passed twice, you will be unable to determine
which variable will be updated.

External routines are contained in DLLs. The libraries containing the routines are loaded when the
routine is called for the first time (i.e., not when the macro is loaded). This allows a macro to reference
external DLLs that potentially do not exist.

Note:
You cannot execute routines contained in 16-bit Windows DLLs.

All the Windows API routines are contained in DLLs, such as "user32", "kernel32", and "gdi32". The
file extension ".exe" is implied if another extension is not given.

The Pascal and StdCall calling conventions are identical. Furthermore, the arguments are passed using
C ordering regardless of the calling convention—right to left on the stack.



D

222

If the LibName$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

1. The directory containing the compiler

2. The current directory

3. The Windows system directory

4. The Windows directory

5. All directories listed in the path environment variable

If the first character of AliasName$ is #, then the remainder of the characters specify the ordinal number
of the routine to be called. For example, the following two statements are equivalent (under Win32,
GetCurrentTime is defined as GetTickCount, ordinal 300, in kernel32.dll):

Declare Function GetTime Lib "kernel32.dll" Alias "GetTickCount" () As Long

Declare Function GetTime Lib "kernel32.dll" Alias "#300" () As Long

Both name and AliasName$ are case-sensitive.

All strings passed by value are converted to MBCS strings. Similarly, any string returned from an
external routine is assumed to be a null-terminated MBCS string.

The compiler does not perform an increment on OLE automation objects before passing them to
external routines. When returned from an external function, it assumes that the properties and methods
of the OLE automation object are UNICODE and that the object uses the default system locale.

Example
Declare Function GetModuleHandle& Lib "kernel32" Alias "GetModuleHandleA" (ByVal_ name2
As_ String)

Declare Function GetProfileString& Lib "Kernel32" Alias "GetProfileStringA" (ByVal_
SName As_ String, ByVal KName As String, ByVal Def As String, ByVal Ret As String,_
ByVal Size As Long)

Sub Main
  SName$ = "Intl" 'Win.ini section name.
  KName$ = "sCountry" 'Win.ini country setting.
  ret$ = String$(255, 0) 'Initialize return string.
  If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then
    Session.Echo "Your country setting is: " & ret$
  Else
    Session.Echo "There is no country setting in your win.ini file."
  End If
  If GetModuleHandle("Progman") Then
    Session.Echo "Progman is loaded."
  Else
    Session.Echo "Progman is not loaded."
  End If
End Sub

See Also
Macro Control and Compilation on page 36

DefType
Syntax

{DefInt | DefLng | DefStr | DefSng | DefDbl | DefCur | DefObj | DefVar | DefBool |
DefDate} letterrange



SmarTerm Macro Guide

223

Description
Establishes the default type assigned to undeclared or untyped variables. The DefType statement
controls automatic type declaration of variables. Normally, if a variable is encountered that hasn't yet
been declared with the Dim, Public, or Private statement or does not appear with an explicit type-
declaration character, then that variable is declared implicitly as a variant (DefVar A–Z). This can be
changed using the DefType statement to specify starting letter ranges for Type other than integer. The
letterrange parameter is used to specify starting letters. Thus, any variable that begins with a specified
character will be declared using the specified Type.

The syntax for letterrange is:
letter [-letter] [,letter [-letter]]...

DefType variable types are superseded by an explicit type declaration using either a type-declaration
character or the Dim, Public, or Private statement.

The DefType statement only affects how macros are compiled and has no effect at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

The following table describes the data types referenced by the different variations of the DefType

statement:

Statement Data Type

DefInt Integer

DefLng Long

DefStr String

DefSng Single

DefDbl Double

DefCur Currency

DefObj Object

DefVar Variant

DefBool Boolean

DefDate Date

Example
DefStr a-l
DefLng m-r
DefSng s-u
DefDbl v-w
DefInt x-z
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a = 100.52
  m = 100.52
  s = 100.52
  v = 100.52
  x = 100.52
  mesg = "The values are:"



D

224

  mesg = mesg & "(String) a: " & a
  mesg = mesg & "(Long) m: " & m
  mesg = mesg & "(Single) s: " & s
  mesg = mesg & "(Double) v: " & v
  mesg = mesg & "(Integer) x: " & x
  Session.Echo mesg
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Dialog (function)
Syntax

Dialog(DialogVariable [,[DefaultButton] [,Timeout]])

Description
Displays the dialog associated with DialogVariable, returning an Integer indicating which button was
clicked. The Dialog function returns any of the following values:

Value Function

–1 The OK button was clicked.

0 The Cancel button was clicked.

>0 A push button was clicked. The returned number represents which button was
clicked based on its order in the dialog template (1 is the first push button, 2 is the
second push button, and so on).

The Dialog function accepts the following parameters:

Parameter Description

DialogVariable Name of a variable that has previously been dimensioned as a user
dialog. This is accomplished using the Dim statement: Dim MyDialog As

MyTemplate. All dialog variables are local to the Sub or Function in
which they are defined. Private and public dialog variables are not
allowed.

DefaultButton An Integer specifying which button is to act as the default button in the
dialog. The value of DefaultButton can be any of the following:

• –1 This value indicates that the OK button, if present, should be
used as the default.

• 0 This value indicates that the Cancel button, if present, should
be used as the default.

• >0 This value indicates that the Nth button should be used as
the default. This number is the index of a push button within
the dialog template.



SmarTerm Macro Guide

225

Parameter Description

If DefaultButton is not specified, then –1 is used. If the number specified
by DefaultButton does not correspond to an existing button, then there
will be no default button. The default button appears with a thick border
and is selected when the user presses Enter on a control other than a
push button.

Timeout An integer specifying the number of milliseconds to display the dialog
before automatically dismissing it. If Timeout is not specified or is equal
to 0, then the dialog will be displayed until dismissed by the user. If a
dialog has been dismissed due to a timeout, the Dialog function returns
0.

A runtime error is generated if the dialog template specified by DialogVariable does not contain at
least one of the following statements:

PushButton CancelButton
OKButton PictureButton

Example
Sub Main
  Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
    Text 8,8,100,8,"The disk drive door is open."
    PushButton 8,24,40,14,"Abort",.Abort
    PushButton 56,24,40,14,"Retry",.Retry
    PushButton 104,24,40,14,"Ignore",.Ignore
  End Dialog
  Dim DiskError As DiskErrorTemplate
  r% = Dialog(DiskError,3,0)
  Session.Echo "You selected button: " & r%
End Sub

See Also
User Interaction on page 39

Dialog (statement)
Syntax

Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description
Same as the Dialog function, except that the Dialog statement does not return a value. (See Dialog

[function].)

Example
Sub Main
  Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
    Text 8,8,100,8,"The disk drive door is open."
    PushButton 8,24,40,14,"Abort",.Abort
    PushButton 56,24,40,14,"Retry",.Retry
    PushButton 104,24,40,14,"Ignore",.Ignore
  End Dialog
  Dim DiskError As DiskErrorTemplate
  Dialog DiskError,3,0
End Sub

See Also



D

226

User Interaction on page 39

Dialogs (topic)
The compiler displays all runtime dialogs in the following fonts:

• 8-point MS Sans Serif font for non-MBCS systems

• The default system font for MBCS systems

The default help key is F1.

See Also
User Interaction on page 39

Dim
Syntax

Dim name [(<submacros>)] [As [New] type] [,name [(<submacros>)] [As [New] type]]...

Description
Declares a list of local variables and their corresponding types and sizes. If a type-declaration character
is used when specifying name (such as %, @, &, $, or !), the optional [As type] expression is not
allowed. For example, the following are allowed:

Dim Temperature As Integer
Dim Temperature%

The submacros parameter allows the declaration of dynamic and fixed arrays. The submacros parameter
uses the following syntax:

[lower to] upper [,[lower to] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option

Base statement has been encountered). You can have a maximum of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K. Dynamic arrays are
declared by not specifying any bounds:

Dim a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type, or
any user-defined data type. When specifying explicit object types, you can use the following syntax
for type:

module.class

where module is the name of the module in which the object is defined and class is the type of object.
For example, to specify the OLE automation variable for Excel’s Application object, you could use the
following code:

Dim a As Excel.Application



SmarTerm Macro Guide

227

Note:
Explicit object types can only be specified for data objects and early bound OLE automation
objects—i.e., objects whose type libraries have been registered with the compiler.

A Dim statement within a subroutine or function declares variables local to that subroutine or function.
If the Dim statement appears outside of any subroutine or function declaration, then that variable has
the same scope as variables declared with the Private statement.

Fixed-length strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Dim name As String * length

where length is a literal number specifying the string's length.

Implicit variable declaration
If the compiler encounters a variable that has not been explicitly declared with Dim, then the variable
will be implicitly declared using the specified type-declaration character (#, %, @, $, or &). If the
variable appears without a type-declaration character, then the first letter is matched against any
pending DefType statements, using the specified type if found. If no DefType statement has been
encountered corresponding to the first letter of the variable name, then Variant is used.

Declaring explicit OLE automation objects
The Dim statement can be used to declare variables of an explicit object type for objects known to the
compiler through type libraries. This is accomplished using the following syntax:

Dim name As application.class

The application parameter specifies the application used to register the OLE automation object and
class specifies the specific object type as defined in the type library. Objects declared in this manner
are early bound, meaning that the compiler is able to resolve method and property information at
compile time, improving the performance when invoking methods and properties of that object
variable.

Creating new objects
The optional New keyword is used to declare a new instance of the specified data object. This keyword
cannot be used when declaring arrays or OLE automation objects.

At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which is immediately assigned to the variable being
declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the variable is
declared ends), the application is notified. The application then performs some appropriate action, such
as destroying the physical object.

Initial values
All declared variables are given initial values, as described in the following table:



D

228

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Date December 30, 1899 00:00:00

Currency 0.0

Boolean False

Object Nothing

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure gets an initial value as described above.

Arrays Each element of the array gets an initial value as described above.

Naming conventions
Variable names must follow these naming rules:

• Must start with a letter.

• May contain letters, digits, and the underscore character (_); punctuation is not allowed. The
exclamation point (!) can appear within the name as long as it is not the last character, in which
case it is interpreted as a type-declaration character.

• The last character of the name can be any of the following type-declaration characters: #, @, %, !,
&, and $.

• Must not exceed 80 characters in length.

• Cannot be a reserved word.

Examples
The following examples use the Dim statement to declare various variable types.

Sub Main
    Dim i As Integer
    Dim l& 'Long
    Dim s As Single
    Dim d# 'Double
    Dim c$                               'String
    Dim MyArray(10) As Integer '10 element integer array
    Dim MyStrings$(2,10) '2-10 element string arrays
    Dim Filenames$(5 to 10) '6 element string array
    Dim Values(1 to 10, 100 to 200) '111 element variant array
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



SmarTerm Macro Guide

229

Dir, Dir$
Syntax

Dir[$] [(pathname [,attributes])]

Description
Returns a String containing the first or next file matching pathname. If pathname is specified, then the
first file matching that pathname is returned. If pathname is not specified, then the next file matching
the initial pathname is returned.

Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following named parameters:

Parameter Description

pathname String containing a file specification. If this parameter is specified, then Dir$

returns the first file matching this file specification. If this parameter is
omitted, then the next file matching the initial file specification is returned. If
no path is specified in pathname, then all files are returned from the current
directory.

attributes Integer specifying attributes of files you want included in the list, as
described below. If this parameter is omitted, then only the normal, read-only,
and archive files are returned.

An error is generated if Dir$ is called without first calling it with a valid pathname.

If there is no matching pathname, then a zero-length string is returned.

Wildcards
The pathname argument can include wildcards, such as * and ?. The * character matches any sequence
of zero or more characters, whereas the ? character matches any single character. Multiple *s and ?s
can appear within the expression to form complete searching patterns. The following table shows some
examples:

This Pattern Matches These Files Not TheseFiles

*S*.TXT SAMPLE.TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT, ACATS.TXT

C*T CAT, CAP.TXT CAT.DOC

C?T CAT, CUT CAT.TXT, CAPITCT

* (All files)

Attributes
You can control which files are included in the search by specifying the optional attributes parameter.
The Dir, Dir$ functions always return all normal, read-only, and archive files (ebNormal Or ebReadOnly

Or ebArchive). To include additional files, you can specify any combination of the following attributes
(combined with the Or operator):



D

230

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, and none

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim a$(10)
  a(1) = Dir$("*.*")
  i% = 1
  While (a(i%) <> "") And (i% < 10)
    i% = i% + 1
    a(i%) = Dir$
  Wend
  Session.Echo a(1) & crlf & a(2) & crlf & a(3) & crlf & a(4)
End Sub

See Also
Drive, Folder, and File Access on page 34

DiskDrives
Syntax

DiskDrives array()

Description
Fills the specified String or Variant array with a list of valid drive letters. The array() parameter
specifies either a zero- or a one-dimensioned array of strings or variants. The array can be either
dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of elements. If
there are no elements, then the array will be redimensioned to contain no dimensions. You can use the
LBound, UBound, and ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new elements are placed into the array.
If there are fewer elements than will fit in the array, then the remaining elements are initialized to zero-
length strings (for String arrays) or Empty (for Variant arrays). A runtime error results if the array is too
small to hold the new elements.

Example
Sub Main
  Dim drive$()
  DiskDrives drive$
  Session.Echo "Available Disk Drives:<CR><LF>"
  For i= 0 to UBound(drive$)
    Session.Echo drive$ & "<CR><LF>"



SmarTerm Macro Guide

231

  Next i
End Sub

See Also
Drive, Folder, and File Access on page 34

DiskFree
Syntax

DiskFree&([drive$])

Description
Returns a Long containing the free space (in bytes) available on the specified drive. If drive$ is zero-
length or not specified, then the current drive is assumed. Only the first character of the drive$ string
is used.

Example
Sub Main
  s$ = "c"
  i# = DiskFree(s$)
  Session.Echo "Free disk space on drive '" & s$ & "' is: " & i#
End Sub

See Also
Drive, Folder, and File Access on page 34

DlgCaption (function)
Syntax

DlgCaption[()]

Description
Returns a string containing the caption of the active user-defined dialog. This function returns a zero-
length string if the active dialog has no caption.

See Also
User Interaction on page 39

DlgCaption (statement)
Syntax

DlgCaption text

Description
Changes the caption of the current dialog to text.

Example
Function DlgProc(c As String,a As Integer,v As Integer)
If a = 1 Then
DlgCaption choose(DlgValue("OptionGroup1") + 1, _
"Blue","Green")

ElseIf a = 2 Then
DlgCaption choose(DlgValue("OptionGroup1") + 1, _
"Blue","Green")

End If



D

232

End Function

Sub Main
Begin Dialog UserDialog ,,149,45,"Untitled",.DlgProc
OKButton 96,8,40,14
OptionGroup .OptionGroup1
OptionButton 12,12,56,8,"Blue",.OptionButton1
OptionButton 12,28,56,8,"Green",.OptionButton2

End Dialog
Dim d As UserDialog
Dialog d

End Sub

See Also
User Interaction on page 39

DlgControlId
Syntax

DlgControlId(ControlName$)

Description
Returns an Integer containing the index of the specified control as it appears in the dialog template.
The first control in the dialog template is at index 0, the second is at index 1, and so on. The
ControlName$ parameter contains the name of the .Identifier parameter associated with that control
in the dialog template.

The macro statements and functions that dynamically manipulate dialog controls identify individual
controls using either the .Identifier name of the control or the control's index. Using the index to
refer to a control is slightly faster but results in code that is more difficult to maintain.

Example
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
'If a control is clicked, disable the next three controls.
If Action% = 2 Then
'Enable the next three controls.
start% = DlgControlId(ControlName$)
For i = start% + 1 To start% + 3
DlgEnable i,True

Next i
DlgProc = 1 'Don't close the dialog.

End If
End Function

See Also
User Interaction on page 39

DlgEnable (function)
Syntax

DlgEnable(ControlName$ | ControlIndex)

Description
Returns True if the specified control is enabled; returns False otherwise. Disabled controls are dimmed
and cannot receive keyboard or mouse input.



SmarTerm Macro Guide

233

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

If you attempt to disable the control with the focus, the compiler will automatically set the focus to
the next control in the tab order.

Example
If DlgEnable("SaveOptions") Then
Session.Echo "The Save Options are enabled."

End If
If DlgEnable(10) And DlgVisible(12) Then code = 1 Else code = 2

See Also
User Interaction on page 39

DlgEnable (statement)
Syntax

DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description
Enables or disables the specified control. Disabled controls are dimmed and cannot receive keyboard
or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

Value Description

0 The control is disabled.

1 The control is enabled.

Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
DlgEnable "SaveOptions", False 'Disable the Save Options control.
DlgEnable "EditingOptions"'Toggle a group of option buttons.
For i = 0 To 5
DlgEnable i,True 'Enable six controls.

Next i

See Also
User Interaction on page 39



D

234

DlgFocus (function)
Syntax

DlgFocus$[()]

Description
Returns a String containing the name of the control with the focus. The name of the control is the
.Identifier parameter associated with the control in the dialog template.

Example
If DlgFocus$ = "Files" Then 'Does it have the focus?
DlgFocus "OK" 'Change the focus to another control.

End If
DlgEnable "Files", False 'Now we can disable the control.

See Also
User Interaction on page 39

DlgFocus (statement)
Syntax

DlgFocus ControlName$ | ControlIndex

Description
Sets focus to the specified control. A runtime error results if the specified control is hidden, disabled,
or nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
If DlgFocus$ = "Files" Then 'Does it have the focus?
DlgFocus "OK" 'Change the focus to another control.

End If
DlgEnable "Files", False 'Now we can disable the control.

See Also
User Interaction on page 39

DlgListBoxArray (function)
Syntax

DlgListBoxArray({ControlName$ | ControlIndex}, ArrayVariable)

Description
Fills a listbox, combo box, or drop listbox with the elements of an array, returning an Integer

containing the number of elements that were actually set into the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).



SmarTerm Macro Guide

235

When ControlIndex is specified, OptionGroup statements do not count as a control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of the
control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

Example
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
If Action% = 2 And ControlName$ = "Files" Then
Dim NewFiles$() 'Create a new dynamic array.
FileList NewFiles$,"*.txt" 'Fill the array with files.
r% = DlgListBoxArray "Files",NewFiles$ 

'Set items in the listbox.
DlgValue "Files",0 'Set the selection to first item.
DlgProc = 1 'Don't close the dialog.

End If
Session.Echo r% & " items were added to the listbox."

End Function

See Also
User Interaction on page 39

DlgListBoxArray (statement)
Syntax

DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable

Description
Fills a listbox, combo box, or drop listbox with the elements of an array.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of the
control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

Example
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
If Action% = 2 And ControlName$ = "Files" Then
Dim NewFiles$() 'Create a new

'dynamic array.
FileList NewFiles$,"*.txt" 'Fill the array with files.
DlgListBoxArray "Files",NewFiles$ 'Set items in the listbox.
DlgValue "Files",0 'Set the selection

'to the first item.
End If

End Function

See Also
User Interaction on page 39



D

236

DlgProc
Syntax

Function DlgProc(ControlName$, Action, SuppValue) As Integer

Description
Describes the syntax, parameters, and return value for dialog functions. Dialog functions are called by
the compiler during the processing of a custom dialog. The name of a dialog function (DlgProc)
appears in the Begin Dialog statement as the .DlgProc parameter. Dialog functions require the
following parameters:

Parameter Description

ControlName$ String containing the name of the control associated with Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some actions, this
parameter is not used.

When the compiler displays a custom dialog, the user may click buttons, type text into edit fields,
select items from lists, and perform other actions. When these actions occur, the compiler calls the
dialog function, passing it the action, the name of the control on which the action occurred, and any
other relevant information associated with the action.

The following table describes the different actions sent to dialog functions:

Action Description

1 This action is sent immediately before the dialog is shown for the first time. This
gives the dialog function a chance to prepare the dialog for use. When this action
is sent, ControlName$ contains a zero-length string, and SuppValue is 0.The return
value from the dialog function is ignored in this case.

Before Showing the dialog: After action 1 is sent, the compiler performs
additional processing before the dialog is shown. Specifically, it cycles though the
dialog controls checking for visible picture or picture button controls. For each
visible picture or picture button control, the compiler attempts to load the
associated picture. In addition to checking picture or picture button controls, the
compiler automatically hides any control outside the confines of the visible
portion of the dialog. This prevents the user from tabbing to controls that cannot
be seen. However, it does not prevent you from showing these controls with the
DlgVisible statement in the dialog function.

2 This action is sent when:

A button is clicked, such as OK, Cancel, or a push button. In this case,
ControlName$ contains the name of the button. SuppValue contains 1 if an OK
button was clicked and 2 if a Cancel button was clicked; SuppValue is undefined
otherwise. If the dialog function returns 0 in response to this action, then the
dialog will be closed. Any other value causes the compiler to continue dialog
processing.



SmarTerm Macro Guide

237

Action Description

A checkbox's state has been modified. In this case, ControlName$ contains the
name of the checkbox, and SuppValue contains the new state of the checkbox (1 if
on, 0 if off).
An option button is selected. In this case, ControlName$ contains the name of the
option button that was clicked, and SuppValue contains the index of the option
button within the option button group (0-based).
The current selection is changed in a listbox, drop listbox, or combo box. In this
case, ControlName$ contains the name of the listbox, combo box, or drop listbox,
and SuppValue contains the index of the new item (0 is the first item, 1 is the
second, and so on).

3 This action is sent when the content of a text box or combo box has been
changed. This action is only sent when the control loses focus. When this action
is sent, ControlName$ contains the name of the text box or combo box, and
SuppValue contains the length of the new content. The dialog function's return
value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent,
ControlName$ contains the name of the control gaining the focus, and SuppValue

contains the index of the control that lost the focus (0-based).The dialog function's
return value is ignored with this action.

5 This action is sent continuously when the dialog is idle. If the dialog function
returns 1 in response to this action, then the idle action will continue to be sent. If
the dialog function returns 0, then the compiler will not send any additional idle
actions. When the idle action is sent, ControlName$ contains a zero-length string,
and SuppValue contains the number of times the idle action has been sent so far.

6 This action is sent when the dialog is moved. The ControlName$ parameter
contains a zero-length string, and SuppValue is 0.The dialog function's return value
is ignored with this action.

User-defined dialoges cannot be nested. In other words, the dialog function of one dialog cannot
create another user-defined dialog. You can, however, invoke any built-in dialog, such as Session.Echo

or InputBox$.

Within dialog functions, you can use the following additional statements and functions. These
statements allow you to manipulate the dialog controls dynamically.

DlgVisible DlgText$ DlgText

DlgSetPicture DlgListBoxArray DlgFocus

DlgEnable DlgControlId

The dialog function can optionally be declared to return a Variant. When returning a variable, the
compiler will attempt to convert the variant to an Integer. If the returned variant cannot be converted
to an Integer, then 0 is assumed to be returned from the dialog function.

Example
Function SampleDlgProc(ControlName$, Action%, SuppValue%)



D

238

If Action% = 2 And ControlName$ = "Printing" Then
DlgEnable "PrintOptions",SuppValue%
SampleDlgProc = 1 'Don't close the dialog.

End If
End Function

Sub Main
Begin Dialog SampleDialogTemplate 34, 39, 106, 45, "Sample", _

.SampleDlgProc
OKButton 4,4,40,14
CancelButton 4,24,40,14
CheckBox 56,8,38,8,"Printing",.Printing
OptionGroup .PrintOptions
OptionButton 56,20,51,8,"Landscape",.Landscape
OptionButton 56,32,40,8,"Portrait",.Portrait

End Dialog
Dim SampleDialog As SampleDialogTemplate
SampleDialog.Printing = 1
r% = Dialog(SampleDialog)

End Sub

See Also
User Interaction on page 39

DlgSetPicture
Syntax

DlgSetPicture {ControlName$ | ControlIndex},PictureName$,PictureType

Description
Changes the content of the specified picture or picture button control. The DlgSetPicture statement
accepts the following parameters:

Parameter Description

ControlName$ String containing the name of the .Identifier parameter associated with a
control in the dialog template. A case-insensitive comparison is used to
locate the specified control within the template. Alternatively, by
specifying the ControlIndex parameter, a control can be referred to using
its index in the dialog template (0 is the first control in the template, 1 is
the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a
control.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
parameter specifies the name of the file containing the image. If
PictureType is 10, then PictureName$ specifies the name of the image
within the resource of the picture library. If PictureName$ is empty, then
the current picture associated with the specified control will be deleted.
Thus, a technique for conserving memory and resources would involve
setting the picture to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following sources are
supported:



SmarTerm Macro Guide

239

Parameter Description

0 The image is contained in a file on disk.

10 The image is contained in the picture library specified by the Begin
Dialog statement. When this type is used, the PictureName$ parameter must
be specified with the Begin Dialog statement.

Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs.

Examples
'Set picture from a file.
DlgSetPicture "Picture1","\windows\checks.bmp",0
'Set control 10's image from a library.
DlgSetPicture 27,"FaxReport",10

See Also
User Interaction on page 39

DlgText
Syntax

DlgText {ControlName$ | ControlIndex}, NewText$

Description
Changes the text content of the specified control. The effect of this statement depends on the type of
the specified control:

Control Type Effect of DlgText

Picture Runtime error.

Option group Runtime error.

Drop listbox If an exact match cannot be found, the DlgText statement searches from the
first item looking for an item that starts with NewText$. If no match is
found, then the selection is removed.

OK button Sets the label of the control to NewText$.

Cancel button Sets the label of the control to NewText$.

Push button Sets the label of the control to NewText$.

Listbox Sets the current selection to the item matching NewText$. If an exact match
cannot be found, the DlgText statement searches from the first item looking
for an item that starts with NewText$. If no match is found, then the
selection is removed.

Combo box Sets the content of the edit field of the combo box to NewText$.

Text Sets the label of the control to NewText$.



D

240

Control Type Effect of DlgText

Text box Sets the content of the text box to NewText$.

Group box Sets the label of the control to NewText$.

Option button Sets the label of the control to NewText$.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using
its index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
DlgText "GroupBox1","Save Options" 'Change text of group box 1.
If DlgText$(9) = "Save Options" Then
DlgText 9,"Editing Options"'Change text to "Editing Options".

End If

See Also
User Interaction on page 39

DlgText$
Syntax

DlgText$(ControlName$ | ControlIndex)

Description
Returns the text content of the specified control. The text returned depends on the type of the
specified control:

Control Type Value Returned by DlgText$

Picture No value is returned. A runtime error occurs.

Option group No value is returned. A runtime error occurs.

Drop listbox Returns the currently selected item. A zero-length string is returned if no
item is currently selected.

OK button Returns the label of the control.

Cancel button Returns the label of the control.

Push button Returns the label of the control.

Listbox Returns the currently selected item. A zero-length string is returned if no
item is currently selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.



SmarTerm Macro Guide

241

Control Type Value Returned by DlgText$

Group box Returns the label of the control.

Option button Returns the label of the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
Session.Echo DlgText$(10) 'Display the text in the tenth control.
If DlgText$("SaveOptions") = "EditingOptions" Then
Session.Echo "You are currently viewing the editing options."

End If

See Also
User Interaction on page 39

DlgValue (function)
Syntax

DlgValue(ControlName$ | ControlIndex)

Description
Returns an Integer indicating the value of the specified control. The value of any given control
depends on its type, according to the following table:

Control Type DlgValue Returns

Option group The index of the selected option button within the group (0 is the first
option button, 1 is the second, and so on).

Listbox The index of the selected item.

Drop listbox The index of the selected item.

Checkbox 1 if the checkbox is checked; 0 otherwise.

A runtime error is generated if DlgValue is used with controls other than those listed in the above
table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the dialog template (0 is the first control in the template, 1 is the second,
and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
See DlgValue (statement).

See Also



D

242

User Interaction on page 39

DlgValue (statement)
Syntax

DlgValue {ControlName$ | ControlIndex},Value

Description
Changes the value of the given control. The value of any given control is an Integer and depends on
its type, according to the following table:

Control Type Description of Value

Option group The index of the new selected option button within the group (0 is the first
option button, 1 is the second, and so on).

Listbox The index of the new selected item.

Drop listbox The index of the new selected item.

Checkbox 1 if the checkbox is to be checked; 0 to remove the check.

A runtime error is generated if DlgValue is used with controls other than those listed in the above
table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Example
If DlgValue("MyCheckBox") = 1 Then
DlgValue "MyCheckBox",0

Else
DlgValue "MyCheckBox",1

End If

See Also
User Interaction on page 39

DlgVisible (function)
Syntax

DlgVisible(ControlName$ | ControlIndex)

Description
Returns True if the specified control is visible; returns False otherwise.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. Alternatively, by specifying the ControlIndex parameter, a control can be
referred to using its index in the template (0 is the first control in the template, 1 is the second, and so
on).

When ControlIndex is specified, OptionGroup statements do not count as a control.



SmarTerm Macro Guide

243

A runtime error is generated if DlgVisible is called when no user dialog is active.

Example
If DlgVisible("Portrait") Then Beep
If DlgVisible(10) And DlgVisible(12) Then
Session.Echo "The 10th and 12th controls are visible."

End If

See Also
User Interaction on page 39

DlgVisible (statement)
Syntax

DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description
Hides or shows the specified control. Hidden controls cannot be seen in the dialog and cannot receive
the focus using Tab.

The isOn parameter is an Integer specifying the new state of the control. It can be any of the
following values:

Value Description

1 The control is shown.

The control is hidden.

Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual option button) or as a
group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog template (0 is the first control in the template, 1 is the second, and so on).

When ControlIndex is specified, OptionGroup statements do not count as a control.

Picture Caching
When the dialog is first created and before it is shown, the compiler calls the dialog function with
action set to 1. At this time, no pictures have been loaded into the picture controls contained in the
dialog template. After control returns from the dialog function and before the dialog is shown, the
compiler will load the pictures of all visible picture controls. Thus, it is possible for the dialog
function to hide certain picture controls, which prevents the associated pictures from being loaded and
causes the dialog to load faster. When a picture control is made visible for the first time, the associated
picture will then be loaded.

Example
Sub EnableGroup(start%, finish%)
For i = 6 To 13 'Disable all options.
DlgVisible i, False

Next i
For i = start% To finish% 'Enable only the right ones.



D

244

DlgVisible i, True
Next i

End Sub

Function DlgProc(ControlName$, Action%, SuppValue%)
If Action% = 1 Then
DlgValue "WhichOptions",0 'Set to save options.
EnableGroup 6, 8 'Enable the save options.

End If
If Action% = 2 And ControlName$ = "SaveOptions" Then
EnableGroup 6, 8 'Enable the save options.
DlgProc = 1 'Don't close the dialog.

End If
If Action% = 2 And ControlName$ = "EditingOptions" Then
EnableGroup 9, 13 'Enable the editing options.
DlgProc = 1 'Don't close the dialog.

End If
End Function

Sub Main
Begin Dialog OptionsTemplate 33, 33, 171, 134, "Options", .DlgProc
'Background (controls 0-5)
GroupBox 8, 40, 152, 84, ""
OptionGroup .WhichOptions
OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions
OptionButton 8, 20, 65, 8, "Editing Options",.EditingOptions

OKButton 116, 7, 44, 14
CancelButton 116, 24, 44, 14
'Save options (controls 6-8)
CheckBox 20, 56, 88, 8, "Always create backup",.CheckBox1
CheckBox 20, 68, 65, 8, "Automatic save",.CheckBox2
CheckBox 20, 80, 70, 8, "Allow overwriting",.CheckBox3
'Editing options (controls 9-13)
CheckBox 20, 56, 65, 8, "Overtype mode",.OvertypeMode
CheckBox 20, 68, 69, 8, "Uppercase only",.UppercaseOnly
CheckBox 20, 80, 105, 8, "Automatically check syntax",.AutoCheckSyntax
CheckBox 20, 92, 73, 8, "Full line selection",.FullLineSelection
CheckBox 20, 104, 102, 8, "Typing replaces selection",.TypingReplacesText

End Dialog
Dim OptionsDialog As OptionsTemplate
Dialog OptionsDialog

End Sub

See Also
User Interaction on page 39

Do...Loop
Syntax 1

Do {While | Until} condition statements Loop

Syntax 2
Do
statements
Loop {While | Until} condition

Syntax 3
Do
statements
Loop

Description



SmarTerm Macro Guide

245

Repeats a block of statements while a condition is True or until a condition is True. If the {While |
Until} conditional clause is not specified, then the loop repeats the statements forever (or until the
compiler encounters an Exit Do statement).

The condition parameter specifies any Boolean expression.

Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Examples
This first example uses the Do...While statement, which performs the iteration, then checks the
condition, and repeats if the condition is True.

Sub Main
Dim a$(100)
i% = -1
Do
i% = i% + 1
If i% = 0 Then
a(i%) = Dir$("*")

Else
a(i%) = Dir$

End If
Loop While (a(i%) <> "" And i% <= 99)
Session.Echo str$(i%) & " files found" & "<CR><LF>

This second example uses the Do While...Loop, which checks the condition and then repeats if the
condition is True.

Dim a$(100)
  i% = 0
  a(i%) = Dir$("*")
  Do While a(i%) <> "" And i% <= 99
    i% = i% + 1
    a(i%) = Dir$
  Loop
Session.Echo str$(i%) & " files found" & "<CR><LF>

This third example uses the Do Until...Loop, which does the iteration and then checks the condition
and repeats if the condition is True.

Dim a$(100)
  i% = 0
  a(i%) = Dir$("*")
  Do Until a(i%) = "" Or i% = 100
    i% = i% + 1
    a(i%) = Dir$
  Loop
Session.Echo str$(i%) & " files found" & "<CR><LF>

This last example uses the Do...Until Loop, which performs the iteration first, checks the condition,
and repeats if the condition is True.

  Dim a$(100)
  i% = -1
  Do
    i% = i% + 1
    If i% = 0 Then
      a(i%) = Dir$("*")
    Else
      a(i%) = Dir$
    End If
  Loop Until (a(i%) = "" Or i% = 100)



D

246

  Session.Echo str$(i%) & " files found" & "<CR><LF>
End Sub

See Also
Macro Control and Compilation on page 36

DoEvents (function)
Syntax

DoEvents[()]

Description
Yields control to other applications, returning an Integer 0. This statement yields control to the
operating system, allowing other applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Example
See DoEvents (statement).

See Also
Operating System Control on page 38

DoEvents (statement)
Syntax

DoEvents

Description
Yields control to other applications. This statement yields control to the operating system, allowing
other applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Examples
This first example shows a macro that takes a long time and hogs the system. The subroutine explicitly
yields to allow other applications to execute.

Sub Main
  Open "test.txt" For Output As #1
  For i = 1 To 10000
    Print #1,"This is a test of the system and stuff."
    DoEvents
  Next i
  Close #1
End Sub

In this second example, the DoEvents statement is used to wait until the queue has been completely
flushed.

Sub Main
AppActivate "Notepad" 'Activate Notepad.
SendKeys "This is a test.",False 'Send some keys.
DoEvents 'Wait for the keys to play back.

End Sub

See Also



SmarTerm Macro Guide

247

Operating System Control on page 38

Double (data type)
Syntax

Double

Description
Used to declare variables capable of holding real numbers with 15–16 digits of precision. Double
variables are used to hold numbers within the following ranges:

Sign Range

Negative –1.797693134862315E308 <= double <= –4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308

The type-declaration character for Double is #.

Storage
Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a structure, doubles
require 8 bytes of storage. When used with binary or random files, 8 bytes of storage are required.

Each Double consists of the following

• A 1-bit sign

• An 11-bit exponent

• A 53-bit significant (mantissa)

See Also
Keywords, Data Types, Operators, and Expressions on page 34

DropListBox
Syntax

DropListBox x, y, width, height, ArrayVariable, .Identifier

Description
Creates a drop listbox within a dialog template. When the dialog is invoked, the drop listbox will be
filled with the elements contained in ArrayVariable. Drop listboxes are similar to combo boxes, with
the following exceptions:

• The listbox portion of a drop listbox is not opened by default. The user must open it by clicking the
down arrow.

• The user cannot type into a drop listbox. Only items from the listbox may be selected. With combo
boxes, the user can type the name of an item from the list directly or type the name of an item that
is not contained within the combo box.

This statement can only appear within a dialog template (i.e., between the Begin Dialog and End

Dialog statements).

The DropListBox statement requires the following parameters:



D

248

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Single-dimensioned array used to initialize the elements of the drop
listbox. If this array has no dimensions, then the drop listbox will be
initialized with no elements. A runtime error results if the specified array
contains more than one dimension. ArrayVariable can specify an array of
any fundamental data type (structures are not allowed). null and empty
values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the index of the drop
listbox's selection (0 is the first item, 1 is the second, and so on). This
variable can be accessed using the following syntax:
DialogVariable.Identifier

Example
Sub Main
  Dim FieldNames$(4)
  FieldNames$(0) = "Last Name"
  FieldNames$(1) = "First Name"
  FieldNames$(2) = "Zip Code"
  FieldNames$(3) = "State"
  FieldNames$(4) = "City"
  Begin Dialog FindTemplate 16,32,168,48,"Find"
    Text 8,8,37,8,"&Find what:"
    DropListBox 48,6,64,80,FieldNames,.WhichField
    OKButton 120,7,40,14
    CancelButton 120,27,40,14
  End Dialog
  Dim FindDialog As FindTemplate
  FindDialog.WhichField = 1
  Dialog FindDialog
End Sub

See Also
User Interaction on page 39



E

End
Syntax

End

Description
Terminates execution of the current macro, closing all open files.

Example
Sub Main
  Session.Echo "The next line will terminate the macro."
  End
End Sub

See Also
Macro Control and Compilation on page 36

Environ, Environ$
Syntax

Environ[$](variable$ | VariableNumber)

Description
Returns the value of the specified environment variable.

Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the environment. If the
variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the environment (the
first variable being number 1). If there is no such environment variable, then a zero-length string is
returned. Otherwise, the entire entry from the environment is returned in the following format:

variable = value

Example
Sub Main
  Dim a$(1)
  a$(1) = Environ$("COMSPEC")
  Session.Echo "The DOS Comspec variable is set to: " & a$(1)
End Sub

See Also
Operating System Control on page 38

EOF
Syntax

EOF(filenumber)



SmarTerm Macro Guide

250

Description
Returns True if the end-of-file has been reached for the given file; returns False otherwise. The
filenumber parameter is an Integer used to refer to the open file—the number passed to the Open

statement.

With sequential files, EOF returns True when the end of the file has been reached (i.e., the next file read
command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been made to read beyond the end
of the file. Thus, EOF will only return True when Get was unable to read the entire record.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim s$
  Open "c:\autoexec.bat" For Input As #1
  Do While Not EOF(1)
    Input #1,s$
  Loop
  Close
   Session.Echo "The last line was:" & crlf & s$
End Sub

See Also
Drive, Folder, and File Access on page 34

Eqv
Syntax

result = expression1 Eqv expression2

Description
Performs a logical or binary equivalence on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical equivalence is performed as follows:

Expression One Expression Two Result

True True True

True False False

False True False

False False True

If either expression is Null, then Null is returned.

Binary equivalence
If the two expressions are Integer, then a binary equivalence is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long and a binary equivalence is
then performed, returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions, according to the following table:



E

251

Bit in Expression One Bit in Expression Two Result

1 1 1

0 1 0

1 0 0

0 0 1

Example
This example assigns False to a, performs some equivalent operations, and displays the result. Since a

is equivalent to False, and False is equivalent to 0, and by definition, a = 0, then the prompt will
display "A is False."

Sub Main
  a = False
  If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then
    Session.Echo "a is False."
  Else
    Session.Echo "a is True."
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Erase
Syntax

Erase array1 [,array2]...

Description
Erases the elements of the specified arrays. For dynamic arrays, the elements are erased, and the array is
redimensioned to have no dimensions (and therefore no elements). For fixed arrays, only the elements
are erased; the array dimensions are not changed.

After a dynamic array is erased, the array will contain no elements and no dimensions. Thus, before the
array can be used by your program, the dimensions must be reestablished using the Redim statement.

Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being erased:

Element Type Effect of Erase

Integer Sets element to 0.

Boolean Sets element to False.

Long Sets element to 0.

Double Sets element to 0.0.

Date Sets element to December 30, 1899.



SmarTerm Macro Guide

252

Element Type Effect of Erase

Single Sets element to 0.0.

String (variable-length) Frees string, then sets element to a zero-length string.

String (fixed-length) Sets every character of each element to zero (Chr$(0)).

Object Decrements reference count and sets element to Nothing.

Variant Sets element to empty.

User-defined type Sets each structure element as a separate variable.

Example
Sub Main
  Dim a$(10) 'Declare an array.
  a$(1) = Dir$("*") 'Fill element 1 with a filename
  Session.Echo "Array before Erase: " & a$(1) 'Display element 1.
  Erase a$              'Erase all elements in array
  Session.Echo "Array after Erase: " & a$(1) 'again (should be erased).
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Err (object)
The Err object allows you to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. You can also construct macro code to raise errors as necessary. The
methods and properties of the Err object provide access to the calling OLE object or external DLL,
and the source if possible.

Erl
Syntax

Erl[()]

Description
Returns the line number of the most recent error. The first line of the macro is 1, the second line is 2,
and so on.

The internal value of Erl is reset to 0 with any of the following statements: Resume, Exit Sub, Exit
Function. Thus, if you want to use this value outside an error handler, you must assign it to a variable.

Example
Sub Main
  Dim i As Integer
  On Error Goto Trap1
  i = 32767 'Generate an error--overflow.
  i = i + 1
  Exit Sub
Trap1:
  Session.Echo "Error on line: " & Erl
  Exit Sub 'Reset the error handler.
End Sub

See Also



E

253

Error Handling (topic).

Err.Clear
Syntax

Err.Clear

Description
Clears the properties of the Err object. After this method has been called, the properties of the Err

object will have the following values:

Value Property

"" Err.Description

0 Err.HelpContext

"" Err.HelpFile

0 Err.LastDLLError

0 Err.Number

"" Err.Source

The properties of the Err object are automatically reset when any of the following statements are
executed: Resume, Exit Function, On Error, Exit Sub

Example
Sub Main
  Dim x As Integer
  On Error Resume Next
  x = InputBox("Type in a number")
  If Err.Number <> 0 Then
    Err.Clear
    x = 0
  End If
  Session.Echo x
End Sub

See Also
Macro Control and Compilation on page 36

Err.Description
Syntax

Err.Description [= stringexpression]

Description
Sets or retrieves the description of the error. For errors generated by the compiler, the Err.Description

property is automatically set. For user-defined errors, you should set this property to be a description of
your error. If you set the Err.Number property to one of the internal error numbers and you don’t set the
Err.Description property, then the Err.Description property is automatically set when the error is
generated (i.e., with Err.Raise).

Example
Sub Main
  Dim x As Integer



SmarTerm Macro Guide

254

  On Error Resume Next
  x = InputBox("Type in a number")
  If Err.Number <> 0 Then
    Session.Echo "The following error occurred: " & Err.Description
    x = 0
  End If
  Session.Echo x
End Sub

See Also
Macro Control and Compilation on page 36

Err.HelpContext
Syntax

Err.HelpContext [= contextid]

Description
Sets or retrieves the help context ID that identifies the help topic for information on the error. The
Err.HelpContext property, together with the Err.HelpFile property, contain sufficient information to
display help for the error. When the compiler generates an error, the Err.HelpContext property is set to
0 and the and the Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient
for displaying help in this case. The exception is with errors generated by an OLE automation server;
both the Err.HelpFile and Err.HelpContext properties are set by the server to values appropriate for
the generated error.

When generating your own user-define errors, you should set the Err.HelpContext property and the
Err.HelpFile property appropriately for your error. If these are not set, then the compiler displays its
own help at an appropriate place.

Example
Function InputInteger(Prompt,Optional Title,Optional Def)
On Error Resume Next
Dim x As Integer
x = InputBox(Prompt,Title,Def)
If Err.Number Then
Err.HelpContext = "WIDGET.HLP"
Err.HelpContext = 10
Err.Description = "Integer value expected"
InputInteger = Null
Err.Raise 3000

End If
InputInteger = x

End Function

Sub Main
Dim x As Integer
Do
On Error Resume Next
x = InputInteger("Enter a number:")

Loop Until Err.Number <> 3000
End Sub

See Also
Macro Control and Compilation on page 36; User Interaction on page 39

Err.HelpFile
Syntax

Err.HelpFile [= filename]



E

255

Description
Sets or retrieves the name of the help file associated with the error. The Err.HelpFile property,
together with the Err.HelpContents property, contain sufficient information to display help for the
error. When the compiler generates an error, the Err.HelpContents property is set to 0 and the and the
Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient for displaying help
in this case. The exception is with errors generated by an OLE automation server; both the
Err.HelpFile and Err.HelpContext properties are set by the server to values appropriate for the
generated error.

When generating your own user-defined errors, set the Err.HelpContext property and the Err.HelpFile

property appropriately for your error. If these are not set, then the compiler displays its own help at an
appropriate place.

The Err.HelpFile property can be set to any valid Windows help file (i.e., a file with a .HLP extension
compatible with the WINHELP help engine).

Example
Function InputInteger(Prompt,Optional Title,Optional Def)
On Error Resume Next
Dim x As Integer
x = InputBox(Prompt,Title,Def)
If Err.Number Then
Err.HelpContext = "WIDGET.HLP"
Err.HelpContext = 10
Err.Description = "Integer value expected"
InputInteger = Null
Err.Raise 3000

End If
InputInteger = x

End Function

Sub Main
Dim x As Integer
Do
On Error Resume Next
x = InputInteger("Enter a number:")

Loop Until Err.Number <> 3000
End Sub

See Also
Macro Control and Compilation on page 36; User Interaction on page 39

Err.LastDLLError
Syntax

Err.LastDLLError

Description
Returns the last error generated by an external call—i.e., a call to a routine declared with the Declare

statement that resides in an external module. The Err.LastDLLError property is automatically set when
calling a routine defined in an external module. If no error occurs within the external call, then this
property will automatically be set to 0. This property is set by DLL routines that set the last error
using the function SetLastError(). The compiler uses the function GetLastError() to retrieve the value
of this property. The value 0 is returned when calling DLL routines that do not set an error.

Example
Declare Sub GetCurrentDirectoryA Lib "kernel32" (ByVal DestLen As Integer, _
ByVal lpDest As String)



SmarTerm Macro Guide

256

Sub Main
  Dim dest As String * 256
  Err.Clear
  GetCurrentDirectoryA len(dest),dest
  If Err.LastDLLError <> 0 Then
    Session.Echo "Error " & Err.LastDLLError & " occurred."
  Else
    Session.Echo "Current directory is " & dest
  End If
End Sub

See Also
Macro Control and Compilation on page 36

Err.Number
Syntax

Err.Number [= errornumber]

Description
Returns or sets the number of the error. The Err.Number property is set automatically when an error
occurs. This property can be used within an error trap to determine which error occurred. You can set
the Err.Number property to any Long value.

The Number property is the default property of the Err object. This allows you to use older style syntax
such as those shown below:

Err = 6
If Err = 6 Then Session.Echo "Overflow"

The Err function can only be used while within an error trap.

The internal value of the Err.Number property is reset to 0 with any of the following statements:
Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside an error handler, you must
assign it to a variable.

Setting Err.Number to –1 has the side effect of resetting the error state. This allows you to perform error
trapping within an error handler. The ability to reset the error handler while within an error trap is not
standard Basic. Normally, the error handler is reset only with the Resume, Exit Sub, Exit Function, End
Function, or End Sub statements.

Example
Sub Main
  On Error Goto TestError
  Error 10
  Session.Echo "The returned error is: '" & Err() & " - " & _
    Error$ & "'"
  Exit Sub
TestError:
  If Err = 55 Then 'File already open.
    Session.Echo "Cannot copy an open file. Close it and try again."
  Else
    Session.Echo "Error '" & Err & "' has occurred!"
    Err = 999
  End If
  Resume Next
End Sub

See Also
Macro Control and Compilation on page 36



E

257

Err
Syntax

Err = value

Description
Sets the value returned by the Err function to a specific Integer value. Only positive values less than
or equal to 32767 can be used. Setting value to –1 has the side effect of resetting the error state. This
allows you to perform error trapping within an error handler. The ability to reset the error handler
while within an error trap is not standard Basic. Normally, the error handler is reset only with the
Resume, Exit Sub, or Exit Function statement.

Example
Sub Main
  On Error Goto TestError
  Error 10
  Session.Echo "The returned error is: '" & Err() & " - " & Error$ & "'"
  Exit Sub
TestError:
  If Err = 55 Then 'File already open.
    Session.Echo "Cannot copy an open file. Close it and try again."
  Else
    Session.Echo "Error '" & Err & "' has occurred."
    Err = 999
  End If
  Resume Next
End Sub

See Also
Macro Control and Compilation on page 36

Err.Raise
Syntax

Err.Raise number [,[source] [,[description] [,[helpfile] [,helpcontext]]]]

Description
Generates a runtime error, setting the specified properties of the Err object. The Err.Raise method has
the following named parameters:

Parameter Description

number A Long value indicating the error number to be generated. This parameter is
required. Predefined errors are in the range 0 to 1000.

Source An optional String expression specifying the source of the error—i.e., the
object or module that generated the error. If omitted, then the compiler uses
the name of the currently executing macro.

description An optional String expression describing the error. If omitted and number

maps to a predefined error number, then the corresponding predefined
description is used. Otherwise, the error "Application-defined or object-
define error" is used.

helpfile An optional String expression specifying the name of the help file



SmarTerm Macro Guide

258

Parameter Description

containing context-sensitive help for this error. If omitted and number maps
to a predefined error number, then the default help file is assumed.

Helpcontext An optional long value specifying the topic within helpfile containing
context-sensitive help for this error.
If some arguments are omitted, then the current property values of the Err

object are used.

This method can be used in place of the Error statement for generating errors. Using the Err.Raise

method gives you the opportunity to set the desired properties of the Err object in one statement.

Example
Sub Main
Dim x As Variant
On Error Goto TRAP
x = InputBox("Enter a number:")
If Not IsNumeric(x) Then
Err.Raise 3000,,"Invalid number specified","WIDGET.HLP",30

End If
Session.Echo x
Exit Sub

TRAP:
Session.Echo Err.Description

End Sub

See Also
Macro Control and Compilation on page 36

Err.Source
Syntax

Err.Source [= stringexpression]

Description
Sets or retrieves the source of a runtime error.

For OLE automation errors generated by the OLE server, the Err.Source property is set to the name of
the object that generated the error. For all other errors generated by the macro language, the Err.Source

property is automatically set to be the name of the macro that generated the error.

For user-defined errors, the Err.Source property can be set to any valid string expression indicating the
source of the error. If the Err.Source property is not explicitly set for user-defined errors, the value is
the name of the macro in which the error was generated.

Example
Function InputInteger(Prompt,Optional Title,Optional Def)
  On Error Resume Next
  Dim x As Integer
  x = InputBox(Prompt,Title,Def)
  If Err.Number Then
    Err.Source = "InputInteger"
    Err.Description = "Integer value expected"
    Err.Raise 3000
  End If
  InputInteger = x
End Function



E

259

Sub Main
  On Error Resume Next
  x = InputInteger("Enter a number:")
  If Err.Number Then Session.Echo Err.Source & ":" & Err.Description
End Sub

See Also
Macro Control and Compilation on page 36

Error Handling (topic)
The macro language supports nested error handlers. When an error occurs within a subroutine, the
compiler checks for an On Error handler within the currently executing subroutine or function. An
error handler is defined as follows:

Sub foo()
  On Error Goto catch
  'Do something here.
  Exit Sub
catch:
  'Handle error here.
End Sub

Error handlers have a life local to the procedure in which they are defined. The error is reset when any
of the following conditions occurs:

• An On Error or Resume statement is encountered.

• When Err.Number is set to -1.

• When the Err.Clear method is called.

• When an Exit Sub, Exit Function, End Function, End Sub is encountered.

Cascading Errors
If a runtime error occurs and no On Error handler is defined within the currently executing procedure,
then control returns to the calling procedure and the error handler there runs. This process repeats until
a procedure is found that contains an error handler or until there are no more procedures. If an error is
not trapped or if an error occurs within the error handler, then there is an error message, halting
execution of the macro.

Once an error handler has control, it should address the condition that caused the error and resume
execution with the Resume statement. This statement resets the error handler, transferring execution to
an appropriate place within the current procedure. The error is reset if the procedure exits without first
executing Resume.

Visual Basic Compatibility
Where possible, the macro language has the same error numbers and error messages as Visual Basic.
This is useful for porting macros between environments.

Handling errors involves querying the error number or error text using the Error$ function or
Err.Description property. Since this is the only way to handle errors, compatibility with Visual
Basic's error numbers and messages is essential.

Macro language errors fall into three categories:



SmarTerm Macro Guide

260

• Visual Basic-compatible errors: These errors, numbered between 0 and 799, are numbered and
named according to the errors supported by Visual Basic.

• Macro language errors: These errors, numbered from 800 to 999, are unique to the macro
language.

• User-defined errors: These errors, equal to or greater than 1,000, are available for use by extensions
or by the macro itself.

You can intercept trappable errors using the On Error construct. Almost all errors are trappable except
for various system errors.

Error, Error$ (functions)
Syntax

Error[$][(errornumber)]

Description
Returns a String containing the text corresponding to the given error number or the most recent error.

Error$ returns a String, whereas Error returns a String variant.

The errornumber parameter is an Integer containing the number of the error message to retrieve. If this
parameter is omitted, then the function returns the text corresponding to the most recent runtime error
(i.e., the same as returned by the Err.Description property). If no runtime error has occurred, then a
zero-length string is returned.

If the Error statement was used to generate a user-defined runtime error, then this function will return a
zero-length string ("").

Example
Sub Main
  On Error Goto TestError
  Error 10
  Session.Echo "The returned error is: '" & Err() & " - " & Error$ & "'"
  Exit Sub
TestError:
  If Err = 55 Then 'File already open.
    Session.Echo "Cannot copy an open file. Close it and try again."
  Else
    Session.Echo "Error '" & Err & "' has occurred."
    Err = 999
  End If
  Resume Next
End Sub

See Also
Character and String Manipulation on page 33; Macro Control and Compilation on page 36

Error (statement)
Syntax

Error errornumber

Description
Simulates the occurrence of the given runtime error. The errornumber parameter is any Integer

containing either a built-in error number or a user-defined error number. The Err.Number property can
be used within the error trap handler to determine the value of the error.



E

261

The Error statement is provided for backward compatibility. Use the Err.Raise method instead. When
using the Error statement to generate an error, the Err object's properties are set to the following
default values:

Property Default Value

Number errornumber as specified in the Error statement.

Source Name of currently executing macro.

Description Text of error. If errornumber is unknown, is set to an empty string.

HelpFile Name of help file.

HelpContext Context ID corresponding to errornumber.

Example
Sub Main
  On Error Goto TestError
  Error 10
  Session.Echo "The returned error is: '" & Err & " - " & Error$ & "'"
  Exit Sub
TestError:
  If Err = 55 Then 'File already open.
    Session.Echo "Cannot copy an open file. Close it and try again."
  Else
    Session.Echo "Error '" & Err & "' has occurred."
    Err = 999
  End If
  Resume Next
End Sub

See Also
Macro Control and Compilation on page 36

Exit Do
Syntax

Exit Do

Description
Causes execution to continue on the statement following the Loop clause. This statement can only
appear within a Do...Loop statement.

Example
Const crlf = Chr$(13) + Chr$(10)
Sub Main
  Dim a$(5)
  Do
     i% = i% + 1
    If i% = 1 Then
      a(i%) = Dir$("*")
    Else
       a(i%) = Dir$
    End If
    If i% >= 10 Then Exit Do
  Loop While (a(i%) <> "")
  If i% = 10 Then



SmarTerm Macro Guide

262

    Session.Echo i% & " entries processed!"
  Else
    Session.Echo "Less than " & i% & " entries processed!"
  End If
End Sub

See Also
Macro Control and Compilation on page 36

Exit For
Syntax

Exit For

Description
Causes execution to exit the innermost For loop, continuing execution on the line following the Next

statement. This statement can only appear within a For...Next block.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim a$(100)
  For i = 1 To 100
    If i = 1 Then
      a$(i) = Dir$("*")
    Else
      a$(i) = Dir$
    End If
    If (a$(i) = "") Or (i >= 100) Then Exit For
  Next i
  mesg = "There are " & i & " files found." & crlf
  Session.Echo mesg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(10)
End Sub

See Also
Macro Control and Compilation on page 36

Exit Function
Syntax

Exit Function

Description
Causes execution to exit the current function, continuing execution on the statement following the
call to this function. This statement can only appear within a function.

Example
Function Test_Exit() As Integer
  Session.Echo "Testing function exit, returning to Main()."
  Test_Exit = 0
  Exit Function
  Session.Echo "This line should never execute."
End Function

Sub Main
  a% = Test_Exit()
  Session.Echo "This is the last line of Main()."
End Sub



E

263

See Also
Macro Control and Compilation on page 36

Exit Sub
Syntax

Exit Sub

Description
Causes execution to exit the current subroutine, continuing execution on the statement following the
call to this subroutine. This statement can appear anywhere within a subroutine. It cannot appear
within a function.

Example
Sub Main
  Session.Echo "Terminating Main()."
  Exit Sub
  Session.Echo "Still here in Main()."
End Sub

See Also
Macro Control and Compilation on page 36

Exp
Syntax

Exp(number)

Description
Returns the value of e raised to the power of number. The number parameter is a Double within the
following range:

0 <= number <= 709.782712893.

A runtime error is generated if number is out of the range specified above.

The value of e is 2.71828.

Example
Sub Main
  a# = Exp(12.40)
  Session.Echo "e to the 12.4 power is: " & a#
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Expression Evaluation (topic)
Expressions may involve data of different types. When this occurs, the two arguments are converted to
be of the same type by promoting the less precise operand to the same type as the more precise
operand. For example, the compiler will promote the value of i% to a double in the following
expression:

result# = i% * d#



SmarTerm Macro Guide

264

In some cases, the data type to which each operand is promoted is different than that of the most
precise operand. This is dependent on the operator and the data types of the two operands and is noted
in the description of each operator.

If an operation is performed between a numeric expression and a String expression, then the String

expression is usually converted to be of the same type as the numeric expression. For example, the
following expression converts the String expression to an Integer before performing the
multiplication:

result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule, as noted in the description of the individual operators.

Type Coercion
The compiler performs numeric type conversion automatically. Automatic conversions sometimes
result in overflow errors, as shown in the following example:

d# = 45354
i% = d#

In this example, an overflow error is generated because the value contained in d# is larger than the
maximum size of an Integer.

Rounding
When floating-point values (Single or Double) are converted to integer values (Integer or Long), the
fractional part of the floating-point number is lost, rounding to the nearest integer value. The macro
language uses Baker's rounding:

• If the fractional part is larger than .5, the number is rounded up.

• If the fractional part is smaller than .5, the number is rounded down.

• If the fractional part is equal to .5, then the number is rounded up if it is odd and down if it is even.

The following table shows sample values before and after rounding:

Before Rounding After Rounding

2.1 2

4.6 5

2.5 2

3.5 4

Default Properties
When an OLE object variable or an Object variant is used with numerical operators such as addition
or subtraction, then the default property of that object is automatically retrieved. For example, consider
the following:

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")
Session.Echo "This application is " & Excel



E

265

The above example displays "This application is Microsoft Excel". When the variable Excel is used
within the expression, the default property is automatically retrieved, which, in this case, is the string
"Microsoft Excel." Considering that the default property of the Excel object is .Value, then the
following two statements are equivalent:

Session.Echo "This application is " & Excel
Session.Echo "This application is " & Excel.Value



F

FileAttr
Syntax

FileAttr(filenumber, returntype)

Description
Returns an Integer specifying the file mode (if returntype is 1) or the operating system file handle (if
returntype is 2). The FileAttr function takes the following named parameters:

Parameter Description

filenumber Integer value used to refer to the open file—the number passed to the Open
statement.

Returntype Integer specifying the type of value to be returned. If returntype is 1, then
one of the following values is returned:

1 Input
2 Output
4 Random
6 Append
32 Binary

If returntype is 2, then the operating system file handle is returned. This is a special Integer value
identifying the file.

Example
Sub Main
  Open "c:\autoexec.bat" For Input As #1
  a% = FileAttr(1,1)
  Select Case a%
    Case 1
      Session.Echo "Opened for input."
    Case 2
      Session.Echo "Opened for output."
    Case 4
      Session.Echo "Opened for random."
    Case 8
      Session.Echo "Opened for append."
    Case 32
      Session.Echo "Opened for binary."
    Case Else
      Session.Echo "Unknown file mode."
    End Select
  a% = FileAttr(1,2)
  Session.Echo "File handle is: " & a%
  Close
End Sub

See Also



SmarTerm Macro Guide

267

Drive, Folder, and File Access on page 34

FileCopy
Syntax

FileCopy source, destination

Description
Copies a source file to a destination file. The FileCopy function takes the following named
parameters:

Parameter Description

source String containing the name of a single file to copy. The source parameter
cannot contain wildcards (? or *) but may contain path information.

Destination String containing a single, unique destination file, which may contain a
drive and path specification.

The file will be copied and renamed if the source and destination filenames are not the same.

Example
Sub Main
  On Error Goto ErrHandler
  FileCopy "c:\autoexec.bat", "c:\autoexec.sav"
  Open "c:\autoexec.sav" For Input As # 1
  FileCopy "c:\autoexec.sav", "c:\autoexec.sv2"
  Close
  Exit Sub
ErrHandler:
  If Err = 55 Then 'File already open.
    Session.Echo "Cannot copy an open file. Close it and try again."
  Else
    Session.Echo "An unspecified file copy error has occurred."
  End If
  Resume Next
End Sub

See Also
Drive, Folder, and File Access on page 34

FileDateTime
Syntax

FileDateTime(pathname)

Description
Returns a Date variant representing the date and time of the last modification of a file. This function
retrieves the date and time of the last modification of the file specified by pathname (wildcards are not
allowed). A runtime error results if the file does not exist. The value returned can be used with the
date/time functions (i.e., Year, Month, Day, Weekday, Minute, Second, Hour) to extract the individual
elements.



F

268

Win32 stores the file creation date, last modification date, and the date the file was last written to. The
FileDateTime function only returns the last modification date.

Example
Sub Main
  If FileExists("c:\autoexec.bat") Then
    a# = FileDateTime("c:\autoexec.bat")
    Session.Echo "The date/time information for the file is: " & Year(a#) & "-" & Month
(a#) & "-" & Day(a#)
  Else
    Session.Echo "The file does not exist."
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34; Time and Date Access on page 39

FileDirs
Syntax

FileDirs array() [,dirspec$]

Description
Fills a String or Variant array with directory names from disk. The FileDirs statement takes the
following parameters:

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array can
be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements.

If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions.

array() If the array is fixed, each array element is first erased, then the new elements
are placed into the array.

If there are fewer elements than will fit in the array, then the remaining
elements are initialized to zero-length strings (for string arrays) or Empty (for
variant arrays). A runtime error results if the array is too small to hold the new
elements.

dirspec$ String containing the file search mask, such as: t*.c:\*.* If this parameter is
omitted or an empty string, then * is used, which fills the array with all the
subdirectory names within the current directory.

Example
Sub Main
  Dim a$()



SmarTerm Macro Guide

269

  FileDirs a$,"c:\*.*"
  Session.Echo "The first directory is: " & a$(0)
End Sub

See Also
Character and String Manipulation on page 33; Drive, Folder, and File Access on page 34

FileExists
Syntax

FileExists(filename$)

Description
Returns True if filename$ exists; returns False otherwise. This function determines whether a given
filename$ is valid. This function returns False if filename$ specifies a subdirectory.

Example
Sub Main
  If FileExists("c:\autoexec.bat") Then
    Session.Echo "This file exists!"
  Else
    Session.Echo "File does not exist."
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34

FileLen
Syntax

FileLen(pathname)

Description
Returns a Long representing the length of pathname in bytes. This function is used in place of the LOF

function to retrieve the length of a file without first opening the file. A runtime error results if the file
does not exist.

Example
Sub Main
  If (FileExists("c:\autoexec.bat") And (FileLen("c:\autoexec.bat") _
<> 0)) Then
    b% = FileLen("c:\autoexec.bat")
    Session.Echo "The length of autoexec.bat is: " & b%
  Else
    Session.Echo "File does not exist."
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34

FileList
Syntax

FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]



F

270

Description
Fills a String or Variant array with filenames from disk. The FileList function takes the following
parameters:

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array
can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the
new number of elements.

If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new
elements are placed into the array.

If there are fewer elements than will fit in the array, then the remaining
elements are initialized to zero-length strings (for string arrays) or Empty (for
variant arrays). A runtime error results if the array is too small to hold the
new elements.

Filespec$ String specifying which filenames are to be included in the list. The
filespec$ parameter can include wildcards, such as * and ?. If this
parameter is omitted, then * is used.

include_attr Integer specifying attributes of files you want included in the list. It can be
any combination of the attributes listed below.

exclude_attr Integer specifying attributes of files you want excluded from the list. It can
be any combination of the attributes listed below.

The FileList function returns different files as specified by the include_attr and exclude_attr and
whether these parameter have been specified. The following table shows these differences: If neither
the include_attr or exclude_attr has been specified, then the following defaults are assumed:

Parameter Default

exclude_attr ebHidden Or ebDirectory Or ebSystem Or ebVolume

include_attr ebNone Or ebArchive Or ebReadOnly

If include_attr is specified and exclude_attr is missing, then FileList excludes all files not specified
by include_attr. If include_attr is missing, its value is assumed to be zero.

Wildcards
The * character matches any sequence of zero or more characters, whereas the ? character matches any
single character. Multiple *'s and ?'s can appear within the expression to form complete searching



SmarTerm Macro Guide

271

patterns. The following table shows some examples:

This Pattern Matches These Files Not These Files

*S.*TXT SAMPLE. TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT, ACATS.TXT

C*T CAT, CAP.TXT CAT.DOC

C?T CAT, CUT CAT.TXT, CAPITCT

* (All files)

File attributes
These numbers can be any combination of the following:

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, none

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim a$()
  FileList a$,"*.*", (ebNormal + ebNone), ebSystem
  If ArrayDims(a$) > 0 Then
     Session.Echo a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)
  Else
    Session.Echo "No files found."
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34

FileParse$
Syntax

FileParse$(filename$[, operation])

Description



F

272

Returns a String containing a portion of filename$ such as the path, drive, or file extension. The
filename$ parameter can specify any valid filename (it does not have to exist). For example:

..\test.dat
c:\sheets\test.dat
test.dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of the filename$ to extract. It
can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat

1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test

5 Extension dat

If operation is not specified, then the full name is returned. A runtime error will result if operation is
not one of the above values.

A runtime error results if filename$ is empty.

The backslash and forward slash can be used interchangeably. For example, "c:\test.dat" is the same as
"c:/test.dat".

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim a$(6)
  For i = 1 To 5
    a$(i) = FileParse$("c:\testsub\autoexec.bat",i - 1)
  Next i
  Session.Echo a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf & a$(5)
End Sub

See Also
Character and String Manipulation on page 33; Drive, Folder, and File Access on page 34

Fix
Syntax

Fix(number)

Description
Returns the integer part of number. This function returns the integer part of the given value by
removing the fractional part. The sign is preserved. The Fix function returns the same type as number,
with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.



SmarTerm Macro Guide

273

• If number is a String, then a Double variant is returned.

• If number contains no valid data, then a Null variant is returned.

Example
Sub Main
  a# = -19923.45
  b% = Fix(a#)
  Session.Echo "The fixed portion of -19923.45 is: " & b%
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

For...Each
Syntax

For Each member in group:
[statements]
[Exit For]
[statements]

Next [member]

Description
Repeats a block of statements for each element in a collection or array. The For...Each statement takes
the following parameters:

Parameter Description

member Name of a variable to hold an element for each iteration of the loop. If group
is an array, then member must be a variant variable. If group is a collection,
then member must be an object variable, an explicit OLE automation object,
or a variant.

Group Name of a collection or array.

Statements Any number of statements.

The compiler supports iteration through OLE collections or arrays with the exception of arrays of user-
defined types or fixed-length strings. The iteration variable is a copy of the collection or array element
in the sense that change the value of member within the loop has no effect on the collection or array.

The For...Each statement traverses array elements in the same order the elements are stored in memory.
For example, the array elements contained in the array defined by the statement

Dim a(1 To 2,3 To 4)

are traversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the elements are
traversed should not be relevant to the correct operation of the macro.

The For...Each statement continues executing until there are no more elements in group or until an
Exit For statement is encountered.

For...Each statements can be nested. In such a case, the Next [member] statement applies to the
innermost For...Each or For...Next statement. Each member variable of nested For...Each statements
must be unique.



F

274

A Next statement appearing by itself (with no member variable) matches the innermost For...Each or
For...Next loop.

Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example
Sub Main
Dim a(3 To 10) As Single
Dim i As Variant
Dim s As String
For i = 3 To 10
a(i) = Rnd()

Next i
For Each i In a
i = i + 1

Next i
s = ""
For Each i In a
If s <> "" Then s = s & ","
s = s & i

Next i
Session.Echo s

End Sub

The following subroutine displays the names of each worksheet in an Excel workbook.
Sub Main
Dim Excel As Object
Dim Sheets As Object
Set Excel = CreateObject("Excel.Application")
Excel.Visible = 1
Excel.Workbooks.Add
Set Sheets = Excel.Worksheets
For Each a In Sheets
Session.Echo a.Name

Next a
End Sub

See Also
Macro Control and Compilation on page 36

For...Next
Syntax

For counter = start To end [Step increment]
[statements]
[Exit For]
[statements]

Next [counter [,nextcounter]... ]

Description
Repeats a block of statements a specified number of times, incrementing a loop counter by a given
increment each time through the loop. The For statement takes the following parameters:

Parameter Description

counter Name of a numeric variable. Variables of the following types can be used:



SmarTerm Macro Guide

275

Parameter Description

integer, long, single, double, variant.

Start Initial value for counter. The first time through the loop, counter is assigned
this value.

End Final value for counter. The statements will continue executing until counter
is equal to end.

Increment Amount added to counter each time through the loop. If end is greater than
start, then increment must be positive.

If end is less than start, then increment must be negative.

If increment is not specified, then 1 is assumed. The expression given as
increment is evaluated only once. Changing the step during execution of the
loop will have no effect.

statements Any number of statements.

The For...Next statement continues executing until an Exit For statement is encountered when
counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement applies to the
innermost For...Next.

The Next clause can be optimized for nested next loops by separating each counter with a comma. The
ordering of the counters must be consistent with the nesting order (innermost counter appearing before
outermost counter). The following example shows two equivalent For statements:

For i = 1 To 10 For i = 1 To 10
  For j = 1 To 10 For j = 1 To 10
  Next j Next j,i
Next i

A Next clause appearing by itself (with no counter variable) matches the innermost For loop.

The counter variable can be changed within the loop but will have no effect on the number of times
the loop will execute.

Due to errors in program logic, you can inadvertently create infinite loops in your code. When you're
running a macro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example
Sub Main
  For x = -1 To 0
    For y = -1 To 0
      Z = x Or y
      mesg = mesg & Format(Abs(x%),"0") & " Or "
      mesg = mesg & Format(Abs(y%),"0") & " = "
      mesg = mesg & Format(Z,"True/False") & Basic.Eoln$
    Next y
  Next x
  Session.Echo mesg
End Sub

See Also
Macro Control and Compilation on page 36



F

276

Format, Format$
Syntax

Format[$](expression [, [format] [, [firstdayofweek] [, firstweekofyear]]])

Description
Returns a String formatted to user specification. Format$ returns a String, whereas Format returns a
String variant. The Format$/Format functions take the following named parameters:

Parameter Description

expression String or numeric expression to be formatted. The compiler will only
examine the first 255 characters of expression.

format Format expression that can be either one of the built-in formats or a
user-defined format consisting of characters that specify how the
expression should be displayed. string, numeric, and date/time formats
cannot be mixed in a single format expression.

Firstdayofweek Indicates the first day of the week. If omitted, then Sunday is assumed
(i.e., the constant ebSunday described below).

Firstweekofyear Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that containing January 1 (i.e., the constant
ebFirstJan1 as described bellow).

If format is omitted and the expression is numeric, then these functions perform the same function as
the Str$ or Str statements, except that they do not preserve a leading space for positive values.

If expression is Null, then a zero-length string is returned.

The maximum length of the string returned by Format or Format$ functions is 255.

The firstdayofweek parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

EbSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

The firstdayofyear parameter, if specified, can be any of the following constants:



SmarTerm Macro Guide

277

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

EbFirstJan1 1 The first week of the year is that in which January 1 occurs
(the default).

ebFirstFourDays 2 The first week of the year is that containing at least four days
in the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the year.

Built-in formats
To format numeric expressions, you can specify one of the built-in formats. There are two categories of
built-in formats: one deals with numeric expressions and the other with date/time values. The
following tables list the built-in numeric and date/time format strings, followed by an explanation of
what each does.

Numeric formats

Format Description

General Number Displays the numeric expression as is, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator if
necessary. The built-in currency format allows the specification of an
optional user-defined format specification used only for zero values:
Currency;zero-format-string

where zero-format-string is a user-defined format used specifically for
zero values.

Fixed Displays at least one digit to the left of the decimal separator and two
digits to the right.

Standard Displays the numeric expression with thousands separator if necessary.
Displays at least one digit to the left of the decimal separator and two
digits to the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%)
will appear at the right of the formatted output. Two digits are displayed
to the right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before
the decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other
values.

True/False Displays False if the numeric expression is 0. Displays True for all other
values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other
values.

Date/Time formats



F

278

Format Description

General date Displays the date and time. If there is no fractional part in the numeric
expression, then only the date is displayed. If there is no integral part in
the numeric expression, then only the time is displayed. Output is in the
following form:

1/1/95 01:00:00 AM

Long date Displays a long date—prints out the day of the week, the full name of the
month, and the numeric date and year.

Medium date Displays a medium date—prints out only the abbreviated name of the
month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium time Displays the time using a 12-hour clock. Hours and minutes are displayed,
and the AM/PM designator is at the end.

Short time Displays the time using a 24-hour clock. Hours and minutes are displayed.

Default date/time formats are read from the [Intl] section of the win.ini file.

User-defined formats
In addition to the built-in formats, you can specify a user-defined format by using characters that have
special meaning when used in a format expression. The following list the characters you can use for
numeric, string, and date/time formats and explain their functions.

Numeric formats

Character Meaning

Empty string Displays the numeric expression as is, with no additional formatting.

0 This is a digit placeholder. Displays a number or a 0. If a number exists
in the numeric expression in the position where the 0 appears, the
number will be displayed. Otherwise, a 0 will be displayed. If there are
more 0s in the format string than there are digits, the leading and
trailing 0s are displayed without modification.

# This is a digit placeholder. Displays a number or nothing. If a number
exists in the numeric expression in the position where the number sign
appears, the number will be displayed. Otherwise, nothing will be
displayed. Leading and trailing 0s are not displayed.

. This is the decimal placeholder. Designates the number of digits to the
left of the decimal and the number of digits to the right. The character
used in the formatted string depends on the decimal placeholder, as
specified by your locale.



SmarTerm Macro Guide

279

Character Meaning

% This is the percentage operator. The numeric expression is multiplied
by 100, and the percent character is inserted in the same position as it
appears in the user-defined format string.

, This is the thousands separator. The common use for the thousands
separator is to separate thousands from hundreds. To specify this use,
the thousands separator must be surrounded by digit placeholders.
Commas appearing before any digit placeholders are specified are just
displayed. Adjacent commas with no digit placeholders specified
between them and the decimal mean that the number should be divided
by 1,000 for each adjacent comma in the format string. A comma
immediately to the left of the decimal has the same function. The actual
thousands separator character used depends on the character specified
by your locale.

E- E+ e- e+ These are the scientific notation operators, which display the number in
scientific notation. At least one digit placeholder must exist to the left
of E-, E+, e-, or e+. Any digit placeholders displayed to the left of E-,
E+, e-, or e+ determine the number of digits displayed in the exponent.
Using E+ or e+ places a + in front of positive exponents and a – in front
of negative exponents. Using E- or e- places a – in front of negative
exponents and nothing in front of positive exponents.

: This is the time separator. Separates hours, minutes, and seconds when
time values are being formatted. The actual character used depends on
the character specified by your locale.

/ This is the date separator. Separates months, days, and years when date
values are being formatted. The actual character used depends on the
character specified by your locale.

- + $ ( ) space These are the literal characters you can display. To display any other
character, you should precede it with a backslash or enclose it in
quotes.

\ This designates the next character as a displayed character. To display
characters, precede them with a backslash. To display a backslash, use
two backslashes. Double quotation marks can also be used to display
characters. Numeric formatting characters, date/time formatting
characters, and string formatting characters cannot be displayed without
a preceding backslash.

"ABC" Displays the text between the quotation marks, but not the quotation
marks. To designate a double quotation mark within a format string,
use two adjacent double quotation marks.

* This will display the next character as the fill character. Any empty
space in a field will be filled with the specified fill character.



F

280

Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you specify
one format, it applies to all values. If you specify two formats, the first applies to positive values and
the second to negative values. If you specify three formats, the first applies to positive values, the
second to negative values, and the third to 0s. If you include semicolons with no format between
them, the format for positive values is used.

String formats

Character Meaning

@ This is a character placeholder. It displays a character if one exists in the
expression in the same position; otherwise, it displays a space. Placeholders are
filled from right to left unless the format string specifies left to right.

& This is a character placeholder. It displays a character if one exists in the
expression in the same position; otherwise, it displays nothing. Placeholders are
filled from right to left unless the format string specifies left to right.

< This character forces lowercase. It displays all characters in the expression in
lowercase.

> This character forces uppercase. It displays all characters in the expression in
uppercase.

! This character forces placeholders to be filled from left to right. The default is
right to left.

Date/Time formats

Character Meaning

c Displays the date as ddddd and the time as ttttt. Only the date is displayed if no
fractional part exists in the numeric expression. Only the time is displayed if no
integral portion exists in the numeric expression.

d Displays the day without a leading 0 (1–31).

dd Displays the day with a leading 0 (01–31).

ddd Displays the day of the week abbreviated (Sun–Sat).

dddd Displays the day of the week (Sunday–Saturday).

ddddd Displays the date as a short date.

dddddd Displays the date as a long date.

w Displays the number of the day of the week (1–7). Sunday is 1; Saturday is 7.

ww Displays the week of the year (1–53).

m Displays the month without a leading 0 (1–12). If m immediately follows h or
hh, m is treated as minutes (0–59).



SmarTerm Macro Guide

281

Character Meaning

mm Displays the month with a leading 0 (01–12). If mm immediately follows h or
hh, mm is treated as minutes with a leading 0 (00–59).

mmm Displays the month abbreviated (Jan–Dec).

mmmm Displays the month (January–December).

q Displays the quarter of the year (1–4).

yy Displays the year, not the century (00–99).

yyyy Displays the year (1000–9999).

h Displays the hour without a leading 0 (0–24).

hh Displays the hour with a leading 0 (00–24).

n Displays the minute without a leading 0 (0–59).

nn Displays the minute with a leading 0 (00–59).

s Displays the second without a leading 0 (0–59).

ss Displays the second with a leading 0 (00–59).

ttttt Displays the time. A leading 0 is displayed if specified by your locale.

AM/PM or
AMPM

Displays the time using a 12-hour clock. Displays an uppercase AM for time
values before 12 noon. Displays an uppercase PM for time values after 12 noon
and before 12 midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm at the
end.

A/P Displays the time using a 12-hour clock. Displays an uppercase A or P at the
end.

a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at the end.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
a# = 1199.234
mesg = "Some general formats for '" & a# & "' are:"
mesg = mesg & Format$(a#,"General Number") & crlf
mesg = mesg & Format$(a#,"Currency") & crlf
mesg = mesg & Format$(a#,"Standard") & crlf
mesg = mesg & Format$(a#,"Fixed") & crlf
mesg = mesg & Format$(a#,"Percent") & crlf
mesg = mesg & Format$(a#,"Scientific") & crlf
mesg = mesg & Format$(True,"Yes/No") & crlf
mesg = mesg & Format$(True,"True/False") & crlf
mesg = mesg & Format$(True,"On/Off") & crlf
mesg = mesg & Format$(a#,"0,0.00") & crlf
mesg = mesg & Format$(a#,"##,###,###.###") & crlf
Session.Echo mesg
da$ = Date$
mesg = "Some date formats for '" & da$ & "' are:"



F

282

mesg = mesg & Format$(da$,"General Date") & crlf
mesg = mesg & Format$(da$,"Long Date") & crlf
mesg = mesg & Format$(da$,"Medium Date") & crlf
mesg = mesg & Format$(da$,"Short Date") & crlf
Session.Echo mesg
ti$ = Time$
mesg = "Some time formats for '" & ti$ & "' are:"
mesg = mesg & Format$(ti$,"Long Time") & crlf
mesg = mesg & Format$(ti$,"Medium Time") & crlf
mesg = mesg & Format$(ti$,"Short Time") & crlf
Session.Echo mesg

End Sub

See Also
Character and String Manipulation on page 33

FreeFile
Syntax

FreeFile [([rangenumber])]

Description
Returns an Integer containing the next available file number. This function returns the next available
file number within the specified range. If rangenumber is 0, then a number between 1 and 255 is
returned; if 1, then a number between 256 and 511 is returned. If rangenumber is not specified, then a
number between 1 and 255 is returned.

The function returns 0 if there is no available file number in the specified range.

The number returned is suitable for use in the Open statement.

Example
Sub Main
  a = FreeFile
  Session.Echo "The next free file number is: " & a
End Sub

See Also
Drive, Folder, and File Access on page 34

Function...End Function
Syntax

[Private | Public] [Static] Function name[(arglist)] [As ReturnType]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are allowed):
[Optional] [ByVal | ByRef] parameter [()] [As type]

Description
Creates a user-defined function. The Function statement has the following parts:



SmarTerm Macro Guide

283

Part Description

Private Indicates that the function being defined cannot be called from other macros
in other modules.

Public Indicates that the function being defined can be called from other macros in
other modules. If both the Private and Public keywords are missing, then
Public is assumed.

Static Recognized by the compiler but currently has no effect.

name Name of the function, which must follow naming conventions:

Must start with a letter.

May contain letters, digits, and the underscore character (_). Punctuation and
type-declaration characters are not allowed. The exclamation point (!) can
appear within the name as long as it is not the last character, in which case it
is interpreted as a type-declaration character.

Must not exceed 80 characters in length. Additionally, the name parameter can
end with an optional type-declaration character specifying the type of data
returned by the function (i.e., any of the following characters: %, &, !, #, @).

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type variant. Furthermore, all parameters that follow the first
optional parameter must also be optional. If this keyword is omitted, then the
parameter is required.

Note: You can use the IsMissing function to determine whether an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.

ByRef Keyword indicating that parameter is passed by reference. If neither the
ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (integer, string, and so on). Arrays are indicated with
parentheses. For example, an array of integers would be declared as follows:
Function Test(a() As Integer)End Function

ReturnType Type of data returned by the function. If the return type is not given, then
variant is assumed. The ReturnType can only be specified if the function name
(i.e., the name parameter) does not contain an explicit type-declaration
character.

A function returns to the caller when either of the following statements is encountered: End Function

or Exit Function.

Functions can be recursive.



F

284

Returning Values from Functions
To assign a return value, an expression must be assigned to the name of the function, as shown below:

Function TimesTwo(a As Integer) As Integer
  TimesTwo = a * 2
End Function

If no assignment is encountered before the function exits, then one of the following values is returned:

Value Data Type Returned by the Function

0 Integer, long, single, double, currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

The type of the return value is determined by the As ReturnType clause in the Function statement itself.
As an alternative, a type-declaration character can be added to the Function name. For example, the
following two definitions of Test both return String values:

Function Test() As String
  Test = "Hello, world"
End Function
Function Test$()
  Test = "Hello, world"
End Function

Passing Parameters to Functions
Parameters are passed to a function either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the ByRef keyword, then any modifications
to that passed parameter within the function change the value of that variable in the caller. If the
parameter is declared using the ByVal keyword, then the value of that variable cannot be changed in
the called function. If neither the ByRef or ByVal keywords are specified, then the parameter is passed
by reference.

You can override passing a parameter by reference by enclosing that parameter within parentheses. For
instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

Optional Parameters
You can skip parameters when calling functions, as shown in the following example:

Function Test(a%,b%,c%) As Variant
End Function
Sub Main



SmarTerm Macro Guide

285

  a = Test(1,,4) 'Parameter 2 was skipped.
End Sub

You can skip any parameter, with the following restrictions:

• The call cannot end with a comma. For instance, using the above example, the following is not
valid:

a = Test(1,,)

• The call must contain the minimum number of parameters as required by the called function. For
instance, using the above example, the following are invalid:

a = Test(,1) 'Only passes two out of three required
        'parameters.
a = Test(1,2) 'Only passes two out of three required
        'parameters.

When you skip a parameter in this manner, the compiler creates a temporary variable and passes this
variable instead. The value of this temporary variable depends on the data type of the corresponding
parameter in the argument list of the called function, as described in the following table:

Value Data Type

0 Integer, long, single, double, currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

Within the called function, you will be unable to determine whether a parameter was skipped unless
the parameter was declared as a variant in the argument list of the function. In this case, you can use
the IsMissing function to determine whether the parameter was skipped:

Function Test(a,b,c)
  If IsMissing(a) Or IsMissing(b) Then Exit Sub
End Function

Example
Function Factorial(n%) As Integer
  'This function calculates N! (N-factoral).
  f% = 1
  For i = n To 2 Step -1
    f = f * i
  Next i
  Factorial = f
End Function

Sub Main
    a% = 0
  Do While a% < 2
    a% = Val(InputBox$("Enter an integer number greater than 2.","Compute Factorial"))
  Loop
  b# = Factorial(a%)
  Session.Echo "The factoral of " & a% & " is: " & b#
End Sub



F

286

See Also
Macro Control and Compilation on page 36

Fv
Syntax

Fv(rate, nper, pmt, pv, due)

Description
Calculates the future value of an annuity based on periodic fixed payments and a constant rate of
interest. An annuity is a series of fixed payments made to an insurance company or other investment
company over a period of time. Examples of annuities are mortgages and monthly savings plans. The
Fv function requires the following named parameters:

Parameter Description

rate Double representing the interest rate per period. Make sure that annual rates
are normalized for monthly periods (divided by 12).

nper Double representing the total number of payments (periods) in the annuity.

pmt Double representing the amount of each payment per period. Payments are
entered as negative values, whereas receipts are entered as positive values.

pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan, whereas in the case of a
retirement annuity, the present value would be the amount of the fund.

due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

The rate and nper values must be expressed in the same units. If rate is expressed as a percentage per
month, then nper must also be expressed in months. If rate is an annual rate, then the nper value must
also be given in years.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example
This example calculates the future value of 100 dollars paid periodically for a period of 10 years (120
months) at a rate of 10% per year (or .10/12 per month) with payments made on the first of the month.
Note that payments are negative values.

Sub Main
  a# = Fv((.10/12),120,-100.00,0,1)
  Session.Echo "Future value is: " & Format(a#,"Currency")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



G

Get
Syntax

Get [#] filenumber, [recordnumber], variable

Description
Retrieves data from a random or binary file and stores that data into the specified variable. The Get

statement accepts the following parameters:

Parameter Description

filenumber Integer used to identify the file. This is the same number passed to the
Open statement.

recordnumber Long specifying which record is to be read from the file. For binary files,
this number represents the first byte to be read starting with the beginning
of the file (the first byte is 1). For random files, this number represents the
record number starting with the beginning of the file (the first record is 1).
This value ranges from 1 to 2147483647. If the recordnumber parameter is
omitted, the next record is read from the file (if no records have been read
yet, then the first record in the file is read). When this parameter is
omitted, the commas must still appear, as in the following example:

Get #1,,recvar If recordnumber

is specified, and it overrides any previous change in file position specified
with the Seek statement.

variable Variable into which data will be read. The type of the variable determines
how the data is read from the file, as described below.

With random files, a runtime error will occur if the length of the data being read exceeds the reclen

parameter specified with the Open statement. If the length of the data being read is less than the record
length, the file pointer is advanced to the start of the next record. With binary files, the data elements
being read are contiguous; the file pointer is never advanced.

Variable types
The type of the variable parameter determines how data will be read from the file. It can be any of the
following types:

Variable Type File Storage Description

Integer 2 bytes are read from the file.



SmarTerm Macro Guide

288

Variable Type File Storage Description

Long 4 bytes are read from the file.

String (variable-length) In binary files, variable-length strings are read by first
determining the specified string variable's length and then
reading that many bytes from the file. For example, to read a
string of eight characters:

s$=String$(8,"")Get#1,,s$

In random files, variable-length strings are read by first reading a
2-byte length and then reading that many characters from the
file.

String (fixed-length) Fixed-length strings are read by reading a fixed number of
characters from the file equal to the string's declared length.

Double 8 bytes are read from the file (IEEE format).

Single 4 bytes are read from the file (IEEE format).

Date 8 bytes are read from the file (IEEE double format).

Boolean 2 bytes are read from the file. Nonzero values are True, and zero
values are False.

Variant A 2-byte VarType is read from the file, which determines the
format of the data that follows. Once the VarType is known, the
data is read individually, as described above. With user-defined
errors, after the 2-byte VarType, a 2-byte unsigned integer is read
and assigned as the value of the user-defined error, followed by
2 additional bytes of information about the error. The exception
is with strings, which are always preceded by a 2-byte string
length.

User-defined types Each member of a user-defined data type is read individually. In
binary files, variable-length strings within user-defined types are
read by first reading a 2-byte length followed by the string's
content. This storage is different from variable-length strings
outside of user-defined types. When reading user-defined types,
the record length must be greater than or equal to the combined
size of each element within the data type.

Arrays Arrays cannot be read from a file using the Get statement.

Object Object variables cannot be read from a file using the Get
statement.

Example
Sub Main
  Open "test.dat" For Random Access Write As #1
  For x = 1 to 10
    y% = x * 10
    Put #1,x,y
  Next x



G

289

  Close
  Open "test.dat" For Random Access Read As #1
  For y = 1 to 5
    Get #1,y,x%
    mesg = mesg & "Record " & y & ": " & x% & Basic.Eoln$
  Next y
  Session.Echo mesg
  Close
End Sub

See Also
Drive, Folder, and File Access on page 34

GetAttr
Syntax

GetAttr(pathname)

Description
Returns an Integer containing the attributes of the specified file. The attribute value returned is the
sum of the attributes set for the file. The value of each attribute is as follows:

Value Constant Includes

0 ebNormal Read-only files, archive files, subdirectories, and files with no
attributes

1 ebReadOnly Read-only files

2 ebHidden Hidden files

4 ebSystem System files

9 ebVolume Volume label

16 ebDirectory Subdirectories

32 ebArchive Files that have changed since the last backup

64 ebNone Files with no attributes

To determine whether a particular attribute is set, you can And the values shown above with the value
returned by GetAttr.

If the result is True, the attribute is set, as shown below:
Dim w As Integer
w = GetAttr("sample.txt")
If w And ebReadOnly Then Session.Echo "This file is read-only."

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  If Not FileExists("test.dat") Then
    Open "test.dat" For Random Access Write As #1
    Close
  End If
  y% = GetAttr("test.dat")



SmarTerm Macro Guide

290

  If y% And ebNone Then mesg = mesg & _
    "No archive bit is set." & crlf
  If y% And ebReadOnly Then mesg = mesg & _
    "The read-only bit is set." & crlf
  If y% And ebHidden Then mesg = mesg & "The hidden bit is set." & _
    crlf
  If y% And ebSystem Then mesg = mesg & "The system bit is set." & _
    crlf
  If y% And ebVolume Then mesg = mesg & "Volume bit is set." & crlf
  If y% And ebDirectory Then mesg = mesg & "Directory bit is set." &
  & crlf
  If y% And ebArchive Then mesg = mesg & "The archive bit is set."
  Session.Echo mesg
  Kill "test.dat"
End Sub

See Also
Drive, Folder, and File Access on page 34

GetObject
Syntax

GetObject(pathname [, class])

Description
Returns the object specified by pathname or returns a previously instantiated object of the given class.
This function is used to retrieve an existing OLE Automation object, either one that comes from a file
or one that has previously been instantiated.

The pathname argument specifies the full pathname of the file containing the object to be activated.
The application associated with the file is determined by OLE at runtime. For example, suppose that a
file called c:\docs\resume.doc was created by a word processor called wordproc.exe. The following
statement would invoke wordproc.exe, load the file called c:\docs\resume.doc, and assign that object
to a variable:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename followed by a string
representing the part of the object that you want to activate. For example, to activate the first three
pages of the document in the previous example:

Dim doc As Object
Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first named parameter is omitted.
The following table summarizes the different behaviors of GetObject:

Pathname Class GetObject Returns

Not
specified

Specified A reference to an existing instance of the specified object. A
runtime error results if the object is not already loaded.

" " Specified A reference to a new object (as specified by class). A runtime
error occurs if an object of the specified class cannot be
found. This is the same as CreateObject.



G

291

Pathname Class GetObject Returns

Specified Not
specified

The default object from pathname. The application to
activate is determined by OLE based on the given filename.

Specified Specified The object given class from the file given by pathname. A
runtime error occurs if an object of the given class cannot be
found in the given file.

Examples
This first example instantiates the existing copy of Excel.

Dim Excel As Object
Set Excel = GetObject(,"Excel.Application")

This second example loads the OLE server associated with a document.
Dim MyObject As Object
Set MyObject = GetObject("c:\documents\resume.doc",)

See Also
Objects on page 40; DDE Access on page 40

Parameter Description

appname A string expression specifying the name of the application from which the
setting will be read.

section A string expression specifying the name of the section within appname to be
read.

key A string expression specifying the name of the key within section to be read.

default An optional string expression specifying the default value to be returned if the
desired key does not exist in the system registry. If omitted, then an empty
string is returned if the key doesn’t exist.

GoSub
Syntax

GoSub label

Description
Causes execution to continue at the specified label. Execution can later be returned to the statement
following the GoSub by using the Return statement. The label parameter must be a label within the



SmarTerm Macro Guide

292

current function or subroutine. GoSub outside the context of the current function or subroutine is not
allowed.

Example
Sub Main
  uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
  GoSub CheckName
  Session.Echo "Hello, " & uname$
  Exit Sub
CheckName:
  If (uname$ = "") Then
    GoSub BlankName
  ElseIf uname$ = "MICHAEL" Then
    GoSub RightName
  Else
    GoSub OtherName
  End If
  Return
BlankName:
  Session.Echo "No name? Clicked Cancel? I'm shutting down."
  Exit Sub
RightName:
  Return
OtherName:
  Session.Echo "I am renaming you MICHAEL!"
  uname$ = "MICHAEL"
  Return
End Sub

See Also
Macro Control and Compilation on page 36

Goto
Syntax

Goto label

Description
Transfers execution to the line containing the specified label. The compiler will produce an error if
label does not exist. The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

• Must begin with a letter.

• May contain letters, digits, and the underscore character.

• Must not exceed 80 characters in length.

• Must be followed by a colon (:).

Labels are not case-sensitive.

When you're running a macro within the macro editor, you can break out of an infinite loop by
pressing Ctrl+Break.

Example
Sub Main
  uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
  If uname$ = "MICHAEL" Then
    Goto RightName
  Else



G

293

    Goto WrongName
  End If
WrongName:
  If (uname$ = "") Then
    Session.Echo "No name? Clicked Cancel? I'm shutting down."
  Else
    Session.Echo "I am renaming you MICHAEL!"
    uname$ = "MICHAEL"
    Goto RightName
  End If
  Exit Sub
RightName:
  Session.Echo "Hello, MICHAEL!"
End Sub

See Also
Macro Control and Compilation on page 36

GroupBox
Syntax

GroupBox x,y,width,height,title$ [,.Identifier]

Description
Defines a group box within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements).

The group box control is used for static display only the user cannot interact with a group box control.

Separator lines can be created using group box controls. This is accomplished by creating a group box
that is wider than the width of the dialog and extends below the bottom of the dialog; i.e., three sides
of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no title.

The GroupBox statement requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing the label of the group box. If title$ is a zero-length
string, then no title will appear.

.Identifier Optional parameter that specifies the name by which this control can be
referenced by statements in a dialog function (such as DlgFocus and
DlgEnable). If omitted, then the first two words of title$ are used.

Example
Sub Main
  Begin Dialog OptionsTemplate 16,32,128,84,"Options"
    GroupBox 4,4,116,40,"Window Options"
    CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar



SmarTerm Macro Guide

294

    CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
    GroupBox -12,52,152,48," ",.SeparatorLine
    OKButton 16,64,40,14,.OK
    CancelButton 68,64,40,14,.Cancel
  End Dialog
  Dim OptionsDialog As OptionsTemplate
  Dialog OptionsDialog
End Sub

See Also
User Interaction on page 39



H

HelpButton
Syntax

HelpButton x,y,width,height,HelpFileName$,HelpContext, [,.Identifier]

Description
Defines a help button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The HelpButton statement takes
the following parameters:

Parameter Description

x,y Integer position of the control (in dialog units) relative to the upper left
corner of the dialog.

width,height Integer dimensions of the control in dialog units.

HelpFileName$ String expression specifying the name of the help file to be invoked
when the button is selected.

HelpContext Long expression specifying the ID of the topic within HelpFileName$

containing context-sensitive help.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

When the user selects a help button, the associated help file is located at the indicated topic. Selecting
a help button does not remove the dialog. Similarly, no actions are sent to the dialog procedure when
a help button is selected.

When a help button is present within a dialog, it can be automatically selected by pressing the help
key F1.

Example
Sub Main
Begin Dialog HelpDialogTemplate ,,180,96,"Untitled"
OKButton 132,8,40,14
CancelButton 132,28,40,14
HelpButton 132,48,40,14,"", 10
Text 16,12,88,12,"Please click ""Help"".",.Text1

End Dialog
Dim HelpDialog As HelpDialogTemplate
Dialog HelpDialog
End Sub

See Also
User Interaction on page 39



SmarTerm Macro Guide

296

Hex, Hex$
Syntax

Hex[$](number)

Description
Returns a String containing the hexadecimal equivalent of number. Hex$ returns a String, whereas Hex

returns a String variant. The returned string contains only the number of hexadecimal digits necessary
to represent the number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number before converting to
hex. If the passed number is an integer, then a maximum of four digits are returned; otherwise, up to
eight digits can be returned.

The number parameter can be any expression convertible to a number. If number is Null, then Null is
returned. Empty is treated as 0.

Example
Sub Main
  Do
    xs$ = InputBox$("Enter a number to convert:","Hex Convert")
    x = Val(xs$)
    If x <> 0 Then
      Session.Echo "Dec: " & x & " Hex: " & Hex$(x)
    Else
      Session.Echo "Goodbye."
    End If
  Loop While x <> 0
End Sub

See Also
Character and String Manipulation on page 33

Hour
Syntax

Hour(time)

Description
Returns the hour of the day encoded in the specified time parameter. The value returned is an Integer

between 0 and 23 inclusive. The time parameter is any expression that converts to a Date.

Example
Sub Main
  xt# = TimeValue(Time$())
  xh# = Hour(xt#)
  xm# = Minute(xt#)
  xs# = Second(xt#)
  Session.Echo "The current time is: " & xh# & ":" & xm# & ":" & xs#
End Sub

See Also
Time and Date Access on page 39



I

If...Then...Else
Syntax 1

If condition Then statements [Else else_statements]

Syntax 2
If condition Then
[statements]

[ElseIf else_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Description
Conditionally executes a statement or group of statements. The single-line conditional statement
(syntax 1) has the following parameters:

Parameter Description

condition Any expression evaluating to a boolean value.

Statements One or more statements separated with colons. This group of
statements is executed when condition is True.

else_statements One or more statements separated with colons. This group of
statements is executed when condition is False.

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to a boolean value.

Statements One or more statements to be executed when condition is True.

else_condition Any expression evaluating to a boolean value. The else_condition

is evaluated if condition is False.

elseif_statements One or more statements to be executed when condition is False and
else_condition is True.

else_statments One or more statements to be executed when both condition and
else_condition are False.

There can be as many ElseIf conditions as required.

Example



SmarTerm Macro Guide

298

Sub Main
uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
If uname$ = "MICHAEL" Then GoSub MikeName
If uname$ = "MIKE" Then
GoSub MikeName
Exit Sub

End If
If uname$ = "" Then
Session.Echo "Since you don't have a name, I'll call you MIKE!"
uname$ = "MIKE"
GoSub MikeName

ElseIf uname$ = "MICHAEL" Then
GoSub MikeName

Else
GoSub OtherName

End If
Exit Sub

MikeName:
Session.Echo "Hello, MICHAEL!"
Return

OtherName:
Session.Echo "Hello, " & uname$ & "!"
Return

End Sub

See Also
Macro Control and Compilation on page 36

Iif
Syntax

Iif(expression, truepart, falsepart)

Description
Returns truepart if condition is True; otherwise, returns falsepart. Both expressions are calculated
before Iif returns. The Iif function is shorthand for the following construct:

If condition Then
  variable = truepart
Else
  variable = falsepart
End If

Example
Sub Main
  s$ = "Car"
  Session.Echo Iif(s$ = "Car","Nice Car","Nice Automobile")
End Sub

See Also
Macro Control and Compilation on page 36

IMEStatus
Syntax

IMEStatus[()]

Description



I

299

Returns the current status of the input method editor. The IMEStatus function returns one of the
following constants for Japanese locales:

Constant Value Description

ebIMENoOp 0 IME not installed.

EbIMEOn 1 IME on.

EbIMEOff 2 IME off.

EbIMEDisabled 3 IME disabled.

EbIMEHiragana 4 Hiragana double-byte character.

EbIMEKatakanaDbl 5 Katakana double-byte characters.

EbIMEKatakanaSng 6 Katakana single-byte characters.

EbIMEAlphaDbl 7 Alphanumeric double-byte characters.

EbIMEAlphaSng 8 Alphanumeric single-byte characters.

For Chinese locales, one of the following constants are returned:

Constant Value Description

ebIMENoOp 0 IME not installed.

EbIMEOn 1 IME on.

EbIMEOff 2 IME off.

For Korean locales, this function returns a value with the first 5 bits having the following meaning:

Bit If Not Set (Or 0) If Set (Or 1)

Bit 0 IME not installed IME installed

Bit 1 IME disabled IME enabled

Bit 2 English mode Hangeul mode

Bit 3 Banja mode (single-byte) Junja mode (double-byte)

Bit 4 Normal mode Hanja conversion mode

You can test for the different bits using the And operator as follows:
a = IMEStatus()
If a And 1 Then … 'Test for bit 0
If a And 2 Then … 'Test for bit 1
If a And 4 Then … 'Test for bit 2
If a And 8 Then … 'Test for bit 3
If a And 16 Then … 'Test for bit 4

This function always returns 0 if no input method editor is installed.



SmarTerm Macro Guide

300

Example
Sub Main
  a = IMEStatus()
  Select case a
  Case 0
    Session.Echo "IME not installed."
  Case 1
    Session.Echo "IME on."
  Case 2
    Session.Echo "IME off."
  End Select
End Sub

See Also
Operating System Control on page 38

Imp (operator)
Syntax

result = expression1 Imp expression2

Description
Performs a logical or binary implication on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical implication is performed as follows:

Expression One Expression Two Result

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

Binary implication
If the two expressions are Integer, then a binary implication is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long and a binary implication is
then performed, returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary representations of
the two expressions, according to the following table:



I

301

Bit in Expression One Bit in Expression Two Result

1 1 1

0 1 1

1 0 0

0 0 1

Example
Sub Main
  a = 10 : b = 20 : c = 30 : d = 40
  If (a < b) Imp (c < d) Then
    Session.Echo "a is less than b implies that c is less than d."
  Else
    Session.Echo "a is less than b does not imply that c is less than d."
  End If
  If (a < b) Imp (c > d) Then
    Session.Echo "a is less than b implies that c is greater than d."
  Else
    Session.Echo "a is less than b does not imply that c is greater than d."
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Input#
Syntax

Input [#]filenumber%,variable[,variable]…

Description
Reads data from the file referenced by filenumber into the given variables. Each variable must be
type-matched to the data in the file. For example, a String variable must be matched to a string in the
file. The following parsing rules are observed while reading each variable in the variable list:

• Leading white space is ignored (spaces and tabs).

• When reading String variables, if the first character on the line is a quotation mark, then characters
are read up to the next quotation mark or the end of the line, whichever comes first. Blank lines are
read as empty strings. If the first character read is not a quotation mark, then characters are read up
to the first comma or the end of the line, whichever comes first. String delimiters (quotes, comma,
end-of-line) are not included in the returned string.

• When reading numeric variables, scanning of the number stops when the first non-numeric character
(such as a comma, a letter, or any other unexpected character) is encountered. Numeric errors are
ignored while reading numbers from a file. The resultant number is automatically converted to the
same type as the variable into which the value will be placed. If there is an error in conversion, then
0 is stored into the variable.

• After reading the number, input is skipped up to the next delimiter—a comma, an end-of-line, or an
end-of-file.

• Numbers must adhere to any of the following syntax:



SmarTerm Macro Guide

302

[-|+]digits[.digits][E[-|+]digits][!|#|%|&|@]
&Hhexdigits[!|#|%|&]
&[O]octaldigits[!|#|%|&|@]

• When reading Boolean variables, the first character must be #; otherwise, a runtime error occurs. If
the first character is #, then input is scanned up to the next delimiter (a comma, an end-of-line, or an
end-of-file). If the input matches #FALSE#, then False is stored in the Boolean; otherwise, True is
stored.

• When reading date variables, the first character must be #; otherwise, a runtime error occurs. If the
first character is #, then the input is scanned up to the next delimiter (a comma, an end-of-line, or an
end-of-file). If the input ends in a # and the text between the #'s can be correctly interpreted as a
date, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files. These dates use
this syntax:

#YYYY-MM-DD HH:MM:SS#

where YYYY is a year between 100 and 9999, MM is a month between 1 and 12, DD is a day between 1
and 31, HH is an hour between 0 and 23, MM is a minute between 0 and 59, and SS is a second between
0 and 59.

• When reading Variant variables, if the data begins with a quotation mark, then a string is read
consisting of the characters between the opening quotation mark and the closing quotation mark,
end-of-line, or end-of-file.

If the input does not begin with a quotation mark, then input is scanned up to the next comma, end-of-
line, or end-of-file and a determination is made as to what data is being represented. If the data cannot
be represented as a number, Date, Error, Boolean, or Null, then it is read as a string.

The following table describes how special data is interpreted as variants:

Special Data Interpreted as Variant

Blank line Read as an empty variant.

#NULL# Read as a null variant.

TRUE# Read as a boolean variant.

#FALSE# Read as a boolean variant.

ERROR code# Read as a user-defined error.

Date# Read as a date variant.

"text" Read as a string variant.

• If an error occurs in interpretation of the data as a particular type, then that data is read as a String

variant.

• When reading numbers into variants, the optional type-declaration character determines the VarType
of the resulting variant. If no type-declaration character is specified, then the compiler will read the
number according to the following rules:

• Rule 1: If the number contains a decimal point or an exponent, then the number is read as
Currency. If there is an error converting to Currency, then the number is treated as a Double.



I

303

• Rule 2: If the number does not contain a decimal point or an exponent, then the number is
stored in the smallest of the following data types that most accurately represents that value:
integer, long, currency, double.

• End-of-line is interpreted as either a single line feed, a single carriage return, or a carriage-
return/line-feed pair. Thus, text files from any platform can be interpreted using this command.

• The filenumber parameter is a number that is used to refer to the open file the number passed to the
Open statement.

• The filenumber must reference a file opened in Input mode. It is good practice to use the Write

statement to write date elements to files read with the Input statement to ensure that the variable list
is consistent between the input and output routines.

• Null characters are ignored.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
Open "test.dat" For Output As #1
Write #1,2112,"David","McCue","123-45-6789"
Close
Open "test.dat" For Input As #1
Input #1,x%,st1$,st2$,st3$
mesg = "Employee " & x% & " Information" & crlf & crlf
mesg = mesg & "First Name: " & st1$ & crlf
mesg = mesg & "Last Name: "& st2$ & crlf
mesg = mesg & "Social Security Number: " & sy3$
Session.Echo mesg
Close
Kill "test.dat"

End Sub

See Also
Drive, Folder, and File Access on page 34

Input, Input$, InputB, InputB$
Syntax

Input[$](numchars,[#]filenumber)
InputB[$](numbytes,[#]filenumber)

Description
Returns a specified number of characters or bytes read from a given sequential file. The Input$ and
InputB$ functions return a String, whereas Input and InputB return a String variant. The following
parameters are required:

Parameter Description

numchars Integer containing the number of characters to be read from the file.

numbytes Integer containing the number of bytes to be read from the file.

filenumber Integer referencing a file opened in either Input or Binary mode. This is the
same number passed to the Open statement.



SmarTerm Macro Guide

304

The Input and Input$ functions read all characters, including spaces and end-of-lines. Null characters
are ignored.

The InputB and InputB$ functions are used to read byte data from a file.

Example
Const crlf = Chr$(13) & Chr$(10)

Sub Main
x& = FileLen("c:\autoexec.bat")
If x& > 0 Then
Open "c:\autoexec.bat" For Input As #1

Else
Session.Echo "File not found or empty."
Exit Sub

End If
If x& > 80 Then
ins = Input(80,#1)

Else
ins = Input(x,#1)

End If
Close
Session.Echo "File length: " & x& & crlf & ins

End Sub

See Also
Drive, Folder, and File Access on page 34

InputBox, InputBox$
Syntax

InputBox[$](prompt [, [title] [, [default] [,[xpos],[ypos] [,helpfile,context]]]])

Description
Displays a dialog with a text box into which the user can type. The content of the text box is returned
as a String (in the case of InputBox$) or as a String variant (in the case of InputBox). A zero-length
string is returned if the user selects Cancel. The InputBox/InputBox$ functions take the following
named parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can contain
multiple lines, each separated with an end-of-line (a carriage return, line feed,
or carriage-return/line-feed pair). A runtime error is generated if prompt is null.

title Caption of the dialog. If this parameter is omitted, then no title appears as the
dialog's caption. A runtime error is generated if title is null.

default Default response. This string is initially displayed in the text box. A runtime
error is generated if default is null.

xpos, ypos Integer coordinates, given in twips (twentieths of a point), specifying the upper
left corner of the dialog relative to the upper left corner of the screen. If the
position is omitted, then the dialog is positioned on or near the application
executing the macro.



I

305

Parameter Description

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If
this parameter is specified, then helpfile must also be specified.

You can type a maximum of 255 characters into InputBox.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

When Cancel is selected, an empty string is returned. An empty string is also returned when the user
selects the OK button with no text in the input box. Thus, it is not possible to determine the
difference between these two situations. If you need to determine the difference, you should create a
user-defined dialog or use the AskBox function.

Example
Sub Main
  s$ = InputBox$("File to copy:","Copy","sample.txt")
End Sub

See Also
User Interaction on page 39

InStr, InstrB
Syntax

InStr([start,] search, find [,compare])
InStrB([start,] search, find [,compare])

Description
Returns the first character position of string find within string search. The InStr function takes the
following parameters:

Parameter Description

start Integer specifying the character position (for Instr) or byte position (for InstrB)
where searching begins. The start parameter must be between 1 and 32767. If
this parameter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertible to a string.

find Text for which to search. This can be any expression convertible to a string.

compare Integer controlling how string comparisons are performed. It can be any of the
following values:

0 String comparisons are case-sensitive.

1 String comparisons are case-insensitive.



SmarTerm Macro Guide

306

Parameter Description

Any other value produces a runtime error. If this parameter is omitted, then
string comparisons use the current Option Compare setting. If no Option
Compare statement has been encountered, then Binary is used (i.e., string
comparisons are case-sensitive).

If the string is found, then its character position within search is returned, with 1 being the character
position of the first character.

The InStr and InStrB functions observe the following additional rules:

• If either search or find is Null, then Null is returned.

• If the compare parameter is specified, then start must also be specified. In other words, if there are
three parameters, then it is assumed that these parameters correspond to start, search, and find.

• A runtime error is generated if start is null.

• A runtime error is generated if compare is not 0 or 1.

• If search is empty, then 0 is returned.

• If find is empty, then start is returned. If start is greater than the length of search, then 0 is
returned.

• A runtime error is generated if start is less than or equal to zero.

The InStr and InStrB functions operate on character and byte data respectively. The Instr function
interprets the start parameter as a character, performs a textual comparisons, and returns a character
position. The InStrB function, on the other hand, interprets the start parameter as a byte position,
performs binary comparisons, and returns a byte position.

On SBCS platforms, the InStr and InStrB functions are identical.

Example
Sub Main
  a$ = "This string contains the name Stuart and other characters."
  x% = InStr(a$,"Stuart",1)
  If x% <> 0 Then
    b$ = Mid$(a$,x%,6)
    Session.Echo b$ & " was found."
    Exit Sub
  Else
    Session.Echo "Stuart not found."
  End If
End Sub

See Also
Character and String Manipulation on page 33

Int
Syntax

Int(number)

Description



I

307

Returns the integer part of number. This function returns the integer part of a given value by returning
the first integer less than the number. The sign is preserved. The Int function returns the same type as
number, with the following exceptions:

• If number is Empty, then an Integer variant of value 0 is returned.

• If number is a string, then a double variant is returned.

• If number is null, then a null variant is returned.

Example
Sub Main
  a# = -1234.5224
  b% = Int(a#)
  Session.Echo "The integer part of -1234.5224 is: " & b%
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Integer (data type)
Syntax

Integer

Description
Used to declare whole numbers with up to four digits of precision. Integer variables are used to hold
numbers within the following range:

–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure, integers require 2
bytes of storage. When used with binary or random files, 2 bytes of storage are required.

When passed to external routines, integer values are sign-extended to the size of an integer on that
platform (either 16 or 32 bits) before pushing onto the stack.

The type-declaration character for integer is %.

See Also
Keywords, Data Types, Operators, and Expressions on page 34

IPmt
Syntax

IPmt(rate, per, nper, pv, fv, due)

Description
Returns the interest payment for a given period of an annuity based on periodic, fixed payments and a
fixed interest rate. An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages, monthly savings
plans, and retirement plans. The following table describes the named parameters:



SmarTerm Macro Guide

308

Parameter Description

rate Double representing the interest rate per period. If the payment periods are
monthly, be sure to divide the annual interest rate by 12 to get the monthly
rate.

per Double representing the payment period for which you are calculating the
interest payment. If you want to know the interest paid or received during
period 20 of an annuity, this value would be 20.

nper Double representing the total number of payments in the annuity. This is
usually expressed in months, and you should be sure that the interest rate
given above is for the same period that you enter here.

pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan because that is the amount
of cash you have in the present. In the case of a retirement plan, this value
would be the current value of the fund because you have a set amount of
principal in the plan.

fv Double representing the future value of your annuity. In the case of a loan, the
future value would be zero because you will have paid it off. In the case of a
savings plan, the future value would be the balance of the account after all
payments are made.

due Integer indicating when payments are due. If this parameter is 0, then payments
are due at the end of each period (usually, the end of the month). If this value
is 1, then payments are due at the start of each period (the beginning of the
month).

The rate and nper parameters must be expressed in the same units. If rate is expressed in percentage
paid per month, then nper must also be expressed in months. If rate is an annual rate, then the period
given in nper should also be in years or the annual rate should be divided by 12 to obtain a monthly
rate.

If the function returns a negative value, it represents interest you are paying out, whereas a positive
value represents interest paid to you.

Example
This example calculates the amount of interest paid on a $1,000.00 loan financed over 36 months with
an annual interest rate of 10%. Payments are due at the beginning of the month. The interest paid
during the first 10 months is displayed in a table.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  For x = 1 to 10
    ipm# = IPmt((.10/12),x,36,1000,0,1)
    mesg = mesg & Format(x,"00") & " : " & Format(ipm#," 0,0.00") & crlf
  Next x
  Session.Echo mesg
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



I

309

IRR
Syntax

IRR(valuearray(),guess)

Description
Returns the internal rate of return for a series of periodic payments and receipts. The internal rate of
return is the equivalent rate of interest for an investment consisting of a series of positive and/or
negative cash flows over a period of regular intervals. It is usually used to project the rate of return on
a business investment that requires a capital investment up front and a series of investments and
returns on investment over time. The IRR function requires the following named parameters:

Parameter Description

valuearray() Array of double numbers that represent payments and receipts. Positive
values are payments, and negative values are receipts.

There must be at least one positive and one negative value to indicate the
initial investment (negative value) and the amount earned by the
investment (positive value).

guess Double containing your guess as to the value that the IRR function will
return. The most common guess is .1 (10 percent).

The value of IRR is found by iteration. It starts with the value of guess and cycles through the
calculation adjusting guess until the result is accurate within 0.00001 percent. After 20 tries, if a result
cannot be found, IRR fails, and the user must pick a better guess.

Example
This example illustrates the purchase of a lemonade stand for $800 and a series of incomes from the
sale of lemonade over 12 months. The projected incomes for this example are generated in two
For...Next Loops, and then the internal rate of return is calculated and displayed. (Not a bad
investment!)

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Dim valu#(12)
valu(1) = -800 'Initial investment
mesg = valu#(1) & ", "
'Calculate the second through fifth months' sales.
For x = 2 To 5
valu(x) = 100 + (x * 2)
mesg = mesg & valu(x) & ", "

Next x
'Calculate the sixth through twelfth months' sales.
For x = 6 To 12
valu(x) = 100 + (x * 10)
mesg = mesg & valu(x) & ", "

Next x
'Calculate the equivalent investment return rate.
retrn# = IRR(valu,.1)
mesg = "The values: " & crlf & mesg & crlf & crlf
Session.Echo mesg & "Return rate: " & Format(retrn#,"Percent")

End Sub

See Also



SmarTerm Macro Guide

310

Numeric, Math, and Accounting Functions on page 36

Is
Syntax

object Is [object | Nothing]

Description
Returns True if the two operands refer to the same object; returns False otherwise. This operator is
used to determine whether two object variables refer to the same object. Both operands must be object
variables of the same type (i.e., the same data object type or both of type Object).

The Nothing constant can be used to determine whether an object variable is uninitialized:
If MyObject Is Nothing Then Session.Echo "MyObject is uninitialized."

Uninitialized object variables reference no object.

When comparing OLE Automation objects, the Is operator will only return True if the operands
reference the same OLE Automation object. This is different from data objects. For example, the
following use of Is (using the object class called excel.application) returns True:

Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = a
If a Is b Then Beep

The following use of Is will return False, even though the actual objects may be the same:
Dim a As Object
Dim b As Object
a = CreateObject("excel.application")
b = GetObject(,"excel.application")
If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b reference the same
object, they may be treated as different objects by OLE 2.0 (this is dependent on the OLE 2.0 server
application).

Example
Sub Main
  Dim CurrentSession As Object
  Set CurrentSession = Application.ActiveSession
  If CurrentSession.Circuit = Nothing Then
    MsgBox "No communications method selected."
  End If
End

Sub InsertDate(ByVal WinWord As Object)
If WinWord Is Nothing Then
Session.Echo "Object variant is not set."

Else
WinWord.Insert Date$

End If
End Sub

Sub Main
Dim WinWord As Object
On Error Resume Next
WinWord = CreateObject("word.basic")



I

311

InsertDate WinWord
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Objects on page 40

IsDate
Syntax

IsDate(expression)

Description
Returns True if expression can be legally converted to a date; returns False otherwise.

Example
Sub Main
  Dim a As Variant
Retry:
  a = InputBox("Enter a date.", "Enter Date")
  If IsDate(a) Then
    Session.Echo Format(a,"long date")
  Else
    Session.Echo "Not quite, please try again!"
    Goto Retry
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Time and Date Access on page 39

IsEmpty
Syntax

IsEmpty(expression)

Description
Returns True if expression is a Variant variable that has never been initialized; returns False

otherwise. The IsEmpty function is the same as the following:
(VarType(expression) = ebEmpty)

Example
Sub Main
  Dim a As Variant
  If IsEmpty(a) Then
    a = 1.0#        'Give uninitialized data a Double value 0.0.
    Session.Echo "The variable has been initialized to: " & a
  Else
    Session.Echo "The variable was already initialized!"
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



SmarTerm Macro Guide

312

IsError
Syntax

IsError(expression)

Description
Returns True if expression is a user-defined error value; returns False otherwise.

Example
Function Div(ByVal a,ByVal b) As Variant
If b = 0 Then
Div = CVErr(2112) 'Return a special error value.

Else
Div = a / b 'Return the division.

End If
End Function

Sub Main
Dim a As Variant
a = Div(10,12)
If IsError(a) Then
Session.Echo "The following error occurred: " & CStr(a)

Else
Session.Echo "The result is: " & a

End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

IsMissing
Syntax

IsMissing(argname)

Description
Returns True if argname was passed to the current subroutine or function; returns False if omitted. The
IsMissing function is used with variant variables passed as optional parameters (using the Optional

keyword) to the current subroutine or function. For nonvariant variables or variables that were not
declared with the Optional keyword, IsMissing will always return True.

Example
Sub Test(AppName As String,Optional isMinimize As Variant)
  app = Shell(AppName)
  If Not IsMissing(isMinimize) Then
    AppMinimize app
  Else
    AppMaximize app
  End If
End Sub

Sub Main
  Test "Notepad"      'Maximize this application
  Test "Notepad",True    'Minimize this application
End Sub

See Also
Macro Control and Compilation on page 36



I

313

IsNull
Syntax

IsNull(expression)

Description
Returns True if expression is a Variant variable that contains no valid data; returns False otherwise.
The IsNull function is the same as the following:

(VarType(expression) = ebNull)

Example
Sub Main
  Dim a As Variant    'Initialized as Empty
  If IsNull(a) Then Session.Echo "The variable contains no valid data."
  a = Empty * Null
  If IsNull(a) Then Session.Echo "Null propagated through the expression."
End Sub

See Also
Macro Control and Compilation on page 36

IsNumeric
Syntax

IsNumeric(expression)

Description
Returns True if expression can be converted to a number; returns False otherwise. If passed a number
or a variant containing a number, then IsNumeric always returns True. If a string or string variant is
passed, then IsNumeric will return True only if the string can be converted to a number. The following
syntax is recognized as valid numbers:

&Hhexdigits[&|%|!|#|@]

&[O]octaldigits[&|%|!|#|@]

[-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is retrieved and one of the above
rules is applied.

IsNumeric returns False if expression is a date.

Example
Sub Main
  Dim s$ As String
  s$ = InputBox("Enter a number.","Enter Number")
  If IsNumeric(s$) Then
    Session.Echo "You did well!"
  Else
    Session.Echo "You didn't do so well!"
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36



SmarTerm Macro Guide

314

IsObject
Syntax

IsObject(expression)

Description
Returns True if expression is a Variant variable containing an Object; returns False otherwise.

Example
Sub Main
  Dim v As Variant
  On Error Resume Next
  Set v = GetObject(,"Excel.Application")
  If IsObject(v) Then
    Session.Echo "The default object value is: " & v = v.Value
  Else
    Session.Echo "Excel not loaded."
  End If
End Sub

See Also
Objects on page 40

Item$
Syntax

Item$(text$,first [,[last] [,delimiters$]])

Description
Returns all the items between first and last within the specified formatted text list. The Item$

function takes the following parameters:

Parameter Description

text$ String containing the text from which a range of items is returned.

first Integer containing the index of the first item to be returned. If first is greater
than the number of items in text$, then a zero-length string is returned.

last Integer containing the index of the last item to be returned. All of the items
between first and last are returned. If last is greater than the number of
items in text$, then all items from first to the end of text are returned. If
last is missing, then only the item specified by first is returned.

delimiters$ String containing different item delimiters. By default, items are separated by
commas and end-of-lines. This can be changed by specifying different
delimiters in the delimiters$ parameter.

The Item$ function treats embedded null characters as regular characters.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
  slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
  list1$ = Item$(ilist$,5,12)



I

315

  list2$ = Item$(slist$,2,9,"/")
  Session.Echo "The returned lists are: " & crlf & list1$ & crlf & list2$
End Sub

See Also
Character and String Manipulation on page 33

ItemCount
Syntax

ItemCount(text$ [,delimiters$])

Description
Returns an Integer containing the number of items in the specified delimited text. Items are substrings
of a delimited text string. Items, by default, are separated by commas and/or end-of-lines. This can be
changed by specifying different delimiters in the delimiters$ parameter. For example, to parse items
using a backslash:

n = ItemCount(text$,"\")

The ItemCount function treats embedded null characters as regular characters.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
  slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"
  l1% = ItemCount(ilist$)
  l2% = ItemCount(slist$,"/")
  mesg = "The first lists contains: " & l1% & " items." & crlf
  mesg = mesg & "The second list contains: " & l2% & " items."
  Session.Echo mesg
End Sub

See Also
Character and String Manipulation on page 33



K

Keywords (topic)
The following keywords are any word or symbol recognized as part of the macro language.

Access
Alias
And
Any
Append
Application
As
Base
Begin
Binary
Boolean
ByRef
ByVal
Call
CancelButton
Case
CDecl
CheckBox
Chr
ChrB
ChrW
Circuit
Close
ComboBox
Compare
Const
CStrings
Currency
Date
Declare
Default
DefBool
DefCur
DefDate
DefDbl
DefInt

DefLng
DefObj
DefSng
DefStr
DefVar
Dialog
Dim
Do
Double
DropListBox
Else
ElseIf
End
Eqv
Error
Exit
Explicit
For
Function
Get
Global
GoSub
Goto
GroupBox
HelpButton
If
Imp
Inline
Input
Input
InputB
Integer
Is
Len
Let
Lib

Like
Line
ListBox
Lock
Long
Loop
LSet
Mid
MidB
Mod
Name
New
Next
Not
Nothing
Object
Off
OKButton
On
Open
Option
Optional
OptionButton
OptionGroup
Or
Output
ParamArray
Pascal
Picture
PictureButton
Preserve
Print
Private
Public
PushButton
Put

Random
Read
ReDim
Rem
Resume
Return
RSet
Seek
Select
Session
Set
Shared
Single
Spc
Static
StdCall
Step
Stop
String
Sub
System
Tab
Text
TextBox
Then
Time
To
Transfer
Type
Unlock
Until
Variant
Wend
While
Width
Write

Xor

Restrictions
All keywords are reserved in that you cannot create a variable, function, constant, or subroutine with
the same name as a keyword. However, you are free to use all keywords as the names of structure
members.

For all other keywords, the following restrictions apply:

• You can create a subroutine or function with the same name as a keyword.



SmarTerm Macro Guide

317

• You can create a variable with the same name as a keyword as long as the variable is first explicitly
declared with a Dim, Private, or Public statement.

Kill
Syntax

Kill pathname

Description
Deletes all files matching pathname. The Kill statement accepts the following named parameter:

Parameter Description

pathname Specifies the file to delete. If filetype is specified, then this parameter must
specify a path. Otherwise, this parameter can include both a path and a file
specification containing wildcards.

The pathname argument can include wildcards, such as * and ?. The * character matches any sequence
of zero or more characters, whereas the ? character matches any single character. Multiple *'s and ?'s
can appear within the expression to form complex searching patterns.

Example
Sub Main
   If Not FileExists("test1.dat") Then
      Open "test1.dat" For Output As #1
      Open "test2.dat" For Output As #2
      Close
   End If
   If FileExists ("test1.dat") Then
      Session.Echo "File test1.dat exists."
      Kill "test?.dat"
   End If
   If FileExists ("test1.dat") Then
      Session.Echo "File test1.dat still exists."
   Else
      Session.Echo "test?.dat successfully deleted."
   End If
End Sub

See Also
Drive, Folder, and File Access on page 34



L

Lbound
Syntax

Lbound(ArrayVariable() [,dimension])

Description
Returns an Integer containing the lower bound of the specified dimension of the specified array
variable. The dimension parameter is an integer specifying the desired dimension. If this parameter is
not specified, then the lower bound of the first dimension is returned.

The Lbound function can be used to find the lower bound of a dimension of an array returned by an
OLE Automation method or property:

Lbound(object.property [,dimension])
Lbound(object.method [,dimension])

Examples
This example dimensions two arrays and displays their lower bounds.

Sub Main
  Dim a(5 To 12)
  Dim b(2 To 100, 9 To 20)
  lba = LBound(a)
  lbb = LBound(b,2)
  Session.Echo "The lower bound of a is: " & lba & _
    " The lower bound of b is: " & lbb
  'This example uses LBound and UBound to dimension a
  'dynamic array to hold a copy of an array redimmed by the
  'FileList statement.
  Dim fl$()
  FileList fl$,"*.*"
  count = UBound(fl$)
  If ArrayDims(a) Then
    Redim nl$(LBound(fl$) To UBound(fl$))
    For x = 1 To count
      nl$(x) = fl$(x)
    Next x
    Session.Echo "The last element of the new array is: " & _
      nl$(count)
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

LCase, LCase$
Syntax

LCase[$](string)

Description



SmarTerm Macro Guide

319

Returns the lowercase equivalent of the specified string. LCase$ returns a String, whereas LCase returns
a String variant. Null is returned if string is Null.

Example
Sub Main
  lname$ = "WILLIAMS"
  fl$ = Left$(lname$,1)
  rest$ = Mid$(lname$,2,Len(lname$))
  lname$ = fl$ & LCase$(rest$)
  Session.Echo "The converted name is: " & lname$
End Sub

See Also
Character and String Manipulation on page 33

Left, Left$, LeftB, LeftB$
Syntax

Left[$](string, length)
LeftB[$](string,length)

Description
Returns the leftmost length characters (for Left and Left$) or bytes (for LeftB and LeftB$) from a given
string.

Left$ returns a String, whereas Left returns a String variant.

The length parameter is an Integer value specifying the number of characters to return. If length is 0,
then a zero-length string is returned. If length is greater than or equal to the number of characters in
the specified string, then the entire string is returned.

The LeftB and LeftB$ functions are used to return a sequence of bytes from a string containing byte
data. In this case, length specifies the number of bytes to return. If length is greater than the number of
bytes in string, then the entire string is returned.

Null is returned if string is Null.

Example
Sub Main
  lname$ = "WILLIAMS"
  fl$ = Left$(lname$,1)
  rest$ = Mid$(lname$,2,Len(lname$))
  lname$ = fl$ & LCase$(rest$)
  Session.Echo "The converted name is: " & lname$
End Sub

See Also
Character and String Manipulation on page 33

Len, LenB
Syntax

Len(expression)
LenB(expression)

Description



L

320

Returns the number of characters (for Len) or bytes (for LenB) in String expression or the number of
bytes required to store the specified variable. If expression evaluates to a string, then Len returns the
number of characters in a given string or 0 if the string is empty. When used with a Variant variable,
the length of the variant when converted to a String is returned. If expression is a Null, then Len

returns a Null variant.

The LenB function is used to return the number of bytes in a given string. On SBCS systems, the LenB

and Len functions are identical.

If used with a non-String or non-Variant variable, these functions return the number of bytes occupied
by that data element.

When used with user-defined data types, these functions return the combined size of each member
within the structure. Since variable-length strings are stored elsewhere, the size of each variable-length
string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements when appearing within a
structure:

Data Element Size

Integer 2 bytes

Long 4 bytes

Float 4 bytes

Double 8 bytes

Currency 8 bytes

String (variable-length) 2 bytes

String (fixed-length) The length of the string as it appears in the string's declaration in
characters for Len and bytes for LenB.

Objects 0 bytes. Both data object variables and variables of type object
are always returned as 0 size.

User-defined type Combined size of each structure member. Variable-length strings
within structures require 2 bytes of storage. Arrays within
structures are fixed in their dimensions. The elements for fixed
arrays are stored within the structure and therefore require the
number of bytes for each array element multiplied by the size of
each array dimension: element_size*dimension1*dimension2...

The Len and LenB functions always returns 0 with object variables or any data object variable.

Examples
This example uses the Len function to change uppercase names to lowercase with an uppercase first
letter.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  lname$ = "WILLIAMS"
  fl$ = Left$(lname$,1)
  ln% = Len(lname$)



SmarTerm Macro Guide

321

  rest$ = Mid$(lname$,2,ln%)
  lname$ = fl$ & LCase$(rest$)
  Session.Echo "The converted name is: " & lname$

  'This example returns a table of lengths for standard numeric types.
  Dim lns(4)
  a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
  lns(1) = Len(a%)
  lns(2) = Len(b&)
  lns(3) = Len(c!)
  lns(4) = Len(d#)
  mesg = "Lengths of standard types:" & crlf
  mesg = mesg & "Integer: " & lns(1) & crlf
  mesg = mesg & "Long: " & lns(2) & crlf
  mesg = mesg & "Single: " & lns(3) & crlf
  mesg = mesg & "Double: " & lns(4) & crlf
  Session.Echo mesg
End Sub

See Also
Character and String Manipulation on page 33

Let
Syntax

[Let] variable = expression

Description
Assigns the result of an expression to a variable. The use of the word Let is supported for
compatibility with other implementations of VBA. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantities without regard to
type conversions. However, it is possible for an overflow error to occur when converting from larger to
smaller types. This happens when the larger type contains a numeric quantity that cannot be
represented by the smaller type. For example, the following code will produce a runtime error:

Dim amount As Long
Dim quantity As Integer
amount = 400123    'Assign a value out of range for int.
quantity = amount    'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Example
Sub Main
  Let a$ = "This is a string."
  Let b% = 100
  Let c# = 1213.3443
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Like
Syntax

expression Like pattern

Description



L

322

Compares two strings and returns True if the expression matches the given pattern; returns False

otherwise. Case sensitivity is controlled by the Option Compare setting. The pattern expression can
contain special characters that allow more flexible matching:

Character Evaluates To

? Matches a single character.

* Matches one or more characters.

# Matches any digit.

[range] Matches if the character in question is within the specified range.

[!range] Matches if the character in question is not within the specified range.

A range specifies a grouping of characters. To specify a match of any of a group of characters, use the
syntax [ABCDE]. To specify a range of characters, use the syntax [A-Z]. Special characters must appear
within brackets, such as []*?#.

If expression or pattern is not a string, then both expression and pattern are converted to String

variants and compared, returning a Boolean variant. If either variant is Null, then Null is returned.

The following table shows some examples:

Expression True if pattern is False if pattern is

"EBW" "E*W", "E*" "E*B"

"SML" "B*[r-t]icMacro" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#","#?#" "###","#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]","[*]"

Example
Sub Main
  a$ = "This is a string variable of 123456 characters"
  b$ = "123.45"
  If a$ Like "[A-Z][g-i]*" Then Session.Echo _
    "The first comparison is True."
  If b$ Like "##3.##" Then Session.Echo "_
    The second comparison is True."
  If a$ Like "*variable*" Then Session.Echo _
    "The third comparison is True."
End Sub

See Also
Character and String Manipulation on page 33

Line Input#
Syntax

Line Input #filenumber,variable



SmarTerm Macro Guide

323

Description
Reads an entire line into the given variable.

The filenumber parameter is a number that is used to refer to the open file the number passed to the
Open statement. The filenumber must reference a file opened in Input mode.

The file is read up to the next end-of-line, but the end-of-line character(s) is (are) not returned in the
string. The file pointer is positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will automatically
declare the variable if the specified variable has not yet been used or dimensioned.

This statement recognizes either a single line feed or a carriage-return/line-feed pair as the end-of-line
delimiter.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Open "c:\autoexec.bat" For Input As #1
  For x = 1 To 5
    Line Input #1,lin$
    mesg = mesg & lin$ & crlf
  Next x
  Session.Echo "The first 5 lines of your autoexec.bat are:" & crlf & mesg
End Sub

See Also
Drive, Folder, and File Access on page 34

Line Numbers (topic)
Line numbers are not supported. As an alternative to line numbers, you can use meaningful labels as
targets for absolute jumps, as shown below:

Sub Main
  Dim i As Integer
  On Error Goto MyErrorTrap
  i = 0
LoopTop:
  i = i + 1
  If i < 10 Then Goto LoopTop
MyErrorTrap:
  Session.Echo "An error occurred."
End Sub

Line$
Syntax

Line$(text$,first[,last])

Description
Returns a String containing a single line or a group of lines between first and last. Lines are
delimited by carriage return, line feed, or carriage-return/line-feed pairs. Embedded null characters are
treated as regular characters. The Line$ function takes the following parameters:



L

324

Parameter Description

text$ String containing the text from which the lines will be extracted.

first Integer representing the index of the first line to return. If last is omitted, then
this line will be returned. If first is greater than the number of lines in text$,
then a zero-length string is returned.

last Integer representing the index of the last line to return.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Open "c:\autoexec.bat" For Input As #1
  For x = 1 To 5
    Line Input #1,lin$
    txt = txt & lin$ & crlf
  Next x
  lines$ = Line$(txt,3,4)
  Session.Echo lines$ 
End Sub

See Also
Character and String Manipulation on page 33

LineCount
Syntax

LineCount(text$)

Description
Returns an Integer representing the number of lines in text$. Lines are delimited by carriage return,
line feed, or both. Embedded null characters are treated as regular characters.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  x = 1
  Open "c:\autoexec.bat" For Input As #1
  While (x < 10) And Not EOF(1)
    Line Input #1,lin$
    txt = txt & lin$ & crlf
    x = x + 1
  Wend
  lines! = LineCount(txt)
  Session.Echo "The number of lines in txt is: " & lines! & crlf & crlf & txt
End Sub

See Also
Character and String Manipulation on page 33

ListBox
Syntax

ListBox x,y,width,height,ArrayVariable,.Identifier



SmarTerm Macro Guide

325

Description
Creates a listbox within a dialog template. When the dialog is invoked, the listbox will be filled with
the elements contained in ArrayVariable. This statement can only appear within a dialog template (i.e.,
between the Begin Dialog and End Dialog statements). The ListBox statement requires the following
parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog
units) relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the
elements of the listbox. If this array has no dimensions, then the listbox
will be initialized with no elements. A runtime error results if the
specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not
allowed). null and empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the index of the listbox's
selection (0 is the first item, 1 is the second, and so on), which is not
affected by the current setting of the Option Base command. This
variable can be accessed using the following syntax:
DialogVariable.Identifier

Example
Sub Main
  Dim files() As String
  Dim dirs() As String
  Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"
    Text 8,4,24,8,"&Files:"
    ListBox 8,16,60,72,files$,.Files
    Text 76,4,21,8,"&Dirs:"
    ListBox 76,16,56,72,dirs$,.Dirs
    OKButton 140,4,40,14
    CancelButton 140,24,40,14
  End Dialog
  FileList files
  FileDirs dirs
  Dim ListBoxDialog As ListBoxTemplate
  rc% = Dialog(ListBoxDialog)
End Sub

See Also
User Interaction on page 39

Literals (topic)
Literals are values of a specific type. The following table shows the different types of literals:



L

326

Literal Description

10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly set using any
of the following type-declaration characters:
% Integer
& long
# double
! single

5.5 Double whose value is 5.5. Any number with decimal point is considered a
double.

5.4E100 Double expressed in scientific notation.

&HFF Integer expressed in hexadecimal.

&O47 Integer expressed in octal.

&HFF# Double expressed in hexadecimal.

"hello" String of five characters: hello.

"""hello""" String of seven characters: "hello". Quotation marks can be embedded
within strings by using two consecutive quotation marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can
appear with #s. Date literals are interpreted at execution time using the
locale settings of the host environment. To ensure that date literals are
correctly interpreted for all locales, use the international date format: YYYY-
MM-DD HH:MM:SS#

Constant folding
The compiler supports constant folding where constant expressions are calculated by the compiler at
compile time. For example, the expression:

i% = 10 + 12

is the same as:
i% = 22

Similarly, with strings, the expression:
s$ = "Hello," + " there" + Chr(46)

is the same as:
s$ = "Hello, there."

Loc
Syntax

Loc(filenumber)

Description



SmarTerm Macro Guide

327

Returns a Long representing the position of the file pointer in the given file. The filenumber parameter
is an Integer used to refer to the number passed by the Open statement. The Loc function returns
different values depending on the mode in which the file was opened:

File Mode Returns

Input Current byte position divided by 128

Output Current byte position divided by 128

Append Current byte position divided by 128

Binary Position of the last byte read or written

Random Number of the last record read or written

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Open "c:\autoexec.bat" For Input As #1
  For x = 1 To 5
    If Not EOF(1) Then Line Input #1,lin$
  Next x
  lc% = Loc(1)
  Close
  Session.Echo "The file location is: " & lc%
End Sub

See Also
Drive, Folder, and File Access on page 34

Lock, Unlock
Syntax

Lock [#] filenumber [,{record | [start] To end}]
Unlock [#] filenumber [,{record | [start] To end}]

Description
Locks or unlocks a section of the specified file, granting or denying other processes access to that
section of the file. The Lock statement locks a section of the specified file, preventing other processes
from accessing that section of the file until the Unlock statement is issued. The Unlock statement
unlocks a section of the specified file, allowing other processes access to that section of the file. The
Lock and Unlock statements require the following parameters:

Parameter Description

filenumber Integer used to refer to the open file—the number passed to the Open

statement.

record Long specifying which record to lock or unlock.

start Long specifying the first record within a range to be locked or unlocked.

end Long specifying the last record within a range to be locked or unlocked.



L

328

For sequential files, the record, start, and end parameters are ignored. The entire file is locked or
unlocked.

The section of the file is specified using one of the following:

Syntax Description

No parameters Locks or unlocks the entire file (no record specification is given).

record Locks or unlocks the specified record number (for Random files) or byte
(for Binary files).

To end Locks or unlocks from the beginning of the file to the specified record (for
Random files) or byte (for Binary files).

start To end Locks or unlocks the specified range of records (for Random files) or bytes
(for Binary files).

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before the file is closed. Ranges within files are not unlocked automatically
when your macro terminates, which can cause file access problems for other processes. It is a good idea
to group the Lock and Unlock statements close together in the code, both for readability and so
subsequent readers can see that the lock and unlock are performed on the same range. This practice
also reduces errors in file locks.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This is record number: "
  b$ = "0"
  rec$ = ""
  mesg = ""
  Open "test.dat" For Random Access Write Shared As #1
  For x = 1 To 10
    rec$ = a$ & x
    Lock #1,x
    Put #1,,rec$
    Unlock #1,x
    mesg = mesg & rec$ & crlf
  Next x
  Close
  Session.Echo "The records are:" & crlf & mesg
  mesg = ""
  Open "test.dat" For Random Access Read Write Shared As #1
  For x = 1 To 10
    rec$ = Mid$(rec$,1,23) & (11 - x)
    Lock #1,x
    Put #1,x,rec$
    Unlock #1,x
    mesg = mesg & rec$ & crlf
  Next x
  Session.Echo "The records are: " & crlf & mesg
  Close
  Kill "test.dat"
End Sub

See Also
Drive, Folder, and File Access on page 34



SmarTerm Macro Guide

329

Lof
Syntax

Lof(filenumber)

Description
Returns a Long representing the number of bytes in the given file. The filenumber parameter is an
Integer used to refer to the open file the number passed to the Open statement. The file must currently
be open.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This is record number: "
  Open "test.dat" For Random Access Write Shared As #1
  For x = 1 To 10
    rec$ = a$ & x
    put #1,,rec$
    mesg = mesg & rec$ & crlf
  Next x
  Close
  Open "test.dat" For Random Access Read Write Shared As #1
  r% = Lof(1)
  Close
  Session.Echo "The length of test.dat is: " & r%
End Sub

See Also
Drive, Folder, and File Access on page 34

Log
Syntax

Log(number)

Description
Returns a Double representing the natural logarithm of a given number. The value of number must be a
Double greater than 0. The value of e is 2.71828.

Example
Sub Main
  x# = Log(100)
  Session.Echo "The natural logarithm of 100 is: " & x#
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Long (data type)
Syntax

Long

Description
Long variables are used to hold numbers (with up to ten digits of precision) within the following
range:



L

330

–2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes of
storage. When used with binary or random files, 4 bytes of storage are required.

The type-declaration character for Long is &.

See Also
Keywords, Data Types, Operators, and Expressions on page 34

LSet
Syntax 1

LSet dest = source

Syntax 2
LSet dest_variable = source_variable

Description
Left-aligns the source string in the destination string or copies one user-defined type to another.

Syntax 1

The LSet statement copies the source string source into the destination string dest. The dest parameter
must be the name of either a String or Variant variable. The source parameter is any expression
convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest, and the remaining
characters are padded with spaces. If source$ is longer in length than dest, then source is truncated,
copying only the leftmost number of characters that will fit in dest.

The destvariable parameter specifies a String or Variant variable. If destvariable is a Variant

containing Empty, then no characters are copied. If destvariable is not convertible to a String, then a
runtime error occurs. A runtime error results if destvariable is Null.

Syntax 2

The source structure is copied byte for byte into the destination structure. This is useful for copying
structures of different types. Only the number of bytes of the smaller of the two structures is copied.
Neither the source structure nor the destination structure can contain strings.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim mesg, tmpstr$
  tmpstr$ = String$(40, "*")
  mesg = "Here are two strings that have been right-" + crlf
  mesg = mesg & "and left-justified in a 40-character string."
  mesg = mesg & crlf & crlf
  RSet tmpstr$ = "Right->"
  mesg = mesg & tmpstr$ & crlf
  LSet tmpstr$ = "<-Left"
  mesg = mesg & tmpstr$ & crlf
  Session.Echo mesg
End Sub

See Also
Character and String Manipulation on page 33



SmarTerm Macro Guide

331

LTrim, LTrim$
See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$.



M

Mid, Mid$, MidB, MidB$ (functions)
Syntax

Mid[$](string, start [,length])
MidB[$](string, start [,length])

Description
Returns a substring of the specified string, beginning with start, for length characters (for Mid and
Mid$) or bytes (for MidB and MidB$).

The Mid and Mid$ functions return a substring starting at character position start and will be length

characters long. The MidB and MidB functions return a substring starting at byte position start and will
be length bytes long.

The Mid$ and MidB$ functions return a string, whereas the Mid and MidB functions return a string variant.

These functions take the following named parameters:

Parameter Description

string Any string expression containing the text from which data is returned.

start Integer specifying the position where the substring begins. If start is greater
than the length of string, then a zero-length string is returned.

length Integer specifying the number of characters or bytes to return. If this parameter
is omitted, then the entire string is returned, starting at start.

The Mid function will return Null if string is Null.

The MidB and MidB$ functions are used to return a substring of bytes from a string containing byte data.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This is the Main string containing text."
  b$ = Mid$(a$,13,Len(a$))
  Mid$ (b$,1) = NEW "
  Session.Echo a$ & crlf & b$ 
End Sub

See Also
Character and String Manipulation on page 33

Mid, Mid$, MidB, MidB$ (statements)
Syntax



SmarTerm Macro Guide

333

Mid[$](variable,start[,length]) = newvalue
MidB[$](variable,start[,length]) = newvalue

Description
Replaces one part of a string with another. The Mid/Mid$ statements take the following parameters:

Parameter Description

variable String or variant variable to be changed.

start Integer specifying the character position (for Mid and Mid$) or byte
position (for MidB and MidB$) within variable where replacement begins.
If start is greater than the length of variable, then variable remains
unchanged.

length Integer specifying the number of characters or bytes to change. If this
parameter is omitted, then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to
a string.

The resultant string is never longer than the original length of variable.

With Mid and MidB, variable must be a variant variable convertible to a string, and newvalue is any
expression convertible to a string. A runtime error is generated if either variant is null.

The MidB and MidB$ statements are used to replace a substring of bytes, whereas Mid and Mid$ are used
to replace a substring of characters.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This is the Main string containing text."
  b$ = Mid$(a$,13,Len(a$))
  Mid$(b$,1) = "NEW "
  Session.Echo a$ & crlf & b$ 
End Sub

See Also
Character and String Manipulation on page 33

Minute
Syntax

Minute(time)

Description
Returns the minute of the day encoded in the specified time parameter. The value returned is as an
Integer between 0 and 59 inclusive. The time parameter is any expression that converts to a date.

Example
Sub Main
  xt# = TimeValue(Time$())
  xh# = Hour(xt#)
  xm# = Minute(xt#)
  xs# = Second(xt#)



M

334

  Session.Echo "The current time is: " & xh# & ":" & xm# & ":" & xs#
End Sub

See Also
Time and Date Access on page 39

MIRR
Syntax

MIRR(valuearray(),financerate,reinvestrate)

Description
Returns a Double representing the modified internal rate of return for a series of periodic payments and
receipts. The modified internal rate of return is the equivalent rate of return on an investment in which
payments and receipts are financed at different rates. The interest cost of investment and the rate of
interest received on the returns on investment are both factors in the calculations. The MIRR function
requires the following named parameters:

Parameter Description

valuearray() Array of double numbers representing the payments and receipts. Positive
values are payments (invested capital), and negative values are receipts
(returns on investment). There must be at least one positive (investment)
value and one negative (return) value.

financerate Double representing the interest rate paid on invested monies (paid out).

reinvestrate Double representing the rate of interest received on incomes from the
investment (receipts).

The financerate and reinvestrate parameters should be expressed as percentages. For example, 11
percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct sequence.

Example
This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The proceeds are placed in a
bank at 9 percent interest. The incomes are estimated (generated) over 12 months. This program first
generates the income stream array in two For...Next loops, and then the modified internal rate of
return is calculated and displayed. Notice that the annual rates are normalized to monthly rates by
dividing them by 12.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
a$ = "This is the Main string containing text."
b$ = Mid$(a$,13,Len(a$))
Mid$ (b$,1) = NEW "
Session.Echo a$ & crlf & b$ 

End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



SmarTerm Macro Guide

335

MkDir
Syntax

MkDir path

Description
Creates a new directory as specified by path.

Example
Sub Main
  On Error Resume Next
  MkDir "TestDir"
  If Err <> 0 Then
    Session.Echo "The following error occurred: " & Error(Err)
  Else
    Session.Echo "Directory was created and is about to be removed."
    RmDir "TestDir"
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34

Mod
Syntax

expression1 Mod expression2

Description
Returns the remainder of expression1 / expression2 as a whole number. If both expressions are
integers, then the result is an integer. Otherwise, each expression is converted to a Long before
performing the operation, returning a Long. A runtime error occurs if the result overflows the range of a
long. If either expression is null, then null is returned. Empty is treated as 0.

Example
This example uses the Mod operator to determine the value of a randomly selected card where card 1
is the ace (1) of clubs and card 52 is the king (13) of spades. Since the values recur in a sequence of
13 cards within 4 suits, we can use the Mod function to determine the value of any given card number.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  cval$ = "ACE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,"
  cval$ = cval$+"NINE,TEN,JACK,QUEEN,KING"
  Randomize
  card% = Random(1,52)
  value = card% Mod 13
  If value = 0 Then value = 13
  CardNum$ = Item$(cval,value)
  If card% < 53 Then suit$ = "spades"
  If card% < 40 Then suit$ = "hearts"
  If card% < 27 Then suit$ = "diamonds"
  If card% < 14 Then suit$ = "clubs"
  mesg = "Card number " & card% & " is the "
  mesg = mesg & CardNum & " of " & suit$ 
  Session.Echo mesg
End Sub

See Also



M

336

Keywords, Data Types, Operators, and Expressions on page 34; Numeric, Math, and Accounting
Functions on page 36

Month
Syntax

Month(date)

Description
Returns the month of the date encoded in the specified date parameter. The value returned is as an
Integer between 1 and 12 inclusive. The date parameter is any expression that converts to a date.

Example
Sub Main
  mons$ = "Jan., Feb., Mar., Apr., May, Jun., Jul., "
  mons$ = mons$ + "Aug., Sep., Oct., Nov., Dec."
  tdate$ = Date$
  tmonth! = Month(DateValue(tdate$))
  Session.Echo "The current month is: " & Item$(mons$,tmonth!)
End Sub

See Also
Time and Date Access on page 39

Msg (object)
The Msg object provides a quick modeless dialog—that is, a dialog which the user may ignore,
continuing to run other commands before closing. A good example of a modeless dialog is the
Edit>Find dialog in many word processors, which can be left open while editing the text.

Msg.Close
Syntax

Msg.Close

Description
Closes the modeless message dialog. Nothing will happen if there is no open message dialog.

Example
Sub Main
Msg.Open "Printing. Please wait...",0,True,True
Sleep 3000
Msg.Close

End Sub

See Also
User Interaction on page 39

Msg.Open
Syntax

Msg.Open prompt,timeout,cancel,thermometer [,XPos,YPos]

Description



SmarTerm Macro Guide

337

Displays a message in a dialog with an optional Cancel button and thermometer. The Msg.Open method
takes the following named parameters:

Parameter Description

prompt String containing the text to be displayed. The text can be changed using
the Msg.Text property.

timeout Integer specifying the number of seconds before the dialog is automatically
removed. The timeout parameter has no effect if its value is 0.

cancel Boolean controlling whether or not a Cancel button appears within the
dialog beneath the displayed message. If this parameter is True, then a
Cancel button appears. If it is not specified or False, then no Cancel button
is created. If a user chooses the Cancel button at runtime, a trappable
runtime error is generated (error number 18). In this manner, a message
dialog can be displayed and processing can continue as normal, aborting
only when the user cancels the process by choosing the Cancel button.

thermometer Boolean controlling whether the dialog contains a thermometer. If this
parameter is True, then a thermometer is created between the text and the
optional Cancel button. The thermometer initially indicates 0% complete
and can be changed using the Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left corner of the
message box, in twips (twentieths of a point). If these parameters are not
specified, then the window is centered on top of the application.

Unlike other dialoges, a message dialog remains open until the user selects Cancel, the timeout has
expired, or the Msg.Close method is executed (this is sometimes referred to as modeless).

Only a single message window can be opened at any one time. The message window is removed
automatically when a macro terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard. However, these
events will never reach the message dialog unless you periodically call DoEvents from within your
macro.

Example
Sub Main
Msg.Open "Printing. Please wait...",0,True,False
Sleep 3000
Msg.Close
Msg.Open "Printing. Please wait...",0,True,True
For x = 1 to 100
Msg.Thermometer = x

Next x
Sleep 1000
Msg.Close

End Sub

See Also
User Interaction on page 39

Msg.Text
Syntax



M

338

Msg.Text [= newtext$]

Description
Changes the text within an open message dialog (one that was previously opened with the Msg.Open

method). The message dialog is not resized to accommodate the new text. A runtime error will result if
a message dialog is not currently open (using Msg.Open).

Example
Sub Main
Msg.Open "Reading Record",0,True,False
For i = 1 To 100
'Read a record here.
'Update the modeless message box.
Sleep 100
Msg.Text ="Reading record " & i

Next i
Msg.Close

End Sub

See Also
User Interaction on page 39

Msg.Thermometer
Syntax

Msg.Thermometer [= percentage]

Description
Changes the percentage filled indicated within the thermometer of a message dialog (one that was
previously opened with the Msg.Open method). A runtime error will result if a message box is not
currently open (using Msg.Open) or if the value of percentage is not between 0 and 100 inclusive.

Example
Sub Main
On Error Goto ErrorTrap
Msg.Open "Reading records from file...",0,True,True
For i = 1 To 100 'Read a record here.

'Update the modeless message box.
Msg.Thermometer =i
DoEvents
Sleep 50

Next i
Msg.Close
On Error Goto 0 'Turn error trap off.
Exit Sub

ErrorTrap:
If Err = 809 Then
MsgBox "Cancel was pressed!"
Exit Sub 'Reset error handler.

End If
End Sub

See Also
User Interaction on page 39

MsgBox (function)
Syntax

MsgBox(prompt [, [buttons] [,[title] [,helpfile,context]]])



SmarTerm Macro Guide

339

Description
Displays a message in a dialog with a set of predefined buttons, returning an Integer representing
which button was selected. The MsgBox function takes the following named parameters:

Parameter Description

prompt Message to be displayed—any expression convertible to a string. End-of-lines
can be used to separate lines (either a carriage return, line feed, or both). If a
given line is too long, it will be word-wrapped. If prompt contains character 0,
then only the characters up to the character 0 will be displayed.
The width and height of the dialog are sized to hold the entire contents of
prompt. A runtime error is generated if prompt is null.

buttons Integer specifying the type of dialog (see below).

title Caption of the dialog. This parameter is any expression convertible to a string.
If it is omitted, then "SmarTerm" is used. A runtime error is generated if title
is null.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If
this parameter is specified, then helpfile must also be specified.

The MsgBox function returns one of the following values:

Constant Value Description

ebOK 1 OK was pressed.

ebCancel 2 Cancel was pressed.

ebAbort 3 Abort was pressed.

ebRetry 4 Retry was pressed.

ebIgnore 5 Ignore was pressed.

ebYes 6 Yes was pressed.

ebNo 7 No was pressed.

The buttons parameter is the sum of any of the following values:

Constant Value Description

ebOKOnly 0 Displays OK button only.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.



M

340

Constant Value Description

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Retry and Cancel buttons.

ebCritical 16 Displays stop icon.

ebQuestion 32 Displays question mark icon.

ebExclamation 48 Displays exclamation point icon.

ebInformation 64 Displays information icon.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebApplicationModal 0 Application modal—the current application is suspended
until the dialog is closed.

ebSystemModal 4096 System modal—all applications are suspended until the
dialog is closed.

The default value for buttons is 0 (display only the OK button, making it the default).

If both the helpfile and context parameters are specified, then context-sensitive help can be invoked
using the help key F1. Invoking help does not remove the dialog.

Breaking Text across Lines
The prompt parameter can contain end-of-line characters, forcing the text that follows to start on a new
line. The following example shows how to display a string on two lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an end-of-line.

Example
Sub Main
  MsgBox "This is a simple message box."
  MsgBox "This is a message box with a title and an icon.", _
    ebExclamation,"Simple"
  MsgBox "This message box has OK and Cancel buttons.", _
    ebOkCancel,"MsgBox"
  MsgBox "This message box has Abort, Retry, and Ignore buttons.", _
    ebAbortRetryIgnore,"MsgBox"
  MsgBox "This message box has Yes, No, and Cancel buttons.", _
    ebYesNoCancel Or ebDefaultButton2,"MsgBox"
  MsgBox "This message box has Yes and No buttons.",ebYesNo,"MsgBox"
  MsgBox "This message box has Retry and Cancel buttons." , _
    ebRetryCancel,"MsgBox"
  MsgBox "This message box is system modal!",ebSystemModal
End Sub

See Also
User Interaction on page 39



SmarTerm Macro Guide

341

MsgBox (statement)
Syntax

MsgBox prompt [, [buttons] [,[title] [, helpfile, context]]]

Description
Same as the MsgBox function, except that the statement form does not return a value. See MsgBox

(function).

Example
Sub Main
  MsgBox "This is text displayed in a message box." 'Display text.
  MsgBox "The result is: " & (10 * 45) 'Display a number.
End Sub

See Also
User Interaction on page 39



N

Name
Syntax

Name oldfile$ As newfile$

Description
Renames a file. Each parameter must specify a single filename. Wildcard characters such as * and ? are
not allowed. You can name files to different directories on the same physical disk volume. For
example, the following rename will work under Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will error under
Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak"

To rename a file to a different physical disk, you must first copy the file, then erase the original:
FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak"
Kill "c:\samples\mydoc.txt"

Example
Sub Main
  On Error Resume Next
  If FileExists("test.dat") Then
    Name "test.dat" As "test2.dat"
    If Err <> 0 Then
      mesg = "File exists and cannot be renamed! Error: " _
        & Err
    Else
      mesg = "File exists and renamed to test2.dat."
    End If
  Else
    Open "test.dat" For Output As #1
    Close
    Name "test.dat" As "test2.dat"
    If Err <> 0 Then
      mesg = "File created but not renamed! Error: " & Err
    Else
      mesg = "File created and renamed to test2.dat."
    End If
  End If
  Session.Echo mesg
End Sub

See Also
Drive, Folder, and File Access on page 34



SmarTerm Macro Guide

343

Named Parameters (topic)
Many language elements support named parameters. Named parameters allow you to specify
parameters to a function or subroutine by name rather than in adherence to a predetermined order. The
following table contains examples showing various calls to Session.Echo both using parameter by
both name and position.

.

Parameter Call

By Name DateAdd(Interval:= "m", Number:= 2, Date:= "December 31, 1992")

By Position DateAdd("m", 2, "December 31, 1992")

Using named parameter makes your code easier to read, while at the same time removes you from
knowing the order of parameter. With functions that require many parameters, most of which are
optional, code becomes significantly easier to write and maintain.

When supported, the names of the named parameter appear in the description of that language element.

When using named parameter, you must observe the following rules:

• Named parameter must use the parameter name as specified in the description of that language
element. Unrecognized parameter names cause compiler errors.

• All parameters, whether named or positional, are separated by commas.

• The parameter name and its associated value are separated with :=

• If one parameter is named, then all subsequent parameters must also be named as shown here:
DateAdd("m", Number:= 2, Date:= "December 31, 1992")
DateAdd(Interval:= "m",,"December 31, 1992") WRONG!!!

New
Syntax 1

Dim ObjectVariable As New ObjectType

Syntax 2
Set ObjectVariable = New ObjectType

Description
Creates a new instance of the specified object type, assigning it to the specified object variable. The
New keyword is used to declare a new instance of the specified data object. This keyword can only be
used with data object types. At runtime, the application or extension that defines that object type is
notified that a new object is being defined. The application responds by creating a new physical
object (within the appropriate context) and returning a reference to that object, which is immediately
assigned to the variable being declared. When that variable goes out of scope (i.e., the Sub or Function
procedure in which the variable is declared ends), the application is notified. The application then
performs some appropriate action, such as destroying the physical object.

See Also
Objects on page 40



N

344

Not
Syntax

Not expression

Description
Returns either a logical or binary negation of expression. The result is determined as shown in the
following table:

Expression Result

True False

False True

Null Null

Any numeric type Binary negation of the number. If the number is an integer, then an
integer is returned. Otherwise, the expression is first converted to a
long, then a binary negation is performed, returning a long.

Empty Treated as a long value 0.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a = False
  b = True
  If (Not a and b) Then mesg = "a = False, b = True" & crlf
  toggle% = True
  mesg = mesg & "toggle% is now " & Format(toggle%,"True/False") & crlf
  toggle% = Not toggle%
  mesg = mesg & "toggle% is now " & Format(toggle%,"True/False") & crlf
  toggle% = Not toggle%
  mesg = mesg & "toggle% is now " & Format(toggle%,"True/False")
  Session.Echo mesg
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Now
Syntax

Now[()]

Description
Returns a Date variant representing the current date and time.

Example
Sub Main
  t1# = Now()
  Session.Echo "Wait a while and click OK."
  t2# = Now()
  t3# = Second(t2#) - Second(t1#)



SmarTerm Macro Guide

345

  Session.Echo "Elapsed time was: " & t3# & " seconds."
End Sub

See Also
Time and Date Access on page 39

NPer
Syntax

NPer(rate, pmt, pv, fv, due)

Description
Returns the number of periods for an annuity based on periodic fixed payments and a constant rate of
interest. An annuity is a series of fixed payments paid to or received from an investment over a period
of time. Examples of annuities are mortgages, retirement plans, monthly savings plans, and term loans.
The NPer function requires the following named parameters:

Parameter Description

rate Double representing the interest rate per period. If the periods are monthly, be
sure to normalize annual rates by dividing them by 12.

Pmt Double representing the amount of each payment or income. Income is
represented by positive values, whereas payments are represented by negative
values.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan, and the future value (see
below) would be zero.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be zero, and the present value would be the amount of the
loan.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example
This example calculates the number of $100.00 monthly payments necessary to accumulate $10,000.00
at an annual rate of 10%. Payments are made at the beginning of the month.

Sub Main
  ag# = NPer((.10/12),100,0,10000,1)
  Session.Echo "The number of monthly periods is: " & Format(ag#,"Standard")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



N

346

Npv
Syntax

Npv(rate, valuearray())

Description
Returns the net present value of an annuity based on periodic payments and receipts, and a discount
rate. The Npv function requires the following named parameters:

Parameter Description

rate Double that represents the interest rate over the length of the period. If the
values are monthly, annual rates must be divided by 12 to normalize them
to monthly rates.

valuearray() Array of double numbers representing the payments and receipts. Positive
values are payments, and negative values are receipts. There must be at least
one positive and one negative value.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

For accurate results, be sure to enter your payments and receipts in the correct order because Npv uses
the order of the array values to interpret the order of the payments and receipts.

If your first cash flow occurs at the beginning of the first period, that value must be added to the return
value of the Npv function. It should not be included in the array of cash flows.

Npv differs from the Pv function in that the payments are due at the end of the period and the cash
flows are variable. Pv's cash flows are constant, and payment may be made at either the beginning or
end of the period.

Example
This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The incomes are estimated
(generated) over 12 months. This program first generates the income stream array in two For...Next

loops, and then the net present value (Npv) is calculated and displayed. Note normalization of the
annual 10% rate.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim valu#(12)
  valu(1) = -800        'Initial investment
  mesg = valu(1) & ", "
  For x = 2 To 5        'Months 2-5
    valu(x) = 100 + (x * 2)
    mesg = mesg & valu(x) & ", "
  Next x
  For x = 6 To 12      'Months 6-12
    valu(x) = 100 + (x * 10)  'Accelerated income
    mesg = mesg & valu(x) & ", "
  Next x
  NetVal# = NPV((.10/12),valu)
  mesg = "The values:" & crlf & mesg & crlf & crlf
  Session.Echo mesg & "Net present value: " & Format(NetVal#,"Currency")
End Sub

See Also



SmarTerm Macro Guide

347

Numeric, Math, and Accounting Functions on page 36



O

Object (data type)
Syntax

Object

Description
Used to declare OLE Automation variables. The Object type is used to declare variables that reference
objects within an application using OLE Automation. Each object is a 4-byte (32-bit) value that
references the object internally. The value 0 (or Nothing) indicates that the variable does not reference
a valid object, as is the case when the object has not yet been given a value. Accessing properties or
methods of such Object variables generates a runtime error.

Using objects
Object variables are declared using the Dim, Public, or Private statement:

Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object) using the Set

statement:
Set MyApp = CreateObject("phantom.application")
Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:
MyApp.Color = 10
i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:
MyApp.Open "sample.txt"
isSuccess = MyApp.Save("new.txt",15)

Automatic destruction
The compiler keeps track of the number of variables that reference a given object so that the object
can be destroyed when there are no longer any references to it:

Sub Main() 'Number of references to object
Dim a As Object '0
Dim b As Object '0
Set a = CreateObject("phantom.application) '1
Set b = a '2
Set a = Nothing '1

End Sub '0bject destroyed

An OLE Automation object is instructed by the compiler to destroy itself when no variables reference
that object. However, it is the responsibility of the OLE Automation server to destroy it. Some servers
do not destroy their objects, usually when the objects have a visual component and can be destroyed
manually by the user.

See Also
Objects on page 40



SmarTerm Macro Guide

349

Objects (topic)
The macro language defines two types of objects: data objects and OLE Automation objects.
Syntactically, these are referenced in the same way.

What is an object
An object is an encapsulation of data and routines into a single unit. The use of objects has the effect
of grouping together a set of functions and data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a sheet object may
expose an integer called NumColumns. Usually, properties can be both retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. An object method can take
the form of a function or a subroutine. For example, a OLE Automation object called MyApp may
contain a method subroutine called Open that takes a single argument (a filename): MyApp.Open
"c:\files\sample.txt".

Declaring Object Variables
In order to gain access to an object, you must first declare an object variable using either Dim, Public,
or Private: Dim o As Object. Initially, objects are given the value 0 (or Nothing). Before an object can
be accessed, it must be associated with a existing object.

Assigning a Value to an Object Variable
An object variable must reference a real physical object before accessing any properties or methods of
that object. To instantiate an object, use the Set statement.

Dim MyApp As Object
Set MyApp = CreateObject("Server.Application")

Accessing Object Properties
Once an object variable has been declared and associated with a physical object, it can be modified
using macro code. Properties are syntactically accessible using the dot operator, which separates an
object name from the property being accessed:

MyApp.BackgroundColor = 10
i% = MyApp.DocumentCount

Properties are set using the normal assignment statement:
MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:
i% = MyApp.DocumentCount + 10
Session.Echo "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods
Like properties, methods are accessed via the dot operator. Object methods that do not return values
behave like subroutines (i.e., the arguments are not enclosed within parentheses):

MyApp.Open "c:\files\sample.txt",True,15



O

350

Object methods that return a value behave like function calls. Any arguments must be enclosed in
parentheses:

If MyApp.DocumentCount = 0 Then Session.Echo "No open documents."
NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a property value, as
shown below:

variable = object.property(arg1,arg2)
variable = object.method(arg1,arg2)

Comparing Object Variables
The values used to represent objects are meaningless to the macro in which they are used, with the
following exceptions:

• Objects can be compared to each other to determine whether they refer to the same object.

• Objects can be compared with Nothing to determine whether the object variable refers to a valid
object.

Object comparisons are accomplished using the Is operator:
If a Is b Then Session.Echo "a and b are the same object."
If a Is Nothing Then Session.Echo "a is not initialized."
If b Is Not Nothing Then Session.Echo "b is in use."

Collections
A collection is a set of related object variables. Each element in the set is called a member and is
accessed via an index, either numeric or text, as shown below:

MyApp.Toolbar.Buttons(0)
MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:
Dim MyToolbarButton As Object
Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")
MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the collection and
methods that allow navigation within that collection:

Dim MyToolbarButton As Object
NumButtons% = MyApp.Toolbar.Buttons.Count
MyApp.Toolbar.Buttons.MoveNext
MyApp.Toolbar.Buttons.FindNext "Save"
For i = 1 To MyApp.Toolbar.Buttons.Count
Set MyToolbarButton = MyApp.Toolbar.Buttons(i)
MyToolbarButton.Caption = "Copy"

Next i

Predefined Objects
There are a few objects predefined for use in all macros. These are:

• Application

• Circuit



SmarTerm Macro Guide

351

• Clipboard

• Dlg

• Err

• Msg

• Session

• Transfer

See Also
Using SmarTerm’s objects 45

Oct, Oct$
Syntax

Oct[$](number)

Description
Returns a String containing the octal equivalent of the specified number. Oct$ returns a String,
whereas Oct returns a String variant. The returned string contains only the number of octal digits
necessary to represent the number.

The number parameter is any numeric expression. If this parameter is Null, then Null is returned. Empty
is treated as 0. The number parameter is rounded to the nearest whole number before converting to the
octal equivalent.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  st$ = "The octal values are: " & crlf
  For x = 1 To 5
    y% = x * 10
    st$ = st$ & y% & " : " & Oct$(y%) & crlf
  Next x
  Session.Echo st$
End Sub

See Also
Character and String Manipulation on page 33

OKButton
Syntax

OKButton x,y,width,height [,.Identifier]

Description
Creates an OK button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The OKButton statement accepts
the following parameters:



O

352

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width,
height

Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If the DefaultButton parameter is not specified in the Dialog statement, the OK button will be used
as the default button. In this case, the OK button can be selected by pressing Enter on a nonbutton
control.

A dialog template must contain at least one OKButton, CancelButton, or PushButton statement
(otherwise, the dialog cannot be dismissed).

Example
Sub Main
  Begin Dialog ButtonTemplate 17,33,104,23,"Buttons"
    OKButton 8,4,40,14,.OK
    CancelButton 56,4,40,14,.Cancel
  End Dialog
  Dim ButtonDialog As ButtonTemplate
  WhichButton = Dialog(ButtonDialog)
  If WhichButton = -1 Then
    MsgBox "OK was pressed."
  ElseIf WhichButton = 0 Then
    MsgBox "Cancel was pressed."
  End If

End Sub

See Also
User Interaction on page 39

On Error
Syntax

On Error {Goto label | Resume Next | Goto 0}

Description
Defines the action taken when a trappable runtime error occurs. The form On Error Goto label causes
execution to transfer to the specified label when a runtime error occurs. The form On Error Resume

Next causes execution to continue on the line following the line that caused the error. The form On

Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the macro ends, then an error will be generated. An error trap is only
active within the subroutine or function in which it appears. Once an error trap has gained control,
appropriate action should be taken, and then control should be resumed using the Resume statement.
The Resume statement resets the error handler and continues execution. If a procedure ends while an
error is pending, then an error will be generated. (The Exit Sub or Exit Function statement also resets
the error handler, allowing a procedure to end without displaying an error message.)



SmarTerm Macro Guide

353

Errors within an Error Handler
If an error occurs within the error handler, then the error handler of the caller (or any procedure in the
call stack) will be invoked. If there is no such error handler, then the error is fatal, causing the macro
to stop executing. The following statements reset the error state (i.e., these statements turn off the fact
that an error occurred):

Resume
Err=-1

The Resume statement forces execution to continue, either on the same line or on the line following the
line that generated the error. The Err=-1 statement allows explicit resetting of the error state so that the
macro can continue normal execution without resuming at the statement that caused the error
condition.

The On Error statement will not reset the error. Thus, if an On Error statement occurs within an error
handler, it has the effect of changing the location of a new error handler for any new errors that may
occur once the error has been reset.

Example
This example shows three types of error handling. The first case simply bypasses an expected error and
continues. The second case creates an error branch that jumps to a common error handling routine that
processes incoming errors, clears the error (with the Resume statement) and resumes. The third case
clears all internal error handling so that execution will stop when the next error is encountered.

Sub Main
  Dim x%
  a = 10000
  b = 10000
  On Error Goto Pass 'Branch to this label on error.
  Do
    x% = a * b
  Loop
Pass:
  Err = -1 'Clear error status.
  Session.Echo "Cleared error status and continued."
  On Error Goto Overflow 'Branch to new error routine on any
  x% = 1000 'subsequent errors.
  x% = a * b
  x% = a / 0
  On Error Goto 0 'Clear error branching.
  x% = a * b 'Program will stop here.
  Exit Sub 'Exit before common error routine.
Overflow: 'Beginning of common error routine.
  If Err = 6 then
    Session.Echo "Overflow Branch."
  Else
    Session.Echo Error(Err)
  End If
  Resume Next
End Sub

See Also
Macro Control and Compilation on page 36

Open
Syntax



O

354

Open filename$ [For mode] [Access accessmode] [lock] As [#] filenumber
[Len = reclen]

Description
Opens a file for a given mode, assigning the open file to the supplied filenumber. The filename$

parameter is a string expression that contains a valid filename. The filenumber parameter is a number
between 1 and 255. The FreeFile function can be used to determine an available file number. The
mode parameter determines the type of operations that can be performed on that file:

File
Mode

Description

Input Opens an existing file for sequential input (filename$ must exist). The value of
accessmode, if specified, must be Read.

Output Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must be Write.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of the file, or creates a new file. The value of accessmode, if specified, must
be Read Write.

Binary Opens an existing file for binary I/O or creates a new file. Existing binary files
are never truncated in length. The value of accessmode, if specified, determines
how the file can subsequently be accessed.

Random Opens an existing file for record I/O or creates a new file. Existing random files
are truncated only if accessmode is Write. The reclen parameter determines the
record length for I/O operations.

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be performed on the file:

Access Description

Read Opens the file for reading only. This value is valid only for files opened in
Binary, Random, or Input mode.

Write Opens the file for writing only. This value is valid only for files opened in
Binary, Random, or Output mode.

Read Write Opens the file for both reading and writing. This value is valid only for files
opened in Binary, Random, or Append mode.

If the accessmode parameter is not specified, the following defaults are used:



SmarTerm Macro Guide

355

File
Mode

Default Value for accessmode

Input Read

Output Write

Append Read Write

Binary When the file is initially opened, access is attempted three times in the
following order:

1. Read Write
2. Write
3. Read

Random Same as Binary files

The lock parameter determines what access rights are granted to other processes that attempt to open
the same file. The following table describes the values for lock:

Lock Value Description

Shared Other processes can read and write file. (Deny none.)

Lock Read Other processes can write but not read file. (Deny read.)

Lock Write Other processes can read but not write file. (Deny write.)

Lock Read Write Other processes can neither read nor write file. (Exclusive.)

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened twice; once to create the
file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each of the length specified by
the reclen parameter. If this parameter is missing, then 128 is used. For files opened for sequential I/O,
the reclen parameter specifies the size of the internal buffer used by the compiler when performing
I/O. Larger buffers mean faster file access. For Binary files, the reclen parameter is ignored.

For files opened in Append mode, the compiler opens the file and positions the file pointer after the last
character in the file. The end-of-file character, if present, is not removed.

Example
Sub Main
  Open "test.dat" For Output Access Write Lock Write As #2
  Close
  Open "test.dat" For Input Access Read Shared As #1
  Close
  Open "test.dat" For Append Access Write Lock Read Write as #3
  Close
  Open "test.dat" For Binary Access Read Write Shared As #4
  Close
  Open "test.dat" For Random Access Read Write Lock Read As #5
  Close
  Open "test.dat" For Input Access Read Shared As #6
  Close



O

356

  Kill "test.dat"
End Sub

See Also
Drive, Folder, and File Access on page 34

OpenFilename$
Syntax

OpenFilename$[([title$ [,[extensions$] [,helpfile,context]]])]

Description
Displays a dialog that prompts the user to select from a list of files, returning the full pathname of the
file the user selects or a zero-length string if the user selects Cancel. This function displays the
standard file open dialog, which allows the user to select a file. It takes the following parameters:

Parameter Description

title$ String specifying the title that appears in the dialog's title bar. If this
parameter is omitted, then "Open" is used.

extension$ String specifying the available file types. If this parameter is omitted, then all
files are displayed.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help.
If this parameter is specified, then helpfile must also be specified.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

The extensions$ parameter must be in the following format:
type:ext[,ext][;type:ext[,ext]]...

Placeholder Description

type Specifies the name of the grouping of files, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:
"All Files:*.*"
"Documents:*.TXT,*.DOC"
"All Files:*.*;Documents:*.TXT,*.DOC"

Example
Sub Main
Dim f As String,s As String
f$ = OpenFilename$("Open Picture","Text Files:*.TXT")
If f$ <> "" Then
Open f$ For Input As #1



SmarTerm Macro Guide

357

Line Input #1,s$
Close #1
MsgBox "First line from " & f$ & " is " & s$

End If
End Sub

See Also
Drive, Folder, and File Access on page 34; User Interaction on page 39

Operator Precedence (topic)
The following table shows the precedence of the operators. Operations involving operators of higher
precedence occur before operations involving operators of lower precedence. When operators of equal
precedence occur together, they are evaluated from left to right.

Operator Description Precedence

() Parentheses Highest

^ Exponentiation

- Unary minus

/, * Division and multiplication

\ Integer division

Mod Modulo

+, - Addition and subtraction

& String concatenation

=, <>, >, <, <=, >= Relational

Like, Is String and object comparison

Not Logical negation

And Logical or binary conjunction

Or Logical or binary disjunction

Xor, Eqv, Imp Logical or binary operators Lowest

The precedence order can be controlled using parentheses, as shown below:
a = 4 + 3 * 2 'a becomes 10.
a = (4 + 3) * 2 'a becomes 14.

Operator Precision (topic)
When numeric, binary, logical or comparison operators are used, the data type of the result is generally
the same as the data type of the more precise operand. For example, adding an Integer and a Long first



O

358

converts the Integer operand to a Long, then performs a long addition, overflowing only if the result
cannot be contained with a Long. The order of precision is shown in the following list:

Data Type Precision

Empty Least precise

Boolean

Integer

Long

Single

Date

Double

Currency Most precise

There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is used with variant data. In
many cases, an overflow causes automatic promotion of the result to the next highest precise data type.
For example, adding two Integer variants results in an Integer variant unless it overflows, in which
case the result is automatically promoted to a Long variant.

Option Base
Syntax

Option Base {0 | 1}

Description
Sets the lower bound for array declarations. By default, the lower bound used for all array declarations
is 0. This statement must appear outside of any functions or subroutines.

Example
Option Base 1
Sub Main
  Dim a(10) 'Contains 10 elements (not 11).
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Option Compare
Syntax

Option Compare [Binary | Text]

Description



SmarTerm Macro Guide

359

Controls how strings are compared. When Option Compare is set to Binary, then string comparisons are
case-sensitive (e.g., "A" does not equal "a"). When it is set to Text, string comparisons are case-
insensitive (e.g., "A" is equal to "a"). The default value for Option Compare is Binary.

The Option Compare statement affects all string comparisons in any statements that follow the Option

Compare statement. Additionally, the setting affects the default behavior of Instr, StrComp, and the Like

operator. The following table shows the types of string comparisons affected by this setting:

> < <>

<= >= Instr

StrComp Like

The Option Compare statement must appear outside the scope of all subroutines and functions. In other
words, it cannot appear within a Sub or Function block.

Example
Option Compare Binary
Sub CompareBinary
  a$ = "This String Contains UPPERCASE."
  b$ = "this string contains uppercase."
  If a$ = b$ Then
    MsgBox "The two strings were compared case-insensitive."
  Else
    MsgBox "The two strings were compared case-sensitive."
  End If
End Sub
Option Compare Text
Sub CompareText
  a$ = "This String Contains UPPERCASE."
  b$ = "this string contains uppercase."
  If a$ = b$ Then
    MsgBox "The two strings were compared case-insensitive."
  Else
    MsgBox "The two strings were compared case-sensitive."
  End If
End Sub
Sub Main
'!
  CompareBinary 'Calls subroutine above.
  CompareText 'Calls subroutine above.
End Sub

See Also
Character and String Manipulation on page 33

Option CStrings
Syntax

Option CStrings {On | Off}

Description
Turns on or off the ability to use C-style escape sequences within strings. When Option CStrings On is
in effect, the compiler treats the backslash character as an escape character when it appears within
strings. An escape character is simply a special character that otherwise cannot ordinarily be typed by
the computer keyboard.



O

360

Escape Description Equivalent Expression

\r Carriage return Chr$(13)

\n Line Feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)

\f Form Feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0_

\" Double quote "" or Chr$(34)

\\ Backslash Chr$(92)

\? Question mark ?

\' Single quote '

\xhh Hexadecimal number Chr$(Val(&Hhh))

\ooo Octal number Chr$(Val(&Oooo))

\anycharacter Any character anycharacter

With hexadecimal values, the compiler stops scanning for digits when it encounters a nonhexadecimal
digit or two digits, whichever comes first. Similarly, with octal values, the compiler stops scanning
when it encounters a nonoctal digit or three digits, whichever comes first.

When Option CStrings Off is in effect, then the backslash character has no special meaning. This is
the default.

Example
Option CStrings On
Sub Main
MsgBox "They said, \"Watch out for that clump of grass!\""
MsgBox "First line.\r\nSecond line."
MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

See Also
Character and String Manipulation on page 33

Option Default
Syntax

Option Default type

Description



SmarTerm Macro Guide

361

Sets the default data type of variables and function return values when not otherwise specified. By
default, the type of implicitly defined variables and function return values is Variant. This statement is
used for backward compatibility with earlier versions of VBA where the default data type was
Integer.

Note:
This statement must appear outside the scope of all functions and subroutines.

Currently, type can only be set to Integer.

Example
Option Default Integer

Function AddIntegers(a As Integer,b As Integer)
  Foo = a + b
End Function

Sub Main
  Dim a,b,result
  a = InputBox("Enter an integer:")
  b = InputBox("Enter an integer:")
  result = AddIntegers(a,b)
End Sub

See Also
Macro Control and Compilation on page 36

Option Explicit
Syntax

Option Explicit

Description
The Option Explicit statement enforces explicit declaration of variables with Dim, Public, or Private.
By default, the compiler implicitly declares variables that are used but have not been explicitly
declared with Dim, Public, or Private. To avoid typing errors, use Option Explicit to prevent this
behavior.

The Option Explicit statement also enforces explicit declaration of all subroutines and functions (with
the Declare statement) called by other members of the macro collective. Once specified, all externally
called subroutines and functions must be explicitly declared with the Declare statement.

Note:
Functions called by other members of the macro collective must always be declared with the Declare

statement. This does not mean that you must also always use the Option Explicit statement; if you
do not use Option Explicit, you can declare functions without declaring subroutines. Note, also, that
not all members of the macro collective can supply subroutines and functions to the rest of the
collective. See Modules and collectives 49 for more information.

See Also
Declare on page 214; Macro Control and Compilation on page 36



O

362

OptionButton
Syntax

OptionButton x,y,width,height,title$ [,.Identifier]

Description
Defines an option button within a dialog template. This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements). The OptionButton statement
accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing text that appears within the option button. This text may
contain an ampersand character to denote an accelerator letter, such as
"&Portrait" for Portrait, which can be selected by pressing the P accelerator.

.Identifie-
r

Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example
See OptionGroup (statement).

See Also
User Interaction on page 39

OptionGroup
Syntax

OptionGroup .Identifier

Description
Specifies the start of a group of option buttons within a dialog template. The .Identifier parameter
specifies the name by which the group of option buttons can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates an integer variable whose value
corresponds to the index of the selected option button within the group (0 is the first option button, 1
is the second option button, and so on). This variable can be accessed using the following syntax:
DialogVariable.Identifier.

This statement can only appear within a dialog template (i.e., between the Begin Dialog and End

Dialog statements).

When the dialog is created, the option button specified by .Identifier will be on; all other option
buttons in the group will be off. When the dialog is dismissed, the .Identifier will contain the
selected option button.

Example



SmarTerm Macro Guide

363

Sub Main
  Begin Dialog PrintTemplate 16,31,128,65,"Print"
    GroupBox 8,8,64,52,"Orientation",.Junk
    OptionGroup .Orientation
      OptionButton 16,20,37,8,"Portrait",.Portrait
      OptionButton 16,32,51,8,"Landscape",.Landscape
      OptionButton 16,44,49,8,"Don't Care",.DontCare
    OKButton 80,8,40,14
  End Dialog
  Dim PrintDialog As PrintTemplate
  Dialog PrintDialog
End Sub

See Also
User Interaction on page 39

Or
Syntax

result = expression1 Or expression2

Description
Performs a logical or binary disjunction on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical disjunction is performed as follows:

Expression One Expression Two Result

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

Binary Disjunction
If the two expressions are Integer, then a binary disjunction is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long and a binary disjunction is
then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary representations of
the two expressions according to the following table:



O

364

Bit in Expression One Bit in Expression Two Result

1 1 1

0 1 1

1 0 1

0 0 0

Examples
This first example shows the use of logical Or.

Dim s$ As String
s$ = InputBox$("Enter a string.")
If s$ = "" Or Mid$(s$,1,1) = "A" Then
  s$ = LCase$(s$)
End If

This second example shows the use of binary Or.
Dim w As Integer
TryAgain:
  s$ = InputBox$("Enter a hex number (four digits max).")
  If Mid$(s$,1,1) <> "&" Then
    s$ = "&H" & s$
  End If
  If Not IsNumeric(s$) Then Goto TryAgain
  w = CInt(s$)
  MsgBox "Your number is &H" & Hex$(w)
  w = w Or &H8000
  MsgBox "Your number with the high bit set is &H" & Hex$(w)

See Also
Keywords, Data Types, Operators, and Expressions on page 34



P

Picture
Syntax

Picture x,y,width,height,PictureName$,PictureType [,[.Identifier] [,style]]

Description
Creates a picture control in a dialog template. Picture controls are used for the display of graphics
images only. The user cannot interact with these controls. The Picture statement accepts the following
parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
name specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the resource
of the picture library. If PictureName$ is empty, then no picture will be
associated with the control. A picture can later be placed into the picture
control using the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the PicName$

parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first two
words of PictureName$ are used.

style Specifies whether the picture is drawn within a 3D frame. It can be either
of the following values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If this parameter is omitted, then the picture control is drawn with a
normal frame.



SmarTerm Macro Guide

366

The picture control extracts the actual image from either a disk file or a picture library. In the case of
bitmaps, both 2- and 16-color bitmaps are supported. In the case of WMFs, the compiler supports the
Placeable Windows Metafile.

If PictureName$ is a zero-length string, then the picture is removed from the picture control, freeing
any memory associated with that picture.

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256. Picture libraries
are implemented as DLLs.

Examples
This first example shows how to use a picture from a file.

Sub Main
  Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
    OKButton 240,8,40,14
    Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo
  End Dialog
  Dim LogoDialog As LogoDialogTemplate
  Dialog LogoDialog
End Sub

This second example shows how to use a picture from a picture library with a 3D frame.
Sub Main
  Begin Dialog LogoDialogTemplate _
    16,31,288,76,"Introduction",,"pictures.dll"
    OKButton 240,8,40,14
    Picture 8,8,224,64,"CompanyLogo",10,.Logo,1
  End Dialog
  Dim LogoDialog As LogoDialogTemplate
  Dialog LogoDialog
End Sub

See Also
User Interaction on page 39

PictureButton
Syntax

PictureButton x,y,width,height,PictureName$,PictureType [,.Identifier]

Description
Creates a picture button control in a dialog template. Picture button controls behave very much like
push button controls. Visually, picture buttons are different from push buttons in that they contain a
graphic image imported either from a file or from a picture library. The PictureButton statement
accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.



P

367

Parameter Description

PictureName$ String containing the name of the picture. If PictureType is 0, then this name
specifies the name of the file containing the image. If PictureType is 10,
then PictureName$ specifies the name of the image within the resource of the
picture library. If PictureName$ is empty, then no picture will be associated
with the control. A picture can later be placed into the picture control using
the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

• The image is contained in a file on disk.

• The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

The picture button control extracts the actual image from either a disk file or a picture library,
depending on the value of PictureType.

If PictureName$ is a zero-length string, then the picture is removed from the picture button control,
freeing any memory associated with that picture.

Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images
from a picture library, the compiler assumes that the resource type for metafiles is 256. Picture libraries
are implemented as DLLs.

Examples
This first example shows how to use a picture from a file.

Sub Main
  Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
    OKButton 240,8,40,14
    PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo
  End Dialog
  Dim LogoDialog As LogoDialogTemplate
  Dialog LogoDialog
End Sub
'This second example shows how to use a picture from a picture
'library.

Sub Main
  Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
    OKButton 240,8,40,14
    PictureButton 8,4,224,64,"CompanyLogo",10,.Logo
  End Dialog
  Dim LogoDialog As LogoDialogTemplate
  Dialog LogoDialog
End Sub

See Also
User Interaction on page 39



SmarTerm Macro Guide

368

Pmt
Syntax

Pmt(rate, nper, pv, fv, due)

Description
Returns the payment for an annuity based on periodic fixed payments and a constant rate of interest.
An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The Pmt

function requires the following named parameters:

Parameter Description

rate Double representing the interest rate per period. If the periods are given in
months, be sure to normalize annual rates by dividing them by 12.

Nper Double representing the total number of payments in the annuity.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be 0.

Due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

The rate and nper parameters must be expressed in the same units. If rate is expressed in months, then
nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example
This example calculates the payment necessary to repay a $1,000.00 loan over 36 months at an annual
rate of 10%. Payments are due at the beginning of the period.

Sub Main
  x = Pmt((.1/12),36,1000.00,0,1)
  mesg = "The payment to amortize $1,000 over 36 months @ 10% is: "
  Session.Echo mesg & Format(x,"Currency")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

PopUpMenu
Syntax

PopUpMenu(MenuList$())

Description
Displays a PopUp menu on the SmarTerm display screen at the point where the mouse cursor currently
resides. Returns a numeric value corresponding to the menu selection.



P

369

Example:
Sub Main
'!
Dim RetVal as Integer
Dim MenuList$(3)
MenuList$(0)="Menu Option 1"
MenuList$(1)="Menu Option 2"
MenuList$(2)="Menu Option 3"
MenuList$(3)="Menu Option 4"
RetVal=PopUpMenu(MenuList$)
End Sub

PPmt
Syntax

PPmt(rate, per, nper, pv, fv, due)

Description
Calculates the principal payment for a given period of an annuity based on periodic, fixed payments
and a fixed interest rate. An annuity is a series of fixed payments made to an insurance company or
other investment company over a period of time. Examples of annuities are mortgages and monthly
savings plans. The PPmt function requires the following named parameters:

Parameter Description

rate Double representing the interest rate per period.

Per Double representing the number of payment periods. The per parameter can be
no less than 1 and no greater than nper.

Nper Double representing the total number of payments in your annuity.

Pv Double representing the present value of your annuity. In the case of a loan,
the present value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the
future value would be 0.

Due Integer indicating when payments are due. If this parameter is 0, then payments
are due at the end of each period; if it is 1, then payments are due at the start
of each period.

The rate and nper parameters must be in the same units to calculate correctly. If rate is expressed in
months, then nper must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent payments received.

Example
This example calculates the principal paid during each year on a loan of $1,000.00 with an annual rate
of 10% for a period of 10 years. The result is displayed as a table containing the following
information: payment, principal payment, principal balance.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  pay = Pmt(.1,10,1000.00,0,1)
  mesg = "Amortization table for 1,000" & crlf & _



SmarTerm Macro Guide

370

    "at 10% annually for"
  mesg = mesg & " 10 years: " & crlf & crlf
  bal = 1000.00
  For per = 1 to 10
    prn = PPmt(.1,per,10,1000,0,0)
    bal = bal + prn
    mesg = mesg & Format(pay,"Currency") & " " & _
      Format$(Prn,"Currency")
    mesg = mesg & " " & Format(bal,"Currency") & crlf
  Next per
  Session.Echo mesg
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Print
Syntax

Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description
Prints data to an output device. The following table describes how data of different types is written:

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False". These keywords are translated as
appropriate according to your system’s locale.

Date Printed using the short date format. If either the date or time
component is missing, only the provided portion is printed (this is
consistent with the "general date" format understood by the
Format/Format$ functions).

Empty Nothing is printed

Null Prints "null". This keyword is translated as appropriate according to
your system’s locale.

User-defined errors User-defined errors are printed to files as "Error code", where code is
the value of the user-defined error. The word "Error" is not translated.
The "Error" keyword is translated as appropriate according to your
system’s locale.

Object For any object type, the compiler retrieves the default property of
that object and prints this value using the above rules.

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces.



P

371

If the last expression in the list is not followed by a comma or a semicolon, then a carriage return is
printed to the file. If the last expression ends with a semicolon, no carriage return is printed; the next
Print statement will output information immediately following the expression. If the last expression in
the list ends with a comma, the file pointer is positioned at the start of the next print zone on the
current line.

The Tab and Spc functions provide additional control over the column position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified number
of spaces.

Note:
Null characters Chr$(0) within strings are translated to spaces when printing to the Viewport
window. When printing to files, this translation is not performed.

This statement writes data to a viewport window.

If no viewport window is open, then the statement is ignored. Printing information to a viewport
window is a convenient way to output debugging information. To open a viewport window, use the
following statement:

Viewport.Open

Examples
Sub Main
i% = 10
s$ = "This is a test."
Print "The value of i=";i%,"the value of s=";s$
'This example prints the value of i% in print zone
'1 and s$ in print zone 3.
Print i%,,s$
'This example prints the value of i% and s$ 
'separated by 10 spaces.
Print i%;Spc(10);s$
'This example prints the value of i in column 1 and s$ in
'column 30.
Print i%;Tab(30);s$
'This example prints the value of i% and s$.
Print i%;s$,
Print 67

End Sub

See Also
Drive, Folder, and File Access on page 34

Print#
Syntax

Print #filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description
Writes data to a sequential disk file. The filenumber parameter is a number that is used to refer to the
open file—the number passed to the Open statement. The following table describes how data of
different types is written:



SmarTerm Macro Guide

372

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False". These keywords are translated as
appropriate according to your system’s locale.

Date Printed using the short date format. If either the date or time
component is missing, only the provided portion is printed (this is
consistent with the "general date" format understood by the
Format/Format$ functions).

Empty Nothing is printed

Null Prints "null". This keyword is translated as appropriate according to
your system’s locale.

User-defined errors User-defined errors are printed to files as "Error code", where code is
the value of the user-defined error. The word "Error" is not translated.
The "Error" keyword is translated as appropriate according to your
system’s locale.

Object For any object type, the compiler retrieves the default property of that
object and prints this value using the above rules.

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then an end-of-line is
printed to the file. If the last expression ends with a semicolon, no end-of-line is printed; the next
Print statement will output information immediately following the expression. If the last expression in
the list ends with a comma, the file pointer is positioned at the start of the next print zone on the
current line.

The Write statement always outputs information ending with an end-of-line. Thus, if a Print statement
is followed by a Write statement, the file pointer is positioned on a new line.

The Print statement can only be used with files that are opened in Output or Append mode.

The Tab and Spc functions provide additional control over the file position. The Tab function moves
the file position to the specified column, whereas the Spc function outputs the specified number of
spaces.

In order to correctly read the data using the Input# statement, you should write the data using the
Write statement.

Examples
Sub Main
  'This example opens a file and prints some data.
  Open "test.dat" For Output As #1
  i% = 10
  s$ = "This is a test."
  Print #1,"The value of i=";i%,"the value of s=";s$
  'This example prints the value of i% in print zone 1 and



P

373

  's$ in print zone 3.
  Print #1,i%,,s$
  'This example prints the value of i% and s$ separated by
  'ten spaces.
  Print #1,i%;Spc(10);s$
  'This example prints the value of i in column 1 and s$ in
  'column 30.
  Print #1,i%;Tab(30);s$
  'This example prints the value of i% and s$.
  Print #1,i%;s$,
  Print #1,67
  Close #1
  Kill "test.dat"
End Sub

See Also
Drive, Folder, and File Access on page 34

Private
Syntax

Private name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description
Declares a list of private variables and their corresponding types and sizes. Private variables are global
to every Sub and Function within the currently executing macro. If a type-declaration character is used
when specifying name (such as %, @, &, $, or !), the optional [As type] expression is not allowed. For
example, the following are allowed:

Private foo As Integer
Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following syntax:
[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option

Base statement has been encountered). Up to 60 array dimensions are allowed. The total size of an
array (not counting space for strings) is limited to 64K. Dynamic arrays are declared by not specifying
any bounds:

Private a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type, or
any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private, then it
will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Private name As String * length

where length is a literal number specifying the string's length.



SmarTerm Macro Guide

374

Initial Values
All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Structure elements are given the default values listed above.

Arrays Array elements are given the default values listed above.

Example
See Public (statement).

See Also
Macro Control and Compilation on page 36

Public
Syntax

Public name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description
Declares a list of public variables and their corresponding types and sizes. Public variables are global
to all Subs and Functions in all macros. If a type-declaration character is used when specifying name
(such as %, @, &, $, or !), the optional [As type] expression is not allowed. For example, the following
are allowed:

Public foo As integer
Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the following syntax:
[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds of the array. If
lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no Option

Base statement has been encountered). Up to 60 array dimensions are allowed. The total size of an



P

375

array (not counting space for strings) is limited to 64K. Dynamic arrays are declared by not specifying
any bounds:

Public a()

The type parameter specifies the type of the data item being declared. It can be any of the following
data types: String, Integer, Long, Single, Double, Currency, Object, data object, built-in data type, or
any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or Private, then it
will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword Global is also supported. It has the same meaning as Public.

Fixed-Length Strings
Fixed-length strings are declared by adding a length to the String type-declaration character:

Public name As String * length

where length is a literal number specifying the string's length.

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Structure elements are given the default values listed above.

Arrays Array elements are given the default values listed above.

Sharing Variables
When sharing variables, you must ensure that the declarations of the shared variables are the same in
each macro that uses those variables. If the public variable being shared is a user-defined structure,
then the structure definitions must be exactly the same.

Example
Const crlf = Chr$(13) + Chr$(10)



SmarTerm Macro Guide

376

Public x#, ar#
Sub Area()
  ar# = (x# ^ 2) * Pi
End Sub

Sub Main
  mesg = "The area of the ten circles are:" & crlf
  For x# = 1 To 10
    Area
    mesg = mesg & x# & ": " & ar# & Basic.Eoln$
  Next x#
  Session.Echo mesg
End Sub

See Also
Macro Control and Compilation on page 36

PushButton
Syntax

PushButton x,y,width,height,title$ [,.Identifier]

Description
Defines a push button within a dialog template. Choosing a push button causes the dialog to close
(unless the dialog function redefines this behavior). This statement can only appear within a dialog
template (i.e., between the Begin Dialog and End Dialog statements).

The PushButton statement accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing the text that appears within the push button. This text
may contain an ampersand character to denote an accelerator letter, such
as "&Save" for Save.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

If a push button is the default button, it can be selected by pressing Enter on a nonbutton control.

A dialog template must contain at least one OKButton, CancelButton, or PushButton statement
(otherwise, the dialog cannot be dismissed).

Accelerators are underlined, and the accelerator combination Alt+letter is used.

Example
Sub Main
  Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"
    OKButton 8,4,40,14,.OK
    CancelButton 8,24,40,14,.Cancel
    PushButton 8,44,40,14,"1",.Button1
    PushButton 8,64,40,14,"2",.Button2



P

377

    PushButton 56,4,40,14,"3",.Button3
    PushButton 56,24,40,14,"4",.Button4
    PushButton 56,44,40,14,"5",.Button5
    PushButton 56,64,40,14,"6",.Button6
  End Dialog
  Dim ButtonDialog As ButtonTemplate
  WhichButton% = Dialog(ButtonDialog)
  MsgBox "You pushed button " & WhichButton%
End Sub

See Also
User Interaction on page 39

Put
Syntax

Put [#]filenumber, [recordnumber], variable

Description
Writes data from the specified variable to a Random or Binary file. The Put statement accepts the
following parameters:

Parameter Description

filenumber Integer representing the file to be written to. This is the same value as
returned by the Open statement.

Recordnumber Long specifying which record is to be written to the file. For Binary
files, this number represents the first byte to be written starting with the
beginning of the file (the first byte is 1). For Random files, this number
represents the record number starting with the beginning of the file (the
first record is 1). This value ranges from 1 to 2147483647. If the
recordnumber parameter is omitted, the next record is written to the file
(if no records have been written yet, then the first record in the file is
written). When recordnumber is omitted, the commas must still appear,
as in the following example:

Put #1,,recvar

If recordlength is specified, it overrides any previous change in file
position specified with the Seek statement.

The variable parameter is the name of any variable of any of the following types:

Variable Type File Storage Description

Integer 2 bytes are written to the file.

Long 4 bytes are written to the file.

String (variable-
length)

In Binary files, variable-length strings are written by first



SmarTerm Macro Guide

378

Variable Type File Storage Description

determining the specified string variable's length, then writing
that many bytes to a file. In Random files, variable-length strings
are written by first writing a 2-byte length, then writing that
many characters to the file.

String (fixed-length) Fixed-length strings are written to Random and Binary files in
the same way: the number of characters equal to the string's
declared length are written.

Double 8 bytes are written to the file (IEEE format),

Single 4 bytes are written to the file (IEEE format).

Date 8 bytes are written to the file (IEEE double format).

Boolean 2 bytes are written to the file (either –1 for True or 0 for False).

Variant A 2-byte VarType is written to the file followed by the data as
described above. With variants of type 10 (user-defined errors),
the 2-byte VarType is followed by a 2-byte unsigned integer (the
error value), which is then followed by 2 additional bytes of
information. The exception is with strings, which are always
preceded by a 2-byte string length.

User-defined types Each member of a user-defined data type is written individually.
In Binary files, variable-length strings within user-defined types
are written by first writing a 2-byte length followed by the
string's content. This storage is different than variable-length
strings outside of user-defined types. When writing user-defined
types, the record length must be greater than or equal to the
combined size of each element within the data type.

Arrays Arrays cannot be written to a file using the Put statement.

Objects Object variables cannot be written to a file using the Put

statement.

With Random files, a runtime error will occur if the length of the data being written exceeds the record
length (specified as the reclen parameter with the Open statement). If the length of the data being
written is less than the record length, the entire record is written along with padding (whatever data
happens to be in the I/O buffer at that time). With Binary files, the data elements are written
contiguously: they are never separated with padding.

Example
Sub Main
  Open "test.dat" For Random Access Write As #1
  For x = 1 To 10
    r% = x * 10
    Put #1,x,r%
  Next x
  Close
  Open "test.dat" For Random Access Read As #1
  For x = 1 To 10
    Get #1,x,r%
    mesg = mesg & "Record " & x & " is: " & r% & Basic.Eoln$



P

379

  Next x
  Session.Echo mesg
  Close
  Kill "test.dat"
End Sub

See Also
Drive, Folder, and File Access on page 34

Pv
Syntax

Pv(rate, nper, pmt, fv, due)

Description
Calculates the present value of an annuity based on future periodic fixed payments and a constant rate
of interest. The Pv function requires the following named parameters:

Parameter Description

rate Double representing the interest rate per period. When used with monthly
payments, be sure to normalize annual percentage rates by dividing them by
12.

Nper Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Fv Double representing the future value of the annuity after the last payment has
been made. In the case of a loan, the future value would be 0.

Due Integer indicating when the payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 specifies payment at
the start of each period.

The rate and nper parameters must be expressed in the same units. If rate is expressed in months, then
nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example
This example demonstrates the present value (the amount you'd have to pay now) for a $100,000
annuity that pays an annual income of $5,000 over 20 years at an annual interest rate of 10%.

Sub Main
  pval = Pv(.1,20,-5000,100000,1)
  Session.Echo "The present value is: " & Format(pval,"Currency")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



R

Random
Syntax

Random(min,max)

Description
Returns a Long value greater than or equal to min and less than or equal to max. Both the min and max

parameters are rounded to Long. A runtime error is generated if min is greater than max.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Randomize 'Start with new random seed.
  For x = 1 To 10
    y = Random(0,100) 'Generate numbers.
    mesg = mesg & y & crlf
  Next x
  Session.Echo "Ten numbers for the lottery: " & crlf & mesg
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Randomize
Syntax

Randomize [number]

Description
Initializes the random number generator with a new seed. If number is not specified, then the current
value of the system clock is used.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Randomize 'Start with new random seed.
  For x = 1 To 10
    y = Random(0,100) 'Generate numbers.
    mesg = mesg + Str(y) + crlf
  Next x
  Session.Echo "Ten numbers for the lottery: " & crlf & mesg
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



SmarTerm Macro Guide

381

Rate
Syntax

Rate(nper, pmt, pv, fv, due, guess)

Description
Returns the rate of interest for each period of an annuity. An annuity is a series of fixed payments
made to an insurance company or other investment company over a period of time. Examples of
annuities are mortgages and monthly savings plans. The Rate function requires the following named
parameters:

Parameter Description

nper Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Pv Double representing the present value of your annuity. In a loan situation, the
present value would be the amount of the loan.

Fv Double representing the future value of the annuity after the last payment has
been made. In the case of a loan, the future value would be zero.

Due Integer specifying when the payments are due for each payment period. A 0
indicates payment at the end of each period, whereas a 1 indicates payment at
the start of each period.

Guess Double specifying a guess as to the value the Rate function will return. The
most common guess is .1 (10 percent).

Positive numbers represent cash received, whereas negative values represent cash paid out.

The value of Rate is found by iteration. It starts with the value of guess and cycles through the
calculation adjusting guess until the result is accurate within 0.00001 percent. After 20 tries, if a result
cannot be found, Rate fails, and the user must pick a better guess.

Example
This example calculates the rate of interest necessary to save $8,000 by paying $200 each year for 48
years. The guess rate is 10%.

Sub Main
  r# = Rate(48,-200,8000,0,1,.1)
  Session.Echo "The rate required is: " & Format(r#,"Percent")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

ReadIni$
Syntax

ReadIni$(section$,item$[,filename$])

Description



R

382

Returns a String containing the specified item from an INI file. The ReadIni$ function takes the
following parameters:

Parameter Description

section$ String specifying the section that contains the desired variable, such as
"windows". Section names are specified without the enclosing brackets.

item$ String specifying the item whose value is to be retrieved.

Filename$ String containing the name of the INI file to read.

The maximum length of a string returned by this function is 4096 characters.

If the name of the INI file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

See Also
Drive, Folder, and File Access on page 34

ReadIniSection
Syntax

ReadIniSection section$,ArrayOfItems()[,filename$]

Description
Fills an array with the item names from a given section of the specified INI file. The ReadIniSection

statement takes the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"windows". Section names are specified without the enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed. If ArrayOfItems() is dynamic,
then it will be redimensioned to exactly hold the new number of
elements. If there are no elements, then the array will be redimensioned
to contain no dimensions. You can use the LBound, UBound, and
ArrayDims functions to determine the number and size of the new array's
dimensions.

If the array is fixed, each array element is first erased, then the new
elements are placed into the array. If there are fewer elements than will
fit in the array, then the remaining elements are initialized to zero-length
strings (for string arrays) or empty (for variant arrays). A runtime error
results if the array is too small to hold the new elements.

Filename$ String containing the name of an INI file.



SmarTerm Macro Guide

383

On return, the ArrayOfItems() parameter will contain one array element for each variable in the
specified INI section. The maximum combined length of all the entry names returned by this function
is limited to 32K.

If the name of the INI file is not specified, then win.ini is assumed.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

Example
Sub Main
  Dim items() As String
  ReadIniSection "windows",items$
  Session.Echo "INI Items:<CR><LF>"
  For i=0 to UBound(items$)
    Session.Echo item$(i) & "<CR><LF>"
  Next i
End Sub

See Also
Drive, Folder, and File Access on page 34

Redim
Syntax

Redim [Preserve] variablename ([subscriptRange]) [As type],...

Description
Redimensions an array, specifying a new upper and lower bound for each dimension of the array. The
variablename parameter specifies the name of an existing array (previously declared using the Dim

statement) or the name of a new array variable. If the array variable already exists, then it must
previously have been declared with the Dim statement with no dimensions, as shown in the following
example:

Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each dimension of the
array using the following syntax:

[lower To] upper [,[lower To] upper]...

If subscriptRange is not specified, then the array is redimensioned to have no elements.

If lower is not specified, then 0 is used (or the value set using the Option Base statement). A runtime
error is generated if lower is less than upper. Array dimensions must be within the following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be declared using any
fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unless the Preserve keyword is specified.
When this keyword is specified, existing data in the array is preserved where possible. If the number of
elements in an array dimension is increased, the new elements are initialized to 0 (or empty string). If
the number of elements in an array dimension is decreased, then the extra elements will be deleted. If



R

384

the Preserve keyword is specified, then the number of dimensions of the array being redimensioned
must either be zero or the same as the new number of dimensions.

Example
Sub Main
  Dim fl$()
  FileList fl$,"*.*"
  count = Ubound(fl$)
  Redim nl$(Lbound(fl$) To Ubound(fl$))
  For x = 1 to count
    nl$(x) = fl(x)
  Next x
  Session.Echo "The last element of the new array is: " & nl$(count)
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

Rem
Syntax

Rem text

Description
Causes the compiler to skip all characters on that line.

Example
Sub Main
  Rem This is a line of comments that serves to illustrate the
  Rem workings of the code. You can insert comments to make it
  Rem more readable and maintainable in the future.
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34; Macro Control and Compilation on
page 36

Reset
Syntax

Reset

Description
Closes all open files, writing out all I/O buffers.

Example
Sub Main
  Open "test.dat" for Output Access Write as # 1
  Reset
  Kill "test.dat"
  If FileExists("test.dat") Then
    Session.Echo "The file was not deleted."
  Else
    Session.Echo "The file was deleted."
  End If
End Sub

See Also
Drive, Folder, and File Access on page 34



SmarTerm Macro Guide

385

Resume
Syntax

Resume {[0] | Next | label}

Description
Ends an error handler and continues execution.

The form Resume 0 (or simply Resume by itself) causes execution to continue with the statement that
caused the error.

The form Resume Next causes execution to continue with the statement following the statement that
caused the error.

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing this statement, new errors
can be generated and trapped as normal.

Example
This example accepts two integers from the user and attempts to multiply the numbers together. If
either number is larger than an integer, the program processes an error routine and then continues
program execution at a specific section using Resume <label>. Another error trap is then set using
Resume Next. The new error trap will clear any previous error branching and also tell the program to
continue execution of the program even if an error is encountered.

Sub Main
  Dim a%, b%, x%
Again:
  On Error Goto Overflow
  a% = InputBox("Enter 1st integer to multiply","Enter Number")
  b% = InputBox("Enter 2nd integer to multiply","Enter Number")
  On Error Resume Next 'Continue program execution at
    x% = a% * b% 'next line if an error occurs.
  if err = 0 then
    Session.Echo x%
  else
    Session.Echo a% & " * " & b% & " cause an overflow!"
  end if
  Exit Sub
Overflow: 'Error handler.
  Session.Echo "You've entered a noninteger value. Try again!"
  Resume Again
End Sub

See Also
Macro Control and Compilation on page 36

Return
Syntax

Return

Description
Transfers execution control to the statement following the most recent GoSub. A runtime error results if
a Return statement is encountered without a corresponding GoSub statement.

Example
Sub Main
  GoSub SubTrue



R

386

  Session.Echo "The Main routine continues here."
  Exit Sub
SubTrue:
  Session.Echo "This message is generated in the subroutine."
  Return
  Exit Sub
End Sub

See Also
Macro Control and Compilation on page 36

Right, Right$, RightB, RightB$
Syntax

Right[$](string, length)
RightB[$](string, length)

Description
Returns the rightmost length characters (for Right and Right$) or bytes (for RightB and RightB$) from a
specified string. The Right$ and RightB$ functions return a String, whereas the Right and RightB

functions return a String variant. These functions take the following named parameters:

Parameter Description

string String from which characters are returned. A runtime error is generated if
string is null.

Length Integer specifying the number of characters or bytes to return. If length is
greater than or equal to the length of the string, then the entire string is
returned. If length is 0, then a zero-length string is returned.

The RightB and RightB$ functions are used to return byte data from strings containing byte data.

Example
Sub Main
  lname$ = "WILLIAMS"
  x = Len(lname$)
  rest$ = Right$(lname$,x - 1)
  fl$ = Left$(lname$,1)
  lname$ = fl$ & LCase$(rest$)
  Session.Echo "The converted name is: " & lname$
End Sub

See Also
Character and String Manipulation on page 33

RmDir
Syntax

RmDir path

Description
Removes the directory specified by the String contained in path.



SmarTerm Macro Guide

387

Note:
Removing a directory that is the current directory on that drive causes unpredictable side effects. For
example, consider the following statements:

MkDir "Z:\JUNK"
ChDir "Z:\JUNK"
RmDir "Z:\JUNK"

If drive Z is a network drive, then some networks will delete the directory and unmap the drive
without generating a macro error. If drive Z is a local drive, the directory will not be deleted, nor will
the macro receive an error.

Different file systems exhibit similar strange behavior in these cases.

Example
Sub Main
  On Error Goto ErrMake
  MkDir("test01")
  On Error Goto ErrRemove
  RmDir("test01")
ErrMake:
  MsgBox "The directory could not be created."
  Exit Sub
ErrRemove:
  MsgBox "The directory could not be removed."
  Exit Sub
End Sub

See Also
Drive, Folder, and File Access on page 34

Rnd
Syntax

Rnd[(number)]

Description
Returns a random Single number between 0 and 1. If number is omitted, the next random number is
returned. Otherwise, the number parameter has the following meaning:

If Then

number < 0 Always returns the same number.

Number = 0 Returns the last number generated.

Number > 0 Returns the next random number.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  For x = -1 To 8
    y! = Rnd(1) * 100
    mesg = mesg & x & " : " & y! & crlf
  Next x



R

388

  Session.Echo mesg & "Last form: " & Rnd
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

RSet
Syntax

RSet destvariable = source

Description
Copies the source string source into the destination string destvariable. If source is shorter in length
than destvariable, then the string is right-aligned within destvariable and the remaining characters
are padded with spaces. If source is longer in length than destvariable, then source is truncated,
copying only the leftmost number of characters that will fit in destvariable. A runtime error is
generated if source is Null.

The destvariable parameter specifies a string or variant variable. If destvariable is a variant
containing empty, then no characters are copied. If destvariable is not convertible to a string, then a
runtime error occurs. A runtime error results if destvariable is null.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim mesg,tmpstr$
  tmpstr$ = String$(40, "*")
  mesg = "Here are two strings that have been right-" & crlf
  mesg = mesg & "and left-justified in a 40-character string."
  mesg = mesg & crlf & crlf
  RSet tmpstr$ = "Right->"
  mesg = mesg & tmpstr$ & crlf
  LSet tmpstr$ = "<-Left"
  mesg = mesg & tmpstr$ & crlf
  Session.Echo mesg
End Sub

See Also
Character and String Manipulation on page 33

RTrim, RTrim$
See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$; Character and String Manipulation on page 33.



S

SaveFilename$
Syntax

SaveFilename$[([title$ [,[extensions$] [helpfile,context]]])]

Description
Displays a dialog that prompts the user to select from a list of files and returns a String containing the
full path of the selected file. The SaveFilename$ function accepts the following parameters:

Parameter Description

title$ String containing the title that appears on the dialog's caption. If this
string is omitted, then "Save As" is used.

extensions$ String containing the available file types. If this string is omitted, then all
files are used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's
help. If this parameter is specified, then helpfile must also be specified.

The SaveFilename$ function returns a full pathname of the file that the user selects. A zero-length
string is returned if the user selects Cancel. If the file already exists, then the user is prompted to
overwrite it.

If both the helpfile and context parameters are specified, then a Help button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

The extensions$ parameter must be in the following format:
description:ext[,ext][;description:ext[,ext]]...

Placeholder Description

description Specifies the grouping of files for the user, such as All Files.

Ext Specifies a valid file extension, such as *.BAT or *.?F?.

For example, the following are valid extensions$ specifications:
"All Files:*"
"Documents:*.TXT,*.DOC"
"All Files:*;Documents:*.TXT,*.DOC"

Example
Sub Main



SmarTerm Macro Guide

390

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)
If Not f$ = "" Then
MsgBox "User choose to save file as: " + f$

Else
MsgBox "User canceled."

End If
End Sub

See Also
Drive, Folder, and File Access on page 34; User Interaction on page 39

Second
Syntax

Second(time)

Description
Returns the second of the day encoded in the specified time parameter. The value returned is an
Integer between 0 and 59 inclusive. The time parameter is any expression that converts to a Date.

Example
Sub Main
  xt# = TimeValue(Time$())
  xh# = Hour(xt#)
  xm# = Minute(xt#)
  xs# = Second(xt#)
  Session.Echo "The current time is: " & CStr(xh#) & ":" & CStr(xm#) _
    & ":" & CStr(xs#)
End Sub

See Also
Time and Date Access on page 39

Seek (function)
Syntax

Seek(filenumber)

Description
Returns the position of the file pointer in a file relative to the beginning of the file. The filenumber

parameter is a number that refers to an open file—the number passed to the Open statement. The value
returned depends on the mode in which the file was opened:

File Mode Returns

Input Byte position for the next read

Output Byte position for the next write

Append Byte position for the next write

Random Number of the next record to be written or read

Binary Byte position for the next read or write



S

391

The value returned is a Long between 1 and 2147483647, where the first byte (or first record) in the
file is 1.

Example
Sub Main
  Open "test.dat" For Random Access Write As #1
  For x = 1 To 10
    r% = x * 10
    Put #1,x,r%
  Next x
  y = Seek(1)
  Session.Echo "The current file position is: " & y
  Close
End Sub

See Also
Drive, Folder, and File Access on page 34

Seek (statement)
Syntax

Seek [#] filenumber,position

Description
Sets the position of the file pointer within a given file such that the next read or write operation will
occur at the specified position. The Seek statement accepts the following parameters:

Parameter Description

filenumber Integer used to refer to the open file—the number passed to the Open

statement.

Position Long that specifies the location within the file at which to position the file
pointer. The value must be between 1 and 2147483647, where the first byte
(or record number) in the file is 1. For files opened in either Binary, Output,
Input, or Append mode, position is the byte position within the file. For
Random files, position is the record number.

A file can be extended by seeking beyond the end of the file and writing data there.

Example
Sub Main
  Open "test.dat" For Random Access Write As #1
  For x = 1 To 10
    rec$ = "Record#: " & x
    Put #1,x,rec$
  Next x
  Close
  Open "test.dat" For Random Access Read As #1
  Seek #1,9
  Get #1,,rec$
  Session.Echo "The ninth record = " & x
  Close
  Kill "test.dat"
End Sub

See Also



SmarTerm Macro Guide

392

Drive, Folder, and File Access on page 34

Select...Case
Syntax

Select Case testexpression
[Case expressionlist
[statement_block]]

[Case expressionlist
[statement_block]]

  .
  .
[Case Else
[statement_block]]

End Select

Description
Used to execute a block of statements depending on the value of a given expression. The Select Case

statement has the following parts:

Part Description

testexpression Any numeric or string expression.

Statement_block Any group of statements. If the testexpression matches any of the
expressions contained in expressionlist, then this statement block will
be executed.

Expressionlist A comma-separated list of expressions to be compared against
testexpression using any of the following syntax:

expression [,expression]...expression To expression
Is relational_operator expression

The resultant type of expression in expressionlist must be the same as
that of testexpression.

Multiple expression ranges can be used within a single Case clause. For example:
Case 1 to 10,12,15, Is > 40

Only the statement_block associated with the first matching expression will be executed. If no
matching statement_block is found, then the statements following the Case Else will be executed.

A Select...End Select expression can also be represented with the If...Then expression. The use of
the Select statement, however, may be more readable.

Example
'This example uses the Select...Case statement to return the
'type of key pressed.
Sub Main

Msgbox "Press any key.",ebOKOnly, "Select Case Example"
Session.KeyWait.Timeout = 10

Session.KeyWait.Start
KeyPress% = Session.KeyWait.Value



S

393

If Session.KeyWait.Status = smlWAITTIMEOUT Then
   MsgBox "Timeout period has expired."
Else
   Select Case KeyPress%
      Case 48 to 57
         TypeofKey$ = "number"
      Case 65 to 90, 97 to 122
         TypeofKey$ = "letter"
      Case Else
         TypeofKey$ = "non-alphanumeric"
   End Select
   MsgBox "The detected keystroke was a " & TypeofKey$ & "."
End If

End Sub

See Also
Macro Control and Compilation on page 36

SelectBox
Syntax

SelectBox([title],prompt,ArrayOfItems [,helpfile,context])

Description
Displays a dialog that allows the user to select from a list of choices and returns an Integer containing
the index of the item that was selected. The SelectBox statement accepts the following parameters:

Parameter Description

title Title of the dialog. This can be an expression convertible to a string. A
runtime error is generated if title is null. If title is missing, then the default
title is used.

prompt Text to appear immediately above the listbox containing the items. This can
be an expression convertible to a string. A runtime error is generated if
prompt is null.

ArrayOfItems Single-dimensioned array. Each item from the array will occupy a single
entry in the listbox. A runtime error is generated if ArrayOfItems is not a
single-dimensioned array. ArrayOfItems can specify an array of any
fundamental data type (structures are not allowed). null and empty values
are treated as zero-length strings.

Helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

Context Number specifying the ID of the topic within helpfile for this dialog's help.
If this parameter is specified, then helpfile must also be specified.

The value returned is an Integer representing the index of the item in the listbox that was selected,
with the first item index to the lower bound of the array. If the lower bound of the array is 0 (the
default), then the first item in the array is index 0, and a return value of -1 indicates that the user



SmarTerm Macro Guide

394

clicked Cancel. If the lower bound of the array is 1 (set with the Option Base statement), then the first
item in the array is index 1, and a return value of 0 indicates that the user clicked Cancel.

Example
Sub Main
Dim a$()
AppList a$
result% = SelectBox("Picker","Pick an application:",a$)
If Not result% = -1 then
Msgbox "User selected: " & a$(result%)

Else
Msgbox "User canceled"

End If
End Sub

See Also
Option Base on page 358; User Interaction on page 39

SendKeys
Syntax

SendKeys string [, [wait] [,delay]]

Description
Sends the specified keys to the active application, optionally waiting for the keys to be processed
before continuing. If you're running the macro within the macro editor, SendKeys sends keystrokes to
the editor. This statement is intended for use in applications; to send data to a host, use Session.Send

instead.

The SendKeys statement accepts the following named parameters:

Parameter Description

string String containing the keys to be sent. The format for string is described
below.

Wait Boolean value. If True, then the compiler waits for the keys to be completely
processed before continuing. The default value is False, which causes the
compiler to continue macro execution while SendKeys finishes.

Delay Integer specifying the number of milliseconds devoted for the output of the
entire string parameter. It must be within the range 0 <= delay <= 32767. For
example, if delay is 5000 (5 seconds) and the string parameter contains ten
keys, then a key will be output every 1/2 second. If unspecified (0r 0), the
keys will play back at full speed.

The SendKeys statement will wait for a prior SendKeys to complete before executing.

Specifying Keys
To specify any key on the keyboard, simply use that key, such as "a" for lowercase a, or "A" for
uppercase a. Sequences of keys are specified by appending them together: "abc" or "dir /w". Some
keys have special meaning and are therefore specified in a special way—by enclosing them within



S

395

braces. For example, to specify the percent sign, use "{%}". The following table shows the special
keys:

Key Special Meaning Example

+ Shift "+{F1}" Shift+F1

^ Ctrl "^a" Ctrl+A

~ Shortcut for Enter "~" Enter

% Alt "%F" Alt+F

[] No special meaning "{[}" Open bracket

{} Used to enclose special keys "{Up}" Up arrow

() Used to specify grouping "^(ab)" Ctrl+A, Ctrl+B

Keys that are not displayed when you press them are also specified within braces, such as {Enter} or
{Up}. A list of these keys follows:

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

{Right} {Tab} {Up} {F1} {Scroll Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+", "^", and "%" respectively:

For Key Combination Use

Shift+Enter "+{Enter}"

Ctrl+C "^c"

Alt+F2 "%{F2}"

To specify a modifier key combined with a sequence of consecutive keys, group the key sequence
within parentheses, as in the following example:



SmarTerm Macro Guide

396

For Key Combination Use

Shift+A, Shift+B "+(abc)"

Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

Use "~" as a shortcut for embedding Enter within a key sequence:

For Key Combination Use

a, b, Enter, d, e "ab~de"

Enter, Enter "~~"

To embed quotation marks, use two quotation marks in a row:

For Key Combination Use

"Hello" ""Hello""

a"b"c "a""b""c"

Key sequences can be repeated using a repeat count within braces:

For Key Combination Use

Ten "a" keys "{a 10}"

Two Enter keys "{Enter 2}"

Example
Sub Main
id = Shell("Notepad.exe")
AppActivate "Notepad"
SendKeys "Hello, Notepad." 'Write some text.
Sleep 2000
SendKeys "%fs" 'Save file (simulate Alt+F, S keys).
Sleep 2000
SendKeys "name.txt{ENTER}" 'Enter name of new file to save.
AppClose "Notepad"

End Sub

See Also
Host Connections on page 35

Session (object)
The Session object gives you access to session-specific aspects of SmarTerm, including emulation
settings and functions, host data access and capture, and basic host control.

Session.Application
Syntax

Session.Application

Description



S

397

Returns the session's application object.

Example
Dim App as Object
Set App = Session.Application

See Also
Application and Session Features on page 37

Session.AutoWrap
VT, SCO, ANSI, and DG sessions only

Syntax
Session.AutoWrap

Description
Returns or sets the session’s autowrap state (boolean)

Example
Sub Main
  Dim AutoWrapState as Boolean
  AutoWrapState = Session.AutoWrap
  Session.AutoWrap = False
End Sub

See Also
Application and Session Features on page 37

Session.Blink
Syntax

Session.Blink

VT, SCO, ANSI, and DG sessions only

Description
Returns or sets the blink attribute of the display presentation (boolean)

Example
Sub Main
  Dim BlinkState as Boolean
  BlinkState = Session.Blink
  Session.Blink = True
End Sub

See Also
Application and Session Features on page 37

Session.Bold
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Bold

Description
Returns or sets the bold attribute of the display presentation (boolean).

Example
Sub Main
  Dim BoldState as Boolean



SmarTerm Macro Guide

398

  BoldState = Session.Bold
  Session.Bold = False
End Sub

See Also
Application and Session Features on page 37

Session.BufferFormatted
3270 and 5250 sessions only

Syntax
Session.BufferFormatted

Description
Returns True if the display buffer is formatted – if it contains any field definitions (boolean).

Value Definition

True Buffer is formatted

False All other cases.

Example
Sub Main
  Dim BufForm as Boolean

  BufForm = Session.BufferFormatted
  If BufForm = True Then
     MsgBox "Buffer is formatted"
  End If
End Sub

See Also
Application and Session Features on page 37

Session.BufferModified
3270 and 5250 sessions only

Syntax
Session.BufferModified

Description
Returns True if the display buffer has been modified (boolean). Possible values are:

Value Description

True Buffer has been modified (any MDT bits set)

False All other cases.

Example
Sub Main
  Dim BufForm as Boolean

  BufForm = Session.BufferModified



S

399

  If BufMod = True Then
     MsgBox "Buffer has been modified"
  End If
End Sub

See Also
Application and Session Features on page 37

Session.Caption
Syntax

Session.Caption

Description
Returns or sets SmarTerm's session window caption (string).

Example
Sub Main
Dim CurrentCaption as String
CurrentCaption = Session.Caption
Session.Caption = "DG Session"

End Sub

See Also
Application and Session Features on page 37

Session.Capture
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Capture(filename)

where filename is the name of the file to write captured text (string).

Description
Returns the completion status of the start-capture operation (boolean). Starts a capture operation, which
writes incoming host data into the specified file.

Example
Sub Main
  Dim retval as Boolean
' Start a capture operation.
  Session.CaptureFileHandling = smlOVERWRITE
  retval = Session.Capture("FromHost.txt")
  If retval = FALSE Then
     Session.Echo "Error: Can't create file in Session.Capture"
     End
  End If
' Use LockStep to insure that the host and the PC stay in sync
  Dim LockSession as Object
  Set LockSession = Session.LockStep
  LockSession.Start
' Cause the host to start sending the desired information.
  Session.Send "TYPE REPORT1" + Chr$(13)
' Remain in capture mode until the ending string is detected from the host.
  Session.StringWait.MatchString = "End of Report"
  Session.StringWait.Start
' Terminate the capture.
  Session.EndCapture
' Cancel the LockStep state



SmarTerm Macro Guide

400

  Set LockSession = Nothing
End Sub

See Also
Drive, Folder, and File Access on page 34; Application and Session Features on page 37

Session.CaptureFileHandling
VT, SCO, ANSI, and DG sessions only

Syntax
Session.CaptureFileHandling

Description
Returns or sets the capture state (integer). Possible values are:

Value Constant Meaning

0 smlOVERWRITE Overwrite an existing file.

1 smlAPPEND Append to an existing file.

2 smlPROMPTOVAPP Prompt whether to overwrite or append.

Example
See the example for Session.Capture

See Also
Drive, Folder, and File Access on page 34; Application and Session Features on page 37

Session.Circuit
Syntax

Session.Circuit

Description
Returns the Circuit object for the session. The Session.Circuit property is intended for use by
external VBA controllers. The predefined Circuit object already exists for use by internal macros.

Example
Sub Main
Dim MyCircuit as Object
MyCircuit = Session.Circuit
End Sub

See Also
Host Connections on page 35; Application and Session Features on page 37; Objects on page 40

Session.ClearScreen
Syntax

Session.ClearScreen

Description
Clears the SmarTerm screen. If the current session is text based (VT, ANSI, SCO, DG, or Wyse), it
clears all text pages, resets graphic rendition and character attributes, resets all margins, performs a soft



S

401

reset, and moves the cursor to the home position of the first page. If the current session is form-based
(IBM 3270 or IBM 5250), the command clears all input fields.

Example
Sub Main
Session.ClearScreen

End Sub

See Also
Application and Session Features on page 37

Session.Close
Syntax

Session.Close

Description
Closes the SmarTerm session.

Example
Sub Main
  Dim nMsg as integer
  nMsg = Session.Echo ("Closing the current session. OK to proceed?", ebYesNo)
  If nMsg = ebYes Then
    Session.Close
  End If
End Sub

See Also
Application and Session Features on page 37

Session.Collect (object)
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect

Description
Returns an object supporting access to SmarTerm’s Collect feature. The Session.Collect object is used
to extract data from the host-to-terminal data stream. There is one Collect object per-session. Its
methods and properties can be divided into three categories: those used to initialize the wait object,
those used to activate a wait, and those used to check the results of the wait. These categories are as
follows:

Initialization
• Session.Collect.Reset

• Session.Collect.TermString

• Session.Collect.TermStringExact

• Session.Collect.Timeout

• Session.Collect.TimeoutMS

• Session.Collect.MaxCharacterCount

• Session.Collect.Consume

Activation
• Session.Collect.Start



SmarTerm Macro Guide

402

Results
• Session.Collect.Status

• Session.Collect.CollectedCharacters

• Session.Collect.CollectedString

Note:
The Collect object automatically resets to its default (empty) state the first time any of its properties
is set or any of its methods called after a previous Collect operation has completed.

In certain cases, it may be necessary to use the Lockstep feature to insure that the Collect object is
presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example
Sub Main
  Dim Report as String
  Session.Collect.TermString = "EndOfBlock"
  Session.Collect.Timeout = 100
  Session.Collect.Start
   If Session.Collect.Status = smlWAITSUCCESS Then
     MsgBox "CollectedCharacters: " & _
             str$(Session.Collect.CollectedCharacters)
     MsgBox "Session.Collect.CollectedString: " & _
             Session.Collect.CollectedString
  Else
    MsgBox "Timeout exceeded"
  End If
End Sub

See Also
Character and String Manipulation on page 33; Application and Session Features on page 37; Objects
on page 40

Session.Collect.CollectedCharacters
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.CollectedCharacters

Description
Returns the number of characters in the collected string after a timeout condition or termination string
match occurs (integer).

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation on page 33; Application and Session Features on page 37

Session.Collect.CollectedString
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.CollectedString

Description



S

403

Returns the collected string after a timeout condition or termination string match occurs (string).

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation on page 33; Application and Session Features on page 37

Session.Collect.Consume
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.Consume

Description
Returns or sets whether collected characters are presented to the display presentation (boolean). If this
property is set True, the characters collected are not passed on to the display presentation.

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Collect.MaxCharacterCount
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.MaxCharacterCount

Description
Returns or sets the maximum number of characters to collect before the collect operation terminates
(integer).

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Collect.Reset
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.Reset

Description
Resets the wait object’s properties to their default values. The Collect object automatically resets to its
default (empty) state when any of its properties is set or any of its methods is called after a previous
Collect operation has completed.

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features



SmarTerm Macro Guide

404

Session.Collect.Start
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.Start

Description
Returns a status value that indicates the reason that the wait ended (integer). This method activates the
wait object, returning only when the specified conditions have been met. The status of the Collect

operation is returned by the object’s Start method and is also available through its Status property.
The possible values are shown in the table below.

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Collect.Status
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.Status

Description
Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the Collect operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features



S

405

Session.Collect.TermString
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.TermString

Description
Sets a pattern which, if detected in the host to terminal data stream during the course of a collect
operation, terminates it. The comparison is case-insensitive. If case sensitivity is desired, set the
TermStringExact property instead. This property overrides any previously established terminating
pattern. If no terminating pattern is specified, no specific string terminates the collect operation.

Note:
This property is write-only.

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Collect.TermStringExact
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.TermStringExact

Description
This property sets a pattern which, if detected in the host to terminal data stream during the course of a
collect operation, terminates it. The comparison is case-sensitive. If case sensitivity is not desired, set
the TermString property instead. This property overrides any previously established terminating
pattern. If no terminating pattern is specified, no specific string terminates the collect operation.

Note:
This property is write-only.

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Collect.Timeout
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.Timeout

Description
Returns or sets the maximum number of seconds allowed for the collect operation (integer).

Example
See the examples under Session.Collect (object).

See Also



SmarTerm Macro Guide

406

Character and String Manipulation; Application and Session Features

Session.Collect.TimeoutMS
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Collect.TimeoutMS

Description
Sets the maximum number of milliseconds to allow for the collect operation (integer).

Note:
This property is write-only.

Example
See the examples under Session.Collect (object).

See Also
Character and String Manipulation; Application and Session Features

Session.Column
Syntax

Session.Column

Description
Returns or sets where the cursor is placed in the current SmarTerm session window.

Example
Sub Main
  Dim CurrentCol as Integer
  CurrentCol = Session.Column
  Session.Column = CurrentCol + 10
End Sub

See Also
Application and Session Features

Session.Concealed
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Concealed

Description
Returns or sets the concealed attribute of the display presentation (boolean).

Example
Sub Main
Dim ConcealedState as Boolean
ConcealedState = Session.Concealed
Session.Concealed = True

End Sub

See Also
Application and Session Features



S

407

Session.ConfigInfo
Syntax

Session.ConfigInfo (infotype)

Description
Returns the requested SmarTerm information (string). infotype specifies the type of information to
return (integer). The possible values are:

Value Constant Meaning

0 smlSESSIONPATH Full path of the SmarTerm session (STW) file

2 smlINSTALLPATH Full path to where SmarTerm is installed

Example
Sub Main
  Dim StwPath as String
  Dim InstPath as string
  StwPath = Session.ConfigInfo(smlSESSIONPATH)
  Session.Echo "SmarTerm session file is " & StwPath
  InstPath = Session.ConfigInfo(smlINSTALLPATH)
  Session.Echo "SmarTerm installation directory is " & InstPath
End Sub

See Also
Application and Session Features

Session.Connected
Syntax

Session.Connected

Description
Returns a boolean representing the session's connection status. If True, a connection is established.

Example
Sub Main
  Dim fConnected as Boolean
  fConnected = Session.Connected
  If fConnected Then
     Session.Echo "You are connected."
  End If
End Sub

See Also
Host Connections; Application and Session Features

Session.DialogView
3270 and 5250 sessions only

Syntax
Session.DialogView

Description
Returns or sets the session's DialogView state (Boolean), allowing you to toggle the DialogView
feature on or off.



SmarTerm Macro Guide

408

Example
Sub Main
' This example displays the current DialogView state
' and then toggles it.

  Dim fIsDialogView as Boolean
  Dim strDialogView as String

' Get the current state of DialogView and inform user
  fIsDialogView = Session.DialogView
  If fIsDialogView = TRUE then
    strDialogView = "The emulator is in DialogView mode"
  Else
    strDialogView = "The emulator is in Emulation mode"
  End If

' Now switch modes
  MsgBox strDialogView + " Switching modes..."
  Session.DialogView = Not fIsDialogView
End Sub

See Also
User Interaction; Application and Session Features

Session.DoMenuFunction
Syntax

Session.DoMenuFunction menuitem$

where menuitem$ is the menu item to trigger (string).

Note:
The list presented here is complete; the availability of the actual values varies depending on the
capability of the current session type.

Description
Triggers a session-based menu action in SmarTerm. Possible values:

ConnectionClearPort FilePrint ToolsFTPDragAndDrop

ConnectionConnect FileSaveSession ToolsHotSpots

ConnectionDisconnect FileSaveSessionAs ToolsKeyboardMaps

ConnectionOnline FileSendMail ToolsMacro

ConnectionProperties PrinterCancel ToolsReceiveFile

ConnectionSendBreak PrinterFlush ToolsReplayCapturedFile

ConnectionStartTrace PrinterPA1 ToolsSendFile

EditClearHistory PrinterPA2 ToolsSmarTermButtons

EditClearScreen PrinterTest ToolsSmartMouse

EditCopy PropertiesEmulation ToolsStartCapture

EditCopyScreenToHistory PropertiesFileTransferProperties ToolsStopCapture



S

409

EditCopyTable PropertiesFileTransferProtocol ToolsTriggers

EditCopyToFile PropertiesHardReset ViewDialogView

EditPaste PropertiesResetTerminal ViewHotSpots

EditPasteFromFile PropertiesSessionOptions ViewTerminal

EditSelectScreen PropertiesSoftReset ViewTriggers

EditSelectScreenAndHistor-
y

ToolsFTPCommandMode ViewSmarTermButtons

FileClose

Example
Sub Main
Session.DoMenuFunction "ToolsMacros"

End Sub

See Also
Application and Session Features

Session.Echo
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Echo text$

where text$ is the text to display (string).

Description
Displays text in the window as if it had been sent by the host.

Example
Sub Main
Session.Echo ""About to connect to host"
Session.Echo "Please be ready to log in<CR><LF>"

End Sub

See Also
Application and Session Features; User Interaction

Session.EmulationInfo
Syntax

Session.EmulationInfo(infotype)

where infotype specifies the information to return (integer).

Description
Returns either the emulation family or the emulation level (string). Possible values are:

Value Constant Meaning

0 smlEMUFAMILY The emulation family.

1 smlEMULEVEL The emulation level.



SmarTerm Macro Guide

410

Note:
Calling Session.EmulationInfo(smlEMUFAMILY) will return the string "NVT" if the actual terminal type
is yet to be established.

Example
Sub Main
  Dim EmulationFamily as String
  Dim EmulationLevel as String
  EmulationFamily = Session.EmulationInfo(smlEMUFAMILY)
  Session.Echo "Your current session type is " & EmulationFamily
  EmulationLevel = Session.EmulationInfo(smlEMULEVEL)
  Session.Echo "Your current operating level is " & EmulationLevel
End Sub

See Also
Application and Session Features

Session.EndCapture
VT, SCO, ANSI, and DG sessions only

Syntax
Session.EndCapture

Description
Stops a capture operation.

Example
See the example for Session.Capture.

See Also
Drive, Folder, and File Access; Application and Session Features

Session.EventWait (object)
3270 and 5250 sessions only

Syntax
Session.EventWait

Description
Returns an object supporting access to SmarTerm’s EventWait feature. The Session.EventWait object is
used to pause macro execution pending the receipt or issue of certain events. There is one EventWait

object per-session. Its methods and properties can be divided into three categories: those used to
initialize the wait object, those used to activate a wait, and those used to check the results of the wait.
These categories are as follows:

Initialization
• Session.EventWait.EventType

• Session.EventWait.MaxEventCount

• Session.EventWait.Reset

• Session.EventWait.Timeout

• Session.EventWait.TimeoutMS

Activation
• Session.EventWait.Start



S

411

Results
• Session.EventWait.EventCount

• Session.EventWait.Status

The EventWait object automatically resets to its default (empty) state the first time any of its properties
is set or any of its methods called after a previous EventWait operation has completed.

In certain cases, it may be necessary to use the Lockstep feature to insure that the EventWait object is
presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example
Sub Main
  ' Wait for a PAGERECEIVED event
  Session.Eventwait.EventType = smlPAGERECEIVED
  Session.Eventwait.Start
  ' Wait for a PAGESENT event
  Session.Eventwait.EventType = smlPAGESENT
  Session.Eventwait.Start
  ' Wait for 3 PAGERECEIVED events, or 30 seconds,
  ' whichever comes first.
  Session.Eventwait.EventType = smlPAGERECEIVED
  Session.EventWait.MaxEventCount = 3
  Session.EventWait.Timeout = 30
  Session.Eventwait.Start
  If Session.EventWait.Status = smlWAITTIMEOUT Then
     MsgBox "Timeout exceeded, Total events detected: " & _
        str$(Session.EventWait.EventCount)
  End If
End Sub

See Also
Host Connections on page 35; Application and Session Features on page 37; Objects on page 40

Session.EventWait.EventCount
3270 and 5250 sessions only

Syntax
Session.EventWait.EventCount

Description
Returns the number of events that occurred during the wait period (integer).

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.EventType
3270 and 5250 sessions only

Syntax
Session.EventWait.EventType

Description
Returns or sets the type of event to wait for (integer). The possible values are:



SmarTerm Macro Guide

412

Value Constant Meaning

1 smlPAGERECEIVED A form has been received from the host.

2 smlPAGESENT A form has been sent to the host.

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.MaxeventCount
3270 and 5250 sessions only

Syntax
Session.EventWait.MaxEventCount

Description
Returns or sets the maximum number of events to allow to pass while a wait is active (integer).

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.Reset
3270 and 5250 sessions only

Syntax
Session.EventWait.Reset

Description
Resets the wait object’s properties to their default values. The EventWait object automatically resets to
its default (empty) state when any of its properties is set or any of its methods called after a previous
EventWait operation has completed.

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.Start
3270 and 5250 sessions only

Syntax
Session.EventWait.Start

Description
Returns a status value that indicates the reason that the wait ended (integer). Activates the wait object,
returning only when the specified conditions have been met. The status of the EventWait operation is



S

413

returned by the object’s Start method and is also available through its Status property. The possible
values are shown in the table below.

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXEVENTS Maximum events

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.Status
3270 and 5250 sessions only

Syntax
Session.EventWait.Status

Description
Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the EventWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXEVENTS Maximum events

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.Timeout
3270 and 5250 sessions only

Syntax
Session.EventWait.Timeout

Description
Returns or sets the wait object’s timeout value, in seconds (integer).



SmarTerm Macro Guide

414

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.EventWait.TimeoutMS
3270 and 5250 sessions only

Syntax
Session.EventWait.TimeoutMS

Description
Sets the wait object’s timeout value, in milliseconds (integer).

Example
See the examples under Session.EventWait (object).

See Also
Host Connections on page 35; Application and Session Features on page 37

Session.FieldEndCol
3270 and 5250 sessions only

Syntax
Session.FieldEndCol

Description
Returns the ending column number (1 based) of the field where the cursor resides. On an unformatted
display, this property always defaults to the number of columns on the display page.

Note:
This property is write-only.

Example
Sub Main
  Dim StartRow as Integer
  Dim StartCol as Integer
  Dim EndRow as Integer
  Dim EndCol as Integer
  Dim CurScn as String
  StartRow = Session.FieldStartRow
  StartCol = Session.FieldStartCol
  EndRow = Session.FieldEndRow
  EndCol = Session.FieldEndCol
  CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
  MsgBox "The entire current field where the cursor is placed " &_
         "is (EBCDIC)" & CurScn
End Sub

See Also
Application and Session Features on page 37

Session.FieldEndRow
3270 and 5250 sessions only

Syntax



S

415

Session.FieldEndRow

Description
Returns the ending row number (1 based) of the field where the cursor resides. On an unformatted
display, this property always defaults to the number of lines on the display page.

Note:
This property is write-only.

Example
Sub Main
  Dim StartRow as Integer
  Dim StartCol as Integer
  Dim EndRow as Integer
  Dim EndCol as Integer
  Dim CurScn as String
  StartRow = Session.FieldStartRow
  StartCol = Session.FieldStartCol
  EndRow = Session.FieldEndRow
  EndCol = Session.FieldEndCol
  CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
  MsgBox "The entire current field where the cursor is placed " &_
         "is (EBCDIC)" & CurScn
End Sub

See Also
Application and Session Features on page 37

Session.FieldModified
5250 sessions only

Syntax
Session.FieldModified

Description
Returns whether the current field (the field that the cursor is in) has been modified (boolean).
Session.FieldModified returns one of the following values:

Value Definition

True The field in which the cursor resides has been modified.

False Buffer is not formatted or field is not modified.

Example
Sub Main
Dim fModified as Boolean
fModified = Session.FieldModified
If fModified Then
  MsgBox "Field is modified."
End If

Session.FieldStartCol
3270 and 5250 sessions only

Syntax



SmarTerm Macro Guide

416

Session.FieldStartCol

Description
Returns the beginning column number (1 based) of the field where the cursor resides (integer). On an
unformatted display, this property always has the value of 1. This property is read-only.

Example
Sub Main
  Dim StartRow as Integer
  Dim StartCol as Integer
  Dim EndRow as Integer
  Dim EndCol as Integer
  Dim CurScn as String
  StartRow = Session.FieldStartRow
  StartCol = Session.FieldStartCol
  EndRow = Session.FieldEndRow
  EndCol = Session.FieldEndCol
  CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
  MsgBox "The entire current field where the cursor is placed " &_
         "is (EBCDIC)" & CurScn
End Sub

See Also
Application and Session Features on page 37

Session.FieldStartRow
3270 and 5250 sessions only

Syntax
Session.FieldStartRow

Description
Returns the beginning row number (1 based) of the field where the cursor resides (integer). On an
unformatted display, this property always has the value of 1. This property is read-only.

Example
Sub Main
  Dim StartRow as Integer
  Dim StartCol as Integer
  Dim EndRow as Integer
  Dim EndCol as Integer
  Dim CurScn as String
  StartRow = Session.FieldStartRow
  StartCol = Session.FieldStartCol
  EndRow = Session.FieldEndRow
  EndCol = Session.FieldEndCol
  CurScn = Session.NativeScreenText(StartRow,StartCol,EndRow,EndCol)
  MsgBox "The entire current field where the cursor is placed " &
         "is (EBCDIC)" & CurScn
End Sub

See Also
Application and Session Features on page 37

Session.FieldText
3270 and 5250 sessions only

Syntax
Session.FieldText (row, col)

Description



S

417

Returns the text (in ASCII/ISO-Latin1) from the field containing the specified cursor position. If the
field is numeric, the property returns the text representation of the numbers, including a plus or minus
sign for positive and negative numbers. If the text cannot be returned for some reason, the property
returns an empty string.

Note:
5250 hosts respond to this property only if the specified location has been defined as an unprotected
field. Unlike 3270 host applications, screen locations on 5250 hosts are not automatically defined as
fields, but must be defined by the application.

Parameters are:

Parameter Definition

row The row containing the desired text (integer).

col The column containing the desired text (integer).

If the row or column value is less than or equal to 0, the function defaults to the current cursor row or
column, respectively. A row or column value outside the range is truncated to fit within the display.

Note:
This property is write-only.

Example
Sub Main
  Dim FieldData as String
  FieldData = Session.FieldText(Session.Row, Session.Column)
  MsgBox "Current field displays " & FieldData
End Sub

Session.FontAutoSize
Syntax

Session.FontAutoSize

Description
Returns or sets the auto-font-size state of characters displayed in the current SmarTerm session
(boolean). When set True, the font size is set automatically based on the window size.

Example
Sub Main
Dim AutoFontState as Boolean
AutoFontState = Session.FontAutoSize
Session.FontAutoSize = True

End Sub

See Also
Application and Session Features on page 37

Session.FontHeight
Syntax

Session.FontHeight

Description



SmarTerm Macro Guide

418

Returns or sets the font height of characters displayed in the current SmarTerm session (integer).

Example
Sub Main
Dim Height as Integer
Height = Session.FontHeight
Session.FontHeight = 2 * Height

End Sub

See Also
Application and Session Features on page 37

Session.FontWidth
Syntax

Session.FontWidth

Description
Returns or sets the font width of characters displayed in the current SmarTerm session (integer).

Example
Sub Main
Dim Width as Integer
Width = Session.FontWidth
Session.FontWidth = 2 * Width

End Sub

See Also
Application and Session Features on page 37

Session.GetMostRecentTriggerName
Syntax

Session.GetMostRecentTriggerName

Description
Returns a string containing the name of the most recently fired trigger. Note that this property is not
cleared when the host clears the matching pattern (retrieved with
Session.GetMostRecentTriggerPattern) from the screen.

Example
Sub Main

Dim TriggerName$
TriggerName$ = Session.GetMostRecentTriggerName

If TriggerName$ = "Start Page" Then
   MsgBox "We are on the starting page of the host screen."
End If
End Sub

See Also
Application and Session Features on page 37

Session.GetMostRecentTriggerPattern
Syntax

Session.GetMostRecentPattern

Description



S

419

Returns a string containing the the most recently match trigger pattern. Note that this property is not
cleared when the host clears the matching pattern from the screen.

Example
Sub Main

Dim TriggerPattern$
TriggerPattern$ = Session.GetMostRecentTriggerPattern

If TriggerPattern$ = "AS/400 Main Menu" Then
   MsgBox "We are on the starting page of the host screen."
End If
End Sub

See Also
Application and Session Features on page 37

Session.HotSpotsActive
Syntax

Session.HotSpotsActive [= TRUE | FALSE]

Description
Returns or sets whether the current HotSpots file is visible or not (Boolean).

Example
'This example toggles the current HotSpots file.
Sub Main
  CurrentFile$ = Session.HotSpotsFileName

' First, see if there's a file to toggle.
  If CurrentFile$ = "" Then
    MsgBox "No HotSpots loaded."

' Now turn it on if it's off, off if it's on.
  Else
    If Session.HotSpotsActive = True Then
      Session.HotSpotsActive = False
      MsgBox "HotSpots " & CurrentFile$ & " now OFF."
    Else
      Session.HotSpotsActive = True
      MsgBox "HotSpots " & CurrentFile$ & " now ON."
    End If
  End If
End Sub

See Also
Application and Session Features on page 37; User Interaction on page 39

Session.HotSpotsFileName
Syntax

Session.HotSpotsFileName [= Filename]

Description
Returns the name of the current HotSpots file (string). If you specify a HotSpots file with the Filename
parameter (string), then the program attempts to load that file. This usage is therefore similar to the
Session.SetHotSpotsFile method, except that there is no built-in error-checking.



SmarTerm Macro Guide

420

Filename can specify the complete path to the desired HotSpots file. If no path is specified, the
program looks in the User HotSpot folder.

Example
'This example reports the name of the current HotSpots file.
' If no file is loaded, it loads DEFAULT.HOT
Sub Main
  CurrentFile$ = Session.HotSpotsFileName

  If CurrentFile$ <> "" Then
    MsgBox "Current HotSpots file: ." & CurrentFile$
  Else
    If (Session.HotSpotsFileName = "DEFAULT.HOT")= TRUE Then
      MsgBox "HotSpots DEFAULT.HOT now loaded."
    Else
      MsgBox "No HotSpots available."
    End If
  End If
End Sub

See Also
Application and Session Features on page 37; User Interaction on page 39

Session.InitialMouseCol
Syntax

Session.InitialMouseCol

Description
Returns the mouse's column position at the time a macro was started (integer).

Session.InitialMouseCol and Session.InitialMouseRow contain the text column and row (respectively)
that the mouse pointer was over when the script was started. If the mouse pointer is outside of the
configuration window, the values are clipped to within the window.

The value within this property is only meaningful when accessed from an internal macro. When
accessed through an external OLE Automation controller, the value returned will be the one
established when the last internal macro was executed.

Example
Sub Main
Dim StartX as Integer
Dim StartY as Integer
StartX = Session.InitialMouseCol
StartY = Session.InitialMouseRow
Msgbox "Initial mouse position was Row: " & str(StartY) & " Col: " & str(StartX)

End Sub

See Also
Application and Session Features on page 37

Session.InitialMouseRow
Syntax

Session.InitialMouseRow

Description
Returns the mouse's row position at the time a macro was started (integer).



S

421

Session.InitialMouseCol and Session.InitialMouseRow contain the text column and row (respectively)
that the mouse pointer was over when the script was started. If the mouse pointer is outside of the
configuration window, the values are clipped to within the window.

The value within this property is only meaningful when accessed from an internal macro. When
accessed through an external OLE Automation controller, the value returned will be the one
established when the last internal macro was executed.

Example
Sub Main
Dim StartX as Integer
Dim StartY as Integer
StartX = Session.InitialMouseCol
StartY = Session.InitialMouseRow
Msgbox "Initial mouse position was Row: " & str(StartY) & " Col: " & str(StartX)

End Sub

See Also
Application and Session Features on page 37

Session.InsertMode
3270 and 5250 sessions only

Syntax
Session.InsertMode

Description
Returns True if the terminal is currently in insert mode (Boolean).

Example
Sub Main
  Dim InsertMode as Boolean
  InsertMode = Session.InsertMode
  If InsertMode = TRUE Then
     MsgBox "You are in insert mode."
  End If
End Sub

Session.InterpretControls
VT, SCO, ANSI, and DG sessions only

Syntax
Session.InterpretControls

Description
Returns or sets whether control characters are interpreted or displayed in the current SmarTerm session
(boolean)

Example
Sub Main
  Dim ControlState as Boolean
  ControlState = Session.InterpretControls
  Session. InterpretControls = True
End Sub

Session.Inverse
VT, SCO, ANSI, and DG sessions only



SmarTerm Macro Guide

422

Syntax
Session.Inverse

Description
Returns or sets the inverse attribute of the current session's display presentation (boolean).

Example
Sub Main
  Dim Inverse State as Boolean
  InverseState = Session.Inverse
  Session.Inverse = True
End Sub

See Also
Application and Session Features on page 37)

Session.IsFieldMark
3270 sessions only

Syntax
Session.IsFieldMark(row, col)

Description
Returns True if the cursor position containing the specified row and column is the beginning of a field
(a field mark); returns False in all other cases (boolean). Parameters are:

Parameter Description

row The row to test (integer).

col The column to test (integer)

Example
Sub Main
  Dim Fieldmark as Boolean

  Fieldmark = Session.IsFieldMark(4,11)
  If Fieldmark = True Then
     MsgBox "You are at the beginning of a field"
  End If
End Sub

Session.IsNumeric
3270 and 5250 sessions only

Syntax
Session.IsNumeric(row, col)

Description
Returns True if the specified character position is within a numeric field (boolean). Parameters are:



S

423

Parameter Description

row The row to test (integer).

col The column to test (integer)

Example
Sub Main
  Dim IsNum as Boolean

  IsNum = Session.IsNumeric(Session.Row, Session.Column)
  If IsNum = True Then
     MsgBox "Cursor is in a numeric field"
  End If
End Sub

Session.IsProtected
3270 and 5250 sessions only

Syntax
Session.IsProtected(row, col)

Description
Returns an indication of whether the specified character position is within a protected field (integer).
Parameters are:

Parameter Description

row The row to test (integer).

col The column to test (integer)

Returns 0 if the specified cursor position is in an unprotected field; returns -1 if the position is a field
mark or an unprotected field; returns 1 in all other cases. If row or col is less than or equal to 0, the
function defaults to the current cursor row or column, respectively. A row or column outside the range
is truncated to fit within the display.

Example
Sub Main
  Dim IsProtected as Integer
' Is there a protected field at row 11, column 4?
  IsProtected = Session.IsProtected(11, 4)
  If IsProtected = 1 Then
     MsgBox "Row 11, Column 4 is a protected field"
  End If
End Sub

Session.KeyboardLocked
3270 and 5250 sessions only

Syntax
Session.KeyboardLocked

Description



SmarTerm Macro Guide

424

Returns the state of the keyboard in SmarTerm (integer). Evaluates to 0 if the keyboard is unlocked; it
evaluates to non-zero for lock conditions. If the lock was the result of an error (alphabetic character in
a numeric field, protected field, field overflow, or “Prog” error), the value is less than 0. If the lock is
the result of a system command or function key, the value is greater than 0.

Example
Sub Main
  Dim KeyboardLocked as Integer
  Dim UserMessage as string
  KeyboardLocked = Session.KeyboardLocked
  if KeyboardLocked = 0 Then
     UserMessage = "Keyboard is unlocked."
  Elseif KeyboardLocked > 0 Then
       UserMessage = "Keyboard locked from a command or key."
  Else
       UserMessage = "Keyboard locked from field overflow."
  End If
  MsgBox UserMessage

End Sub

Session.KeyWait (object)
Syntax

Session.KeyWait

Description
Returns an object supporting access to SmarTerm’s KeyWait feature.

The Session.KeyWait object is used to wait for specific keystrokes or mouse button clicks to be
entered. There is one KeyWait object per-session. Its methods and properties can be divided into three
categories: those used to initialize the wait object, those used to activate a wait, and those used to
check the results of the wait. These categories are as follows:

Initialization
Session.KeyWait.KeyCode
Session.KeyWait.KeyType
Session.KeyWait.Timeout
Session.KeyWait.TimeoutMS
Session.KeyWait.MaxKeyCount

Session.KeyWait.Reset

Activation
Session.KeyWait.Start

Results
Session.KeyWait.Status
Session.KeyWait.Value

Session.KeyWait.KeyCount

The KeyWait object automatically resets to its default (empty) state the first time any of its properties is
set or any of its methods called after a previous KeyWait operation has completed.

Example
Sub Main
' Wait for any key, using the Reset method to insure the following defaults:
' KeyType = smlKEYWCOUNT
' MaxKeyCount = 0
Session.KeyWait.Reset
Session.KeyWait.Start



S

425

' Wait for any key, but give up after 5 seconds
Session.KeyWait.Timeout = 5
Session.KeyWait.Start
If Session.KeyWait.Status = smlWAITTIMEOUT Then

Session.Echo "Tired of waiting"
Else

Session.Echo "Detected keystroke: " & str$(Session.Keywait.Value)
End If
' Wait for either an 'a' or an 'A'
Session.KeyWait.KeyCode = asc("A")
Session.KeyWait.KeyType = smlKEYWNONEXACT
Session.KeyWait.Start
' Wait for an 'A'
Session.KeyWait.KeyCode = asc("A")
Session.KeyWait.KeyType = smlKEYWEXACT
Session.KeyWait.Start
' Wait for three keystrokes
Session.KeyWait.KeyType = smlKEYWCOUNT
Session.KeyWait.MaxKeyCount = 3
Session.KeyWait.Start
' Wait for scancode 33 (the 'F' key on US keyboards)
Session.KeyWait.KeyCode = 33
Session.KeyWait.KeyType = smlKEYWSCAN
Session.KeyWait.Start
' Wait for DEC key 101
Session.KeyWait.KeyCode = 101
Session.KeyWait.KeyType = smlKEYWDECKEY
Session.KeyWait.Start
' Wait for virtual key 69
Session.KeyWait.KeyCode = 69
Session.KeyWait.KeyType = smlKEYWVIRTUAL
Session.KeyWait.Start
' Wait for the click of a mouse button
Session.KeyWait.KeyType = smlKEYWBUTTON
Session.KeyWait.Start
Select Case Session.KeyWait.Value
Case 1

Session.Echo "Detected left mouse button"
Case 2

Session.Echo "Detected middle mouse button"
Case 3

Session.Echo "Detected right mouse button"
End Select

End Sub

See Also
Host Connections on page 35; Application and Session Features on page 37; Objects on page 40

Session.KeyWait.KeyCode
Syntax

Session.KeyWait.KeyCode

Description
Returns or sets the KeyCode value to wait for (integer).

Be sure to also set the KeyType property to qualify the KeyCode value.

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37



SmarTerm Macro Guide

426

Session.KeyWait.KeyCount
Syntax

Session.KeyWait.KeyCount

Description
Returns the number of keys detected by the wait object before a return was made from the Start

method (integer).

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.KeyType
Syntax

Session.KeyWait.KeyType

Description
Returns or sets the type of key to wait for (integer). This property qualifies the value set within the
KeyCode property. The possible values are:

Value Constant Meaning

1 smlKEYWEXACT Non-case folded character/ASCII code

2 smlKEYWNONEXACT Non-case folded character/ASCII code

3 smlKEYWSCAN PC scan code

4 smlKEYWVIRTUAL Virtual key code (Windows specific)

5 smlKEYWDECKEY Emulation specific key code (DECKEY in PSL)

6 smlKEYWBUTTON Mouse button

7 smlKEYWCOUNT Any key (Use the count)

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.MaxKeyCount
Syntax

Session.KeyWait.MaxKeyCount

Description
Returns or sets the maximum number of keys to wait for before returning from the Start method
(integer).

Example
See the examples under Session.KeyWait (object).

See Also



S

427

Application and Session Features on page 37

Session.KeyWait.Reset
Syntax

Session.KeyWait.Reset

Description
Resets the wait object’s properties to their default values. The KeyWait object automatically resets to its
default (empty) state when any of its properties is set or any of its methods called after a previous
KeyWait operation has completed.

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.Start
Syntax

Session.KeyWait.Start

Description
Returns a status value that indicates the reason that the wait ended (integer). Activates the wait object,
returning only when the specified conditions have been met. The status of the KeyWait operation is
returned by the object’s Start method and is also available through its Status property. The possible
values are shown in the table below.

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.Status
Syntax

Session.KeyWait.Status

Description
Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the KeyWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.



SmarTerm Macro Guide

428

Value Constant Meaning

1 smlWAITSUCCESS Successful match

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.Timeout
Syntax

Session.KeyWait.Timeout

Description
Returns or sets the wait object’s timeout value, in seconds (integer). The default value is 0, which
means that no timeout will occur.

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.TimeoutMS
Syntax

Session.KeyWait.TimeoutMS

Description
Sets the wait object’s timeout value, in milliseconds (integer). The default value is 0, which means that
no timeout will occur.

Example
See the examples under Session.KeyWait (object).

See Also
Application and Session Features on page 37

Session.KeyWait.Value
Syntax

Session.KeyWait.Value

Description
Returns the keystroke value that caused the Start method to return (integer).

Example
See the examples under Session.KeyWait (object).

See Also



S

429

Application and Session Features on page 37

Session.Language
Syntax

Session.Language

Description
Returns or sets a language for the session (integer). Possible values are:

Value Constant Meaning

1031 smlGERMAN German.

1033 smlENGLISH English.

1036 smlFRENCH French.

1034 smlSPANISH Spanish.

See Also
Application.InstalledLanguages
Application.StartupLanguage

Example
Sub Main
Dim Language as Integer
Language = Session.Language
If Language <> smlENGLISH Then

MsgBox "Switching the current language to English"
Session.Lanugage = smlENGLISH

End If
End Sub

See Also
Application and Session Features on page 37

Session.LoadKeyboardMap
Syntax

Session.KeyboardMap keymapname$

where keymapname$ is the name of the keyboard map to load (string).

Description
Loads a keyboard map and returns the operation's completion status (boolean). To load the default
keyboard map, specify the string "".

Example
Sub Main
  If Session.LoadKeyboardMap("Keymap1") = FALSE Then
     Session.Echo "Error loading Keymap1, restoring default."
     Session.LoadKeyboardMap "<DEFAULT>"
  End If
End Sub

See Also
Application and Session Features on page 37



SmarTerm Macro Guide

430

Session.LoadSmarTermButtons
Syntax

Session.LoadSmarTermButtons palettename

where palettename is the name of the SmarTerm Buttons palette to load (string).

Description
Loads and displays a SmarTerm Buttons palette and returns the operation’s completion status
(boolean). This palette name is optional. If you omit it, the palette associated with the session is
loaded.

Example
Sub Main
If Session.LoadSmarTermButtons("c:\SmarTerm\Buttons\toolbar.bpx") = FALSE Then

MsgBox "Error loading SmarTerm Buttons"
End If

End Sub

See Also
Application and Session Features on page 37; User Interaction on page 39

Session.LockStep (object)
Syntax

Session.LockStep

Description
Activates the LockStep state to regulate emulator data flow for the Collect, EventWait, and StringWait

features (object). The Session.Collect, Session.EventWait, and Session.StringWait features are useful
when you need to synchronize macro operations with host operations. For example, the macro below
uses StringWait to automate the process of connecting to a host:

 ' A login macro, without LockStep
  Sub Main
    Session.StringWait.MatchString "Username: "
    Session.StringWait.Start
    Session.Send "MyName" + Chr$(13)
    Session.StringWait.MatchString "Password: "
    Session.StringWait.Start
    Session.Send "MyPassword" + Chr$(13)
  End Sub

Certain timing problems can, however, prevent a macro such as this from operating reliably. If the
host's responsiveness is significantly better than that of your local machine, it would be possible for
the Session.Send "MyName" + Chr$(13) statement to elicit the "Password: " prompt from the host before
the subsequent macro statement, the StringWait, has been executed. Some, or all, of the "Password:"

string's characters could be processed through the emulator before the StringWait feature has a chance
to begin watching for this string.

The LockStep feature addresses this timing problem. Here is the login macro again, with LockStep

included:
 ' A login macro, with LockStep
  Sub Main
    Dim LockSession as Object
    Set LockSession = Session.LockStep
    LockSession.Start
    Session.StringWait.MatchString "Username: "
    Session.StringWait.Start
    Session.Send "MyName" + Chr$(13)



S

431

    Session.StringWait.MatchString "Password: "
    Session.StringWait.Start
    Session.Send "MyPassword" + Chr$(13)
    Set LockSession = Nothing
  End Sub

When the LockStep state is active, data arriving from the host is not processed by the emulator until
any EventWait, StringWait or Collect macro statements have had a chance to parse that data for match
strings. EventWait, StringWait and Collect are 'privileged' against the LockStep state to support
synchronized data collection.

To instigate the LockStep state, it is necessary to assign the return value from Session.LockStep to an
object pointer and to then use this object point to call the LockStep object’s Start method. Calling the
Start method without its optional parameter starts a LockStep state that persists until it is explicitly
deactivated. It is also possible to supply a parameter to this method that specifies the number of
seconds that the LockStep state should remain in effect. For example, the statements below will
activate a LockStep state for 12 seconds:

    Dim L as Object
    Set L = Session.LockStep
    L.Start 12

This state remains in effect until either the Reset method is called, the object pointer is assigned the
special value of Nothing, the object variable goes out of scope, or the macro is halted (e.g. by
terminating a debugging session). Note that it will not work to access the Start method directly, you
must assign the return value of Session.LockStep to an object variable and then access the Start

method through that object variable.

As an example of how LockStep is important for use with Session.Collect, consider the case where it
is necessary for your macro to watch for a "StartOfMessage" tag from the host, and then collect all
subsequent data until an "EndOfMessage" tag is detected. Without LockStep, this would look like:

 '! Collect after StringWait, no LockStep
  Sub Main
    Session.StringWait.MatchString "StartOfMessage"
    Session.StringWait.Start
    Session.Collect.TermString = "EndOfMessage"
    Session.Collect.Start
  End Sub

Without the LockStep feature, the emulator may process the first portion of the message data before the
Collect statement is executed. To prevent data loss, LockStep can be applied as follows:

'! Collect after StringWait, with LockStep
Sub Main
Dim L as Object
Set L = Session.LockStep
L.Start
Session.StringWait.MatchString "StartOfMessage"
Session.StringWait.Start
Session.Collect.TermString = "EndOfMessage"
Session.Collect.Start
L.Reset

End Sub

Example
See the examples in the Comments section above.

See Also
Host Connections on page 35; Application and Session Features on page 37; Objects on page 40



SmarTerm Macro Guide

432

Session.LockStep.Reset
Syntax

Session.LockStep.Reset

Description
Deactivates a LockStep state.

Example
See the examples shown for Session.LockStep (object).

See Also
Application and Session Features on page 37

Session.LockStep.Start
Syntax

Session.LockStep.Start [seconds]

where seconds is the number of seconds that the LockStep state should last (optional) (integer).

Description
Activates a LockStep state. To instigate a LockStep state, it is necessary to assign the return value from
Session.LockStep to an object pointer and to then use this object point to call the LockStep object’s
Start method. Calling the Start method without its optional parameter starts a LockStep state that
persists until it is explicitly deactivated. It is also possible to supply a parameter to this method that
specifies the number of seconds that the LockStep state should remain in effect.

Note:
It will not work to access the Start method directly. You must assign the return value of
Session.LockStep to an object variable and then access the Start method through that object variable.

Example
See the examples shown for Session.LockStep (object).

See Also
Application and Session Features on page 37

Session.MouseCol
Not available for Wyse sessions

Syntax
Session.MouseCol

Description
Returns the column of the current mouse position in SmarTerm's session window (integer).

Example
Sub Main
  Dim mr as Integer
  Dim mc as Integer

  mr = Session.MouseRow
  mc = Session.MouseCol
  MsgBox "Mouse cursor is on Row: " & Str(mr) & " Column: " & Str(mc)
End Sub

See Also



S

433

Application and Session Features on page 37

Session.MouseRow
Not available for Wyse sessions

Syntax
Session.MouseRow

Description
Returns the row of the current mouse position (integer).

Example
Sub Main
  Dim mr as Integer
  Dim mc as Integer

  mr = Session.MouseRow
  mc = Session.MouseCol
  MsgBox "Mouse cursor is on Row: " & Str(mr) & " Column: " & Str(mc)
End Sub

See Also
Application and Session Features on page 37

Session.NativeScreenText
3270 and 5250 sessions only

Syntax
Session.NativeScreenText(startrow, startcol, endrow, endcol)

Description
Returns the specified screen text from SmarTerm’s terminal window, in EBCDIC (string). Parameters
are:

Parameter Description

startrow The starting row of the text to retrieve.

startcol The starting column of the text to retrieve.

Endrow The ending row of the text to retrieve.

Endcol The ending column of the text to retrieve.

If any parameter has a value of 0, the row or column used is either the first or last (start and end
respectively). Field marks are replaced by null characters. Any values out of bounds are truncated to
the end of the display buffer.

Example
Sub Main
  Dim strText as String
' Read screen from row 4, column 11 through row 5, column 20
  strText = Session.NativeScreenText(4, 11, 5, 20)
End Sub

See Also
Application and Session Features on page 37



SmarTerm Macro Guide

434

Session.Normal
Syntax

Session.Normal

VT, SCO, ANSI, and DG sessions only

Description
Returns or sets the normal attribute of SmarTerm's display presentation (boolean)

Example
Sub Main
  Dim NormState as Boolean
  NormState = Session.Normal
  Session.Normal = True
End Sub

See Also
Application and Session Features on page 37

Session.Online
Syntax

Session.Online

Description
Returns or sets the status of the session's online state (boolean).

Example
Sub Main
  Dim OnLineState as Boolean
  OnLineState = Session.OnLine
  If OnLineState = FALSE Then
     Session.Echo "Cannot continue because you are offline"
     Session.Online = TRUE
  End If
End Sub

Session.Page
VT and SCO sessions only

Syntax
Session.Page

Description
Returns or sets the current page in SmarTerm's active session type (integer).

Example
Sub Main
  Dim PageNumber as Integer
  PageNumber = Session.Page
   Session.Page = PageNumber + 1
End Sub

See Also
Application and Session Features on page 37

Session.ReplayCaptureFile
Syntax



S

435

Session.ReplayCaptureFile "<captured filename and path>"

Description
Replays the specified SmarTerm capture file. The filename parameter must have quotes around it. If no
file name is specified, the Replay captured file dialog is opened. The filename parameter may also
contain the path to the file. If no path is specified, SmarTerm looks in the SmarTerm transfer folder. If
the path/filename does not exist, the Session.ReplayCaptureFile command is ignored.

Examples
Brings up the Replay captured file dialog:

Session.ReplayCaptureFile ""

Replays the file capture called file.cap. It assumes the file is in the SmarTerm transfer folder:
Session.ReplayCaptureFile "file.cap"

Replays the file file.cap located in c:\temp:
Session.ReplayCaptureFile "c:\temp\file.cap"

See Also
Application and Session Features on page 37

Session.Row
Syntax

Session.Row

Description
Returns or sets where the cursor is placed in the active SmarTerm session window (integer).

Example
Sub Main
  Dim CurrentRow as Integer
  CurrentRow = Session.Row
  Session.Row = CurrentRow + 1
End Sub

See Also
Application and Session Features on page 37

Session.ScreenText
Syntax

Session.ScreenText(row, column, page, chars)

Description
Returns the specified screen text from SmarTerm’s terminal window (string). Parameters are:

Parameter Description

row The row of the text to retrieve.

column The column of the text to retrieve.

page The page of the text to retrieve.

chars The number of characters to retrieve.



SmarTerm Macro Guide

436

Example
Sub Main
  Dim ScnText as String

  ScnText = Session.ScreenText(4, 11, 1, 12)
  Session.Echo ScnText
End Sub

See Also
Application and Session Features on page 37

Session.ScreenToFile
Syntax

Session.ScreenToFile(filename$)

where filename$ is the name of the file in which to write the screen data (string).

Description
Returns the completion status of the screen capture (boolean). This method captures all text pages and
places them in the ASCII text file named with filename$. Each time this method is called with the
same filename, the previous file is overwritten.

Example
Sub Main
Dim RetVal as Boolean
RetVal = Session.ScreenToFile("scntext.txt")
If RetVal = False Then

Session.Echo "An Error Occurred"
End If

End Sub

See Also
Drive, Folder, and File Access on page 34; Application and Session Features on page 37

Session.SelectScreenAtCoords
Syntax

Session.SelectScreenAtCoords(top%, left%, bottom%, right%)

Description
Selects the text within the boundaries set by top%, left%, bottom%, and right%. If the selection is
successful this method returns True. Otherwise, it returns False.

Note:
This method is not supported in graphics mode emulation.

Parameter Description

top% The top row of the text to select.

left% The left column of the text to select.

bottom% The bottom row of the text to select.

right% The right column of the text to select.

Example



S

437

'This example sets the selection and reports its success
Sub Main

SelectedText = Session.SelectScreenAtCoords(0, 0, 10, 10)
If SelectedText Then
ScnText$ = Session.ScreenText(0,0,1,10)
MsgBox("Selected text: " & ScnText$)

Else
MsgBox("Nothing to select.")

End If
End Sub

See Also
Application and Session Features on page 37

Session.SelectionEndColumn
Syntax

Session.SelectionEndRow

Description
Returns or sets the ending column of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartRow, Session.SelectionStartColumn, and
Session.SelectionEndRow. The text selection is not marked until all four elements have been set so as
to define a valid selection. If there is no selection, or if the four elements define an invalid selection
box, this property returns -1.

Note:
This method is not supported in graphics mode emulation.

Example
'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
MsgBox("Selecting entire screen.")
Session.SelectionStartRow = 0
Session.SelectionStartColumn = 0
Session.SelectionEndRow = Session.TotalRows
Session.SelectionEndColumn = Session.TotalColumns

End Sub

See Also
Application and Session Features on page 37

Session.SelectionEndRow
Syntax

Session.SelectionEndRow

Description
Returns or sets the ending row of the selection (integer). This property is an element of the quartet that
also includes Session.SelectionStartRow, Session.SelectionStartColumn, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set so
as to define a valid selection. If there is no selection, or if the four elements define an invalid selection
box, this property returns -1.

Note:
This method is not supported in graphics mode emulation.



SmarTerm Macro Guide

438

Example
'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
MsgBox("Selecting entire screen.")
Session.SelectionStartRow = 0
Session.SelectionStartColumn = 0
Session.SelectionEndRow = Session.TotalRows
Session.SelectionEndColumn = Session.TotalColumns

End Sub

See Also
Application and Session Features on page 37

Session.SelectionStartColumn
Syntax

Session.SelectionStartColumn

Description
Returns or sets the starting column of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartRow, Session.SelectionEndRow, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set so
as to define a valid selection. If there is no selection, or if the four elements define an invalid selection
box, this property returns -1.

Note:
This method is not supported in graphics mode emulation.

Example
'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
MsgBox("Selecting entire screen.")
Session.SelectionStartRow = 0
Session.SelectionStartColumn = 0
Session.SelectionEndRow = Session.TotalRows
Session.SelectionEndColumn = Session.TotalColumns

End Sub

See Also
Application and Session Features on page 37

Session.SelectionStartRow
Syntax

Session.SelectionStartRow

Description
Returns or sets the starting row of the selection (integer). This property is an element of the quartet
that also includes Session.SelectionStartColumn, Session.SelectionEndRow, and
Session.SelectionEndColumn. The text selection is not marked until all four elements have been set so
as to define a valid selection. If there is no selection, or if the four elements define an invalid selection
box, this property returns -1.

Note:
This method is not supported in graphics mode emulation.



S

439

Example
'This example selects the entire screen, using the Session
' object to determine the size of the screen.
Sub Main
MsgBox("Selecting entire screen.")
Session.SelectionStartRow = 0
Session.SelectionStartColumn = 0
Session.SelectionEndRow = Session.TotalRows
Session.SelectionEndColumn = Session.TotalColumns

End Sub

See Also
Application and Session Features on page 37

Session.SelectionRectangular
Syntax

Session.SelectionRectangular

Description
Returns or sets whether or not the selection is rectangular (Boolean). If this property is True, the
selection is rectangular, selecting a block of text. If the property is False, the selection is linear,
selecting text line by line.

Note:
This method is not supported in graphics mode emulation.

Example
'This example toggles the selection between rectangular and
' linear, regardless of the current setting.
Sub Main
RectSel = Session.SelectionRectangular
If RectSel Then
MsgBox("Selection is rectangular. Changing to linear.")

Else
MsgBox("Selection is linear. Changing to rectangular.")

End If
RectSel = Not RectSel

End Sub

See Also
Application and Session Features on page 37

Session.SelectionType
Syntax

Session.SelectionType

Description
Returns the status of the selection (integer). If Session.SelectionType is 0 (zero), then there is no
selection. If it is 1, then the selection is text.

Note:
This method is not supported in graphics mode emulation.

Example
'This displays the setting of the selection type.
Sub Main



SmarTerm Macro Guide

440

fSel= Session.SelectScreenAtCoords(0,0,10,10)
If Session.SelectionType = 0 Then
MsgBox("Nothing selected.")

Else
MsgBox("Something selected.")

End If
End Sub

See Also
Application and Session Features on page 37

Session.Send
Syntax

Session.Send text$

where text$ is the text to send (string).

Description
Sends text to the host. 8-bit to 7-bit control mapping is performed before the string is sent when
operating in a 7-bit controls environment.

Note:
IBM 3270 and 5250 session do not support the use of key mnemonics (such as <F1>) with this
command. To send keystrokes to an IBM 3270 or 5250 host, use Session.SendKey.

Example
Sub Main
  Session.Send "Mail" & Chr$(13)
  Session.Send "Read NewMail<CR><LF>"
End Sub

See Also
Character and String Manipulation on page 33; Application and Session Features on page 37;
Session.SendKey on page 440

Session.SendKey
3270 and 5250 sessions only

Syntax
Session.SendKey key$

where key$ is a special SmarTerm function to send (string).

Description
Sends a special code to the host. Supported functions are marked with an X in the following table.

Function 3270 Support 5250 Support

ALTCURSOR X

ATTN X X

BLINKCURSOR X



S

441

Function 3270 Support 5250 Support

BLUE X

BS X X

BTAB X X

CLEAR X X

CLICK X

CURSORDOWN X X

CURSORLEFT X X

CURSORRIGHT X X

CURSORUP X X

DELETE X X

DELETEWORD X

DUP X X

ENTER X X

ERASEEOF X

ERASEFIELD X

ERASEINPUT X X

EXTSEL X

FIELDCOLOR X

FIELDHILIGHT X

FM X

FTAB X X

GREEN X

HOME X X

INSERT X X

NEWLINE X X

PA1 X

PA2 X

PA3 X

PF1 through PF24 X X

PINK X



SmarTerm Macro Guide

442

Function 3270 Support 5250 Support

RED X

REVERSE X

SELATTR X

SYSREQ X X

TNRESET X X

TREQ X X

TURQ X

UNDERSCORE X

WHITE X

YELLOW X

Example
Sub Main
  Session.SendKey "CURSORDOWN"
End Sub

See Also
Application and Session Features on page 37

Session.SendLiteral
Syntax

Session.SendLiteral text$

where text$ is the text to send (string).

Description
Sends text to the host without character translation. The string expression is sent to the host
untranslated. 8-bit to 7-bit control mapping is performed before the string is sent when operating in a
7-bit controls environment.

Example
Sub Main
  Session.SendLiteral "Read Newmail"
End Sub

See Also
Application and Session Features on page 37

Session.SetFontSize
Syntax

Session.SetFontSize width% height%

Description
Sets the font size of the characters appearing in the SmarTerm session window. Parameters are:



S

443

Parameter Definition

width% The font width (integer).

height% The font height (integer)

If either the width or height parameter is set to 0, the auto-fontsize state will be established.

Example
Sub Main
Session.SetFontSize 6, 10

End Sub

See Also
Application and Session Features on page 37

Session.SetHotSpotsFile
Syntax

Session.SetHotSpotsFile(Filename)

Description
Loads the HotSpot file specified with Filename (string), returning TRUE if successful, FALSE if the
specified file could not be found or if it contains an error. If you specify an empty string, this method
unloads the current HotSpot file.

Filename can specify the complete path to the desired HotSpots file. If no path is specified, the
program looks in the User HotSpot folder.

If Session.SetHotSpotsFile returns FALSE, the original HotSpots file should remain loaded. However,
your code should always check, as shown in the example below.

Example
'This example loads the HotSpot file 3270_A.HOT.
Sub Main
  FileToLoad$= "3270_A.HOT"

' Check to see if we need to load the file.
  If Session.HotSpotsFileName <> FileToLoad$ Then

' Now load the file, checking for success
    If Session.SetHotSpotsFile(FileToLoad$)= TRUE Then

' Success!
      MsgBox FileToLoad$ & " now loaded."

' Uh-oh, didn't work. Determine whether anything is loaded
' and tell user.
    Else
      MsgBox "Unable to load " & FileToLoad$
      CurrentFile$= Session.HotSpotsFileName
      If CurrentFile$ <> "" Then
        MsgBox CurrentFile$ & " still loaded."
      Else
        MsgBox "No HotSpots loaded."
      End If
    End If
  End If
End Sub

See Also



SmarTerm Macro Guide

444

Application and Session Features on page 37; User Interaction on page 39

Session.StringWait (object)
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait

Description
Returns an object supporting access to SmarTerm’s StringWait feature. The Session.StringWait object
is used to wait for specific data to arrive from the host. There is one StringWait object per-session. Its
methods and properties can be divided into three categories: those used to initialize the wait object,
those used to activate a wait, and those used to check the results of the wait. These categories are as
follows:

Initialization
• Session.StringWait.Reset

• Session.StringWait.MatchString

• Session.StringWait.MatchStringExact

• Session.StringWait.MatchStringEx

• Session.StringWait.Timeout

• Session.StringWait.TimeoutMS

• Session.StringWait.MaxCharacterCount

Activation
• Session.StringWait.Start

Results
• Session.StringWait.Status

The StringWait object automatically resets to its default (empty) state the first time any of its
properties is set or any of its methods called after a previous StringWait operation has completed.

In certain cases, it may be necessary to use the Lockstep feature to insure that the StringWait object is
presented with all data from the host that is significant. See the discussion of Session.Lockstep for
further details.

Example
Sub Main
  ' Simple StringWait -- a single match string
  Session.StringWait.MatchString "Login: "
  Session.StringWait.Start
  if Session.StringWait.Status = 1 Then
     Session.Echo "Match string detected"
  End If
  ' Multiple match strings -- where the order of the
  ' MatchString calls define the ordinals.
  Dim MatchOrdinal as integer
  Session.StringWait.MatchString "One"
  Session.StringWait.MatchString "Two"
  Session.StringWait.MatchString "Three"
  MatchOrdinal = Session.StringWait.Start
  Select Case MatchOrdinal
    Case 1
        Session.Echo "Detected a One"
    Case 2



S

445

        Session.Echo "Detected a Two"
    Case 3
        Session.Echo "Detected a Three"
  End Select
  ' Using MatchStringEx, a timeout, and a max character count
  Session.StringWait.MatchStringEx "One", TRUE, 3
  Session.StringWait.MatchStringEx "Two", FALSE, 5
  Session.StringWait.Timeout = 25
  Session.StringWait.MaxCharacterCount = 10
  MatchOrdinal = Session.StringWait.Start
  Select Case MatchOrdinal
    Case 3
        Session.Echo "Detected a One"
    Case 5
        Session.Echo "Detected a Two"
    Case smlWAITTIMEOUT
        Session.Echo "Timeout expired"
    Case smlWAITMAXCHARS
        Session.Echo "Max characters exceeded"
  End Select
End Sub

See Also
Character and String Manipulation on page 33; Application and Session Features on page 37; Objects
on page 40

Session.StringWait.MatchString
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.MatchString(pattern_string)

where pattern_string is the string to register for match detection.

Description
Registers a match pattern with the StringWait object. When the StringWait operation is started, using
its Start method, it will be terminated when a match is detected with a registered string in the host-to-
terminal data stream. Returns an integer that indicates the ordinal value associated with the registered
string.

The comparison is case-insensitive. If case sensitivity is desired, use the MatchStringExact method
instead. The value returned by the method is the ordinal number that will be returned by the Start

method (and subsequently, the Status property) if this is the pattern which terminates the StringWait

operation. Note that it is not necessary to record this ordinal if you take advantage of the fact that the
first pattern string registered will be ordinal 1, the second will be ordinal 2, etc.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.MatchStringEx
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.MatchStringEx(pattern_string, case_sense, ordinal)

Description



SmarTerm Macro Guide

446

Registers a match pattern with the StringWait object. When the StringWait operation is started, using
its Start method, it will be terminated when a match is detected with a registered string in the host-to-
terminal data stream. Returns an integer that indicates the ordinal value associated with the registered
string. Parameters are:

Parameter Description

pattern_string The string to register for match detection (string).

case_sense The comparison is case-sensitive if the second parameter is True

(boolean).

Ordinal The ordinal value of the match pattern is specified by the third
parameter. If this is <= 0, the ordinal value of the string is set to one
greater than the largest ordinal value assigned so far (integer).

Multiple match patterns can share a single ordinal value. The value returned by the method is the
ordinal number that will be returned by the Start method (and subsequently, the Status property) if
this is the pattern which terminates the StringWait operation. Note that it is not necessary to record
this ordinal since the value returned will be that specified as the "ordinal" entry parameter.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.MatchStringExact
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.MatchStringExact(pattern_string)

where pattern_string is the string to register for match detection.

Description
Registers a match pattern with the StringWait object. When the StringWait operation is started, using
its Start method, it will be terminated when a match is detected with a registered string in the host-to-
terminal data stream. Returns an integer that indicates the ordinal value associated with the registered
string.

The comparison is case-sensitive. If case insensitivity is desired, use the MatchString method instead.
The value returned by the method is the ordinal number that will be returned by the Start method
(and subsequently, the Status property) if this is the pattern which terminates the StringWait

operation. Note that it is not necessary to record this ordinal if you take advantage of the fact that the
first pattern string registered will be ordinal 1, the second will be ordinal 2, etc.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37



S

447

Session.StringWait.MaxCharacterCount
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.MaxCharacterCount

Description
Sets the maximum number of characters to StringWait before the StringWait operation terminates.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.Reset
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.Reset

Description
Resets the wait object’s properties to their default values. The StringWait object automatically resets
to its default (empty) state when any of its properties is set or any of its methods called after a
previous StringWait operation has completed.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.Start
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.Start

Description
Returns a status value that indicates the reason that the wait ended (integer). This method activates the
wait object, returning only when the specified conditions have been met. The status of the StringWait

operation is returned by the object’s Start method and is also available through its Status property.
The possible values are shown in the table below.

Value Constant Meaning

>=1 N/A Ordinal indicating successful match (see below)

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error



SmarTerm Macro Guide

448

The value returned in the case of a match is the ordinal corresponding to the string which was
matched. This ordinal is determined by the method chosen to register the match strings. When either
the MatchString or MatchStringExact methods are used, the ordinal is determined by the sequence of
the calls made to these methods. When the MatchStringEx method is used, the ordinal is determined by
the caller, as an entry parameter to the method call. See the Comments for these methods for further
details.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.Status
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.Status

Description
Returns the most recent value returned by the Start method, or 0 if the wait object has been reset
(integer). The status of the StringWait operation is returned by the object’s Start method and is also
available through its Status property. The possible values are shown in the table below.

Value Constant Meaning

>=1 N/A Ordinal indicating successful match (see below)

-1 smlWAITTIMEOUT Timeout

-2 smlWAITMAXCHARS Maximum characters

-15 smlWAITERROR Miscellaneous error

The value returned in the case of a match is the ordinal corresponding to the string which was
matched. This ordinal is determined by the method chosen to register the match strings. When either
the MatchString or MatchStringExact methods are used, the ordinal is determined by the sequence of
the calls made to these methods. When the MatchStringEx method is used, the ordinal is determined by
the caller, as an entry parameter to the method call. See the Comments for these methods for further
details.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.Timeout
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.Timeout

Description



S

449

Sets the maximum number of seconds to allow for the StringWait operation. This property is read-
write.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.StringWait.TimeoutMS
VT, SCO, ANSI, and DG sessions only

Syntax
Session.StringWait.TimeoutMS

Description
Sets the maximum number of milliseconds to allow for the StringWait operation. This property is read-
write.

Example
See the examples under Session.StringWait (object).

See Also
Application and Session Features on page 37

Session.TotalColumns
Syntax

Session.TotalColumns

Description
Returns the total number of columns available in the active SmarTerm session (integer).

Example
Sub Main
  Dim Cols as Integer
  Cols = Session.TotalColumns
  If Cols <> 132 Then
     Session.Echo "This application will not run correctly unless " & _
            "you are in 132 column mode"
  End If
End Sub

See Also
Application and Session Features on page 37

Session.TotalPages
Syntax

Session.TotalPages

Description
Returns the total number of pages available in the active session (integer).

Example
Sub Main
  Dim Pages as Integer
  Pages = Session.TotalPages



SmarTerm Macro Guide

450

  Session.Echo "This emulation type supports " & Pages & " pages."
End Sub

See Also
Application and Session Features on page 37

Session.TotalRows
Syntax

Session.TotalRows

Description
Returns the total number of rows available in the active session (integer).

Example
Sub Main
  Dim Rows as Integer
  Rows = Session.TotalRows
  If Rows <> 24 Then
     Session.Echo "Please set number of rows to 24"
  End If
End Sub

See Also
Application and Session Features on page 37

Session.Transfer
Syntax

Session.Transfer

Description
Returns the Transfer object for the session. The Session.Transfer property is intended for use by
external VBA controllers. The predefined Transfer object exists for use by internal macros.

Example
Dim MyTransfer as Object
MyTransfer = Session.Transfer

Session.TransferProtocol
Syntax

Session.TransferProtocol(protocolname)

Description
Sets the file transfer protocol in the active SmarTerm session, returning the operation’s completion
status (boolean). protocolname is the name of the new file transfer protocol to establish (string).
Possible values are:

FTP
KERMIT
XMODEM
YMODEM
ZMODEM
IND$FILE

Example
Sub Main
  Dim RetVal as Boolean
  RetVal = Session.TransferProtocol("XMODEM")
  If RetVal Then



S

451

     Session.Echo "Protocol set to XMODEM"
  Else
     Session.Echo "Unable to set protocol to XMODEM"
  End If
End Sub

See Also
File Transfer on page 33; Application and Session Features on page 37; Objects on page 40

Session.TranslateBinary
Syntax

Session.TranslateBinary

Description
Returns or sets whether character translation is applied by file transfers of binary files (boolean).

Note:
This property does not apply to IND$FILE transfers, or to text file transfers such as those with the
Session.Capture, Session.TransmitFile, or Session.TransmitFileUntranslated methods.

Example
Sub Main
  Session.TranslateBinary = True
  Transfer.SendFile "ToHost.txt"
End Sub

See Also
File Transfer on page 33; Application and Session Features on page 37

Session.TranslateText
Syntax

Session.TranslateText

Description
Returns or sets whether character translation from the host format to the PC format is applied by
Session.Capture and Session.TransmitFile (boolean).

Note:
This property does not apply to IND$FILE, where all translation is done in ANSI or ASCII. Neither
does it affect the translation of character mnemonics to actual characters (such as "<CR>" to a
carriage return), which is handled by the choice of the Session.Transmit method (translated) or the
Session.TransmitFileUntranslated method (not translated).

Example
Sub Main
  Session.TranslateText = True
  Session.TransmitFile "ToHost.txt"
End Sub

See Also
File Transfer on page 33; Application and Session Features on page 37

Session.TransmitFile
Syntax



SmarTerm Macro Guide

452

Session.TransmitFile(filename$)

where filename$ is the name of the file to send to the host (string).

Description
Returns the operation’s completion status (boolean). Sends the specified ASCII file to the host,
translating character mnemonics into the actual characters (such as "<CR>" to a carriage return). If you
do not want this character translation to occur, use the Session.TransmitFileUntranslated method.

Note:
The translation of characters from PC format to host format is controlled by the setting of the
Session.TranslateText property.

Example
Sub Main
  Dim RetVal as Boolean
 'Create the file on a VAX host.
  Session.Send "create DataFile.Txt<CR>"
  Sleep 2000
 'Start sending the file.
  RetVal = Session.TransmitFile("<path to valid text file>")
  If RetVal = True Then
     Session.Send "^Z"
  Else
     Session.Send "^Y"
     Session.Echo "An error occurred transmitting the file."
  End If
End Sub

See Also
File Transfer on page 33; Application and Session Features on page 37

Session.TransmitFileUntranslated
Syntax

Session.TransmitFileUntranslated(filename$)

where filename$ is the name of the file to send to the host (string).

Description
Returns the operation’s completion status (boolean). Sends the specified ASCII file to the host without
translating character mnemonics into the actual characters (such as "<CR>" to a carriage return). If you
do want this character translation to occur, use the Session.TransmitFile method.

Note:
The translation of characters from PC format to host format is controlled by the setting of the
Session.TranslateText property.

Example
Sub Main
  Dim RetVal as Boolean
 'Create the file on a VAX host.
  Session.Send "create DataFile.Txt<CR>"
  Sleep 2000
 'Start sending the file.
  RetVal = Session.TransmitUntranslated("c:\DataFile.Txt")
  If RetVal = True Then
     Session.Send "^Z"
  Else



S

453

     Session.Send "^Y"
     Session.Echo "An error occurred transmitting the file."
  End If
End Sub

See Also
File Transfer on page 33; Application and Session Features on page 37

Session.TriggersActive
Syntax

Session.TriggersActive

Description
Sets or returns the state of the Triggers feature (Boolean). If set to TRUE then Triggers are active; if set
to FALSE then Triggers are turned off.

Example
Sub Main

If Session.TriggersActive = TRUE Then
   MsgBox "Triggers now on. Turning Triggers off."
   Session.TriggersActive = FALSE
Else
MsgBox "Triggers now off. Turning Triggers on."
   Session.TriggersActive = TRUE
End If

End Sub

See Also
Application and Session Features on page 37

Session.TypeFile
VT, SCO, ANSI, and DG sessions only

Syntax
Session.TypeFile(filename$)

where filename$ is the name of the file to send to the display (string).

Description
Returns the operation’s completion status (boolean). Displays file’s contents on the screen as if it had
been sent by the host.

Example
Sub Main
  Dim RetVal as Boolean
  RetVal = Session.TypeFile("c:\DataFile.Txt")
  If RetVal = False Then
     Session.Echo "An error occurred"
  End If
End Sub

Session.Underline
VT, SCO, ANSI, and DG sessions only

Syntax
Session.Underline



SmarTerm Macro Guide

454

Description
Returns or sets the underline attribute of the display presentation (boolean)

Example
Sub Main
  Dim Underline State as Boolean
  Underline State = Session.Underline
  Session.Underline = True
End Sub

See Also
Application and Session Features on page 37

Session.UnloadSmarTermButtons
Syntax

Session.UnloadSmarTermButtons

Description
Unloads and hides a palette associated with the session and returns the operation’s completion status
(boolean).

Example
Sub Main
If Session.UnloadSmarTermButtons = FALSE Then

MsgBox "Error unloading SmarTerm Buttons"
End If

End Sub

See Also
Application and Session Features on page 37; User Interaction on page 39

Session.Visible
Syntax

Session.Visible

Description
Returns or sets the visible state of the SmarTerm session (boolean). This property can be used to make
a SmarTerm session invisible.

Example
Sub Main
Dim Visible as Boolean
Visible = Session.Visible
Session.Visible = False

End Sub

See Also
Application and Session Features on page 37

Session.WindowState
Syntax

Session.WindowState

Description
Returns or sets a SmarTerm session's window state (integer). Possible values are:



S

455

Value Constant Meaning

0 smlMINIMIZE The window is minimized.

1 smlRESTORE The window is restored.

2 smlMAXIMIZE The window is maximized.

Example
Sub Main
Dim WinState as Integer
WinState = Session.WindowState
If WinState = smlMINIMIZE Then

Session.WindowState = smlMAXIMIZE
End If

End Sub

See Also
Application and Session Features on page 37

Set
Syntax 1

Set object_var = object_expression

Syntax 2
Set object_var = New object_type

Syntax 3
Set object_var = Nothing

Description
Assigns a value to an object variable.

Syntax 1

The first syntax assigns the result of an expression to an object variable. This statement does not
duplicate the object being assigned but rather copies a reference of an existing object to an object
variable.

The object_expression is any expression that evaluates to an object of the same type as the object_

var.

With data objects, Set performs additional processing. When the Set is performed, the object is
notified that a reference to it is being made and destroyed. For example, the following statement
deletes a reference to object A, then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2

In the second syntax, the object variable is being assigned to a new instance of an existing object
type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (i.e., the Sub or Function in which
the variable is declared ends), the object is destroyed.

Syntax 3



SmarTerm Macro Guide

456

The reserved keyword Nothing is used to make an object variable reference no object. At a later time,
the object variable can be compared to Nothing to test whether the object variable has been
instantiated:

Set a = Nothing
  :
If a Is Nothing Then Beep

Example
Sub Main
  Dim document As Object
  Dim page As Object
  Set document = GetObject("c:\resume.doc")
  Set page = Document.ActivePage
  Session.Echo page.name
End Sub

See Also
Objects on page 40

SetAttr
Syntax

SetAttr pathname, attributes

Description
Changes the attribute pathname to the given attribute. A runtime error results if the file cannot be
found. The SetAttr statement accepts the following named parameters:

Parameter Description

pathname String containing the name of the file.

Attributes Integer specifying the new attribute of the file.

The attributes parameter can contain any combination of the following values:

Constant Value Includes

ebNormal 0 Turns off all attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

The attributes can be combined using the + operator or the binary Or operator.

Example



S

457

Sub Main
  Open "test.dat" For Output Access Write As #1
  Close
  Session.Echo "The current file attribute is: " & GetAttr("test.dat")
  SetAttr "test.dat",ebReadOnly Or ebSystem
  Session.Echo "The file attribute was set to: " & GetAttr("test.dat")
End Sub

See Also
Drive, Folder, and File Access on page 34

Sgn
Syntax

Sgn(number)

Description
Returns an Integer indicating whether a number is less than, greater than, or equal to 0. Returns 1 if
number is greater than 0. Returns 0 if number is equal to 0. Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null, then a runtime error is
generated. Empty is treated as 0.

Example
Sub Main
  a% = -100
  b% = 100
  c% = a% * b%
  Select Case Sgn(c%)
    Case -1
      Session.Echo "The product is negative " & Sgn(c%)
    Case 0
      Session.Echo "The product is 0 " & Sgn(c%)
    Case 1
      Session.Echo "The product is positive " & Sgn(c%)
  End Select
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Shell
Syntax

Shell(pathname [,windowstyle])

Description
Executes another application, returning the task ID if successful. The Shell statement accepts the
following named parameters:

Parameter Description

pathname String containing the name of the application and any parameters.

Windowstyle Optional integer specifying the state of the application window after
execution. It can be any of the following values:



SmarTerm Macro Guide

458

Parameter Description

ebHide Application is hidden.

ebNormalFocus Application is displayed in default position with
the focus.

ebMinimizedFocus Application is minimized with the focus (this is
the default).

ebMaximizedFocus Application is maximized with the focus.

ebNormalNoFocus Application is displayed in default position
without the focus.

ebMinimizedNoFocus Application is minimized without the focus

A runtime error is generated if windowstyle is not one of the above values.

An error is generated if unsuccessful running pathname.

The Shell command runs programs asynchronously: the statement following the Shell statement will
execute before the child application has exited. The next statement may run even before the child
application has finished loading.

The Shell function returns a value suitable for activating the application using the AppActivate

statement.

This function returns a global process ID that can be used to identify the new process. The Shell

function does not support file associations (i.e., setting pathname to "sample.txt" will not execution
Notepad).

When specifying long filenames as parameters, you may have to enclose the parameters in double
quotes. For example, to run WordPad, passing it a file called "Sample Document", you would use the
following statement:

r = Shell("WordPad ""Sample Document""")

Example
Sub Main
id = Shell("clock.exe",1)
AppActivate "Clock"
Sleep(2000)
AppClose "Clock"

End Sub

See Also
Operating System Control on page 38

Sin
Syntax

Sin(number)

Description
Returns a Double value specifying the sine of number. The number parameter is a Double specifying an
angle in radians.

Example



S

459

Sub Main
  c# = Sin(Pi / 4)
  Session.Echo "The sine of 45 degrees is: " & c#
End Sub

See Also
Tan; Cos; Atn.

Single (data type)
Syntax

Single

Description
Used to declare variables capable of holding real numbers with up to seven digits of precision. Single
variables are used to hold numbers within the following ranges:

Sign Range

Negative -3.402823E38 <= single <= -1.401298E-45

Positive 1.401298E-45 <= single <= 3.402823E38

The type-declaration character for Single is !.

Storage
Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing within a structure,
singles require 4 bytes of storage. When used with binary or random files, 4 bytes of storage is
required.

Each single consists of the following:

• A 1-bit sign

• An 8-bit exponent

• A 24-bit mantissa

See Also
Numeric, Math, and Accounting Functions on page 36

Sleep
Syntax

Sleep milliseconds

Description
Causes the macro to pause for a specified number of milliseconds. The milliseconds parameter is a
Long in the following range:

0 <= milliseconds <= 2,147,483,647

Example



SmarTerm Macro Guide

460

Sub Main
  Msg.Open "Waiting 2 seconds",0,False,False
  Sleep(2000)
  Msg.Close
End Sub

Under Windows, the accuracy of the system clock is modulo 55 milliseconds. The value of
milliseconds will, in the worst case, be rounded up to the nearest multiple of 55. In other words, if
milliseconds is 1, it will be rounded to 55 in the worst case.

See Also
Macro Control and Compilation on page 36

Sln
Syntax

Sln(cost, salvage, life)

Description
Returns the straight-line depreciation of an asset assuming constant benefit from the asset. The Sln of
an asset is found by taking an estimate of its useful life in years, assigning values to each year, and
adding up all the numbers. The formula used to find the Sln of an asset is as follows:

(Cost - Salvage Value) / Useful Life

The Sln function requires the following named parameters:

Parameter Description

cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its
useful life.

Life Double representing the length of the asset's useful life.

The unit of time used to express the useful life of the asset is the same as the unit of time used to
express the period for which the depreciation is returned.

Example
This example calculates the straight-line depreciation of an asset that cost $10,000.00 and has a
salvage value of $500.00 as scrap after ten years of service life.

Sub Main
  dep# = Sln(10000.00,500.00,10)
  Session.Echo "The annual depreciation is: " & Format(dep#,"Currency")
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Space, Space$
Syntax

Space[$](number)



S

461

Description
Returns a string containing the specified number of spaces. Space$ returns a String, whereas Space

returns a String variant. The number parameter is an Integer between 0 and 32767.

Example
Sub Main
  ln$ = Space$(10)
  Session.Echo "Hello" & ln$ & "over there."
End Sub

See Also
Character and String Manipulation on page 33

Spc
Syntax

Spc(numspaces)

Description
Prints out the specified number of spaces. This function can only be used with the Print and Print#

statements. The numspaces parameter is an Integer specifying the number of spaces to be printed. It can
be any value between 0 and 32767. If a line width has been specified (using the Width statement), then
the number of spaces is adjusted as follows:

numspaces = numspaces Mod width

If the resultant number of spaces is greater than width – print_position, then the number of spaces is
recalculated as follows:

numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line length.
Furthermore, with a large value for column and a small line width, the file pointer will never advance
more than one line.

Example
Sub Main
  Viewport.Open
  Print "I am"; Spc(20); "20 spaces apart!"
  Sleep (10000) 'Wait 10 seconds.
  Viewport.Close
End Sub

See Also
Character and String Manipulation on page 33; Drive, Folder, and File Access on page 34

SQLBind
Syntax

SQLBind(connectionnum, array [,column])

Description
Specifies which fields are returned when results are requested using the SQLRetrieve or
SQLRetrieveToFile function. The following table describes the named parameters to the SQLBind

function:



SmarTerm Macro Guide

462

Parameter Description

connectionnum Long parameter specifying a valid connection.

Array Any array of variants. Each call to SQLBind adds a new column number
(an integer) in the appropriate slot in the array. Thus, as you bind
additional columns, the array parameter grows, accumulating a sorted list
(in ascending order) of bound columns. If array is fixed, then it must be a
one-dimensional variant array with sufficient space to hold all the bound
column numbers. A runtime error is generated if array is too small. If array
is dynamic, then it will be resized to exactly hold all the bound column
numbers.

Column Optional long parameter that specifies the column to which to bind data. If
this parameter is omitted, all bindings for the connection are dropped.

This function returns the number of bound columns on the connection. If no columns are bound, then
0 is returned. If there are no pending queries, then calling SQLBind will cause an error (queries are
initiated using the SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

There is a trappable runtime error if SQLBind fails. Additional error information can then be retrieved
using the SQLError function.

Example
This example binds columns to data.

Sub Main
  Dim columns() As Variant
  id& = SQLOpen("dsn=SAMPLE",,3)
  t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
  i% = SQLBind(id&,columns,3)
  i% = SQLBind(id&,columns,1)
  i% = SQLBind(id&,columns,2)
  i% = SQLBind(id&,columns,6)
  For x = 0 To (i% - 1)
    Session.Echo columns(x)
  Next x
  id& = SQLClose(id&)
End Sub

See Also
SQL Access on page 40

SQLClose
Syntax

SQLClose(connectionnum)

Description
Closes the connection to the specified data source. The unique connection ID (connectionnum) is a Long

value representing a valid connection as returned by SQLOpen. After SQLClose is called, any subsequent
calls made with the connectionnum will generate runtime errors.



S

463

The SQLClose function returns 0 if successful; otherwise, it returns the passed connection ID and
generates a trappable runtime error. Additional error information can then be retrieved using the
SQLError function.

The compiler automatically closes all open SQL connections when either the macro or the application
terminates. You should use the SQLClose function rather than relying on the compiler to automatically
close connections in order to ensure that your connections are closed at the proper time.

Example
Sub Main
  id& = SQLOpen("dsn=SAMPLE",,3)
  id& = SQLClose(id&)
End Sub

See Also
SQL Access on page 40

SQLError
Syntax

SQLError(resultarray, connectionnum)

Description
Retrieves driver-specific error information for the most recent SQL functions that failed. This function
is called after any other SQL function fails. Error information is returned in a two-dimensional array
(resultarray). The following table describes the named parameters to the SQLError function:

Parameter Description

resultarray Two-dimensional variant array, which can be dynamic or fixed. If the array
is fixed, it must be (x,3), where x is the number of errors you want returned.
If x is too small to hold all the errors, then the extra error information is
discarded. If x is greater than the number of errors available, all errors are
returned, and the empty array elements are set to empty. If the array is
dynamic, it will be resized to hold the exact number of errors.

Connectionnu-
m

Optional long parameter specifying a connection ID. If this parameter is
omitted, error information is returned for the most recent SQL function call.

Each array entry in the resultarray parameter describes one error. The three elements in each array
entry contain the following information:

Element Value

(entry,0) The ODBC error state, indicated by a long containing the error class and
subclass.

(entry,1) The ODBC native error code, indicated by a long.

(entry,2) The text error message returned by the driver. This field is string type.



SmarTerm Macro Guide

464

For example, to retrieve the ODBC text error message of the first returned error, the array is referenced
as:

resultarray(0,2)

The SQLError function returns the number of errors found.

There is a runtime error if SQLError fails. (You cannot use the SQLError function to gather additional
error information in this case.)

Example
Sub Main
  Dim a() As Variant
  On Error Goto Trap
  id& = SQLOpen("",,4)
  id& = SQLClose(id&)
  Exit Sub
Trap:
  rc% = SQLError(a)
  If (rc%) Then
    For x = 0 To (rc% - 1)
      Session.Echo "The SQLState returned was: " & a(x,0)
      Session.Echo "The native error code returned was: " & a(x,1)
      Session.Echo a(x,2)
    Next x
  End If
End Sub

SQLExecQuery
Syntax

SQLExecQuery(connectionnum, querytext)

Description
Executes an SQL statement query on a data source. This function is called after a connection to a data
source is established using the SQLOpen function. The SQLExecQuery function may be called multiple
times with the same connection ID, each time replacing all results. The following table describes the
named parameters to the SQLExecQuery function:

Parameter Description

connectionnum Long identifying a valid connected data source. This parameter is returned
by the SQLOpen function.

Querytext String specifying an SQL query statement. The SQL syntax of the string
must strictly follow that of the driver.

The return value of this function depends on the result returned by the SQL statement:

SQL Statement Value

SELECT...FROM The value returned is the number of columns returned by the SQL
statement



S

465

SQL Statement Value

DELETE,INSERT,UPDATE The value returned is the number of rows affected by the SQL
statement

There is a runtime error if SQLExecQuery fails. Additional error information can then be retrieved using
the SQLError function.

Example
Sub Main
  Dim s As String
  Dim qry As Long
  Dim a() As Variant
  On Error Goto Trap
  id& = SQLOpen("dsn=SAMPLE", s$, 3)
  qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")
  Session.Echo "There are " & qry & " columns in the result set."
  id& = SQLClose(id&)
  Exit Sub
Trap:
  rc% = SQLError(a)
  If (rc%) Then
    For x = 0 To (rc% - 1)
      Session.Echo "The SQLState returned was: " & a(x,0)
      Session.Echo "The native error code returned was: " & a(x,1)
      Session.Echo a(x,2)
    Next x
  End If
End Sub

See Also
SQL Access on page 40

SQLGetSchema
Syntax

SQLGetSchema(connectionnum, typenum, [, [resultarray] [, qualifiertext]])

Description
Returns information about the data source associated with the specified connection. The following
table describes the named parameters to the SQLGetSchema function:

Parameter Description

connectionnum Long parameter identifying a valid connected data source. This parameter
is returned by the SQLOpen function.

Typenum Integer parameter specifying the results to be returned. The following are
the values for this parameter:

1: Returns a one-dimensional array of available data sources. The array is
returned in the resultarray parameter.2: Returns a one-dimensional array
of databases (either directory names or database names, depending on the
driver) associated with the current connection. The array is returned in the



SmarTerm Macro Guide

466

Parameter Description

resultarray parameter.

3: Returns a one-dimensional array of owners (user IDs) of the database
associated with the current connection. The array is returned in the
resultarray parameter.

4: Returns a one-dimensional array of table names for a specified owner
and database associated with the current connection. The array is returned
in the resultarray parameter.

5: Returns a two-dimensional array (n by 2) containing information about
a specified table. The first element contains the column name. The second
element contains the data type of the column

6: Returns a string containing the ID of the current user.

7: Returns a string containing the name (either the directory name or the
database name, depending on the driver) of the current database.

8: Returns a string containing the name of the data source on the current
connection.
9: Returns a string containing the name of the DBMS of the data source
on the current connection (e.g., "FoxPro 2.5" or "Excel Files").

10: Returns a string vontaining the name of the server for the data source.

11: Returns a string containing the owner qualifier used by the data
source (e.g., "owner," "Authorization ID," "Schema").

Typenum
(cont).

12: Returns a string containing the table qualifier used by the data source
(e.g., "table," "file").

13: Returns a string containing the database qualifier used by the data
source (e.g., "database," "directory").

14: Returns a string containing the procedure qualifier used by the data
source (e.g., "database procedure," "stored procedure," "procedure").

Resultarray Optional variant array parameter. This parameter is only required for
action values 1, 2, 3, 4, and 5. The returned information is put into this
array. If resultarray is fixed and it is not the correct size necessary to
hold the requested information, then SQLGetSchema will fail. If the array
is larger than required, then any additional elements are erased. If
resultarray is dynamic, then it will be redimensioned to hold the exact
number of elements requested.

qualifiertext Optional string parameter required for actions 3, 4, or 5. The values are as



S

467

Parameter Description

follows:

3: The qualifiertext parameter must be the name of the database
represented by ID.

4: The qualifiertext parameter specifies a database name and an owner
name. The syntax for this string is: DatabaseName.OwnerName

5: The qualifiertext parameter specifies the name of a table on the
current connection.

There is a runtime error if SQLGetSchema fails. Additional error information can then be retrieved using
the SQLError function.

If you want to retrieve the available data sources (where typenum = 1) before establishing a connection,
you can pass 0 as the connectionnum parameter. This is the only action that will execute successfully
without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to retrieve the requested
information. Some database drivers do not support these calls and will therefore cause the
SQLGetSchema function to fail.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  Dim dsn() As Variant
  numdims% = SQLGetSchema(0,1,dsn)
  If (numdims%) Then
    mesg = "Valid data sources are:" & crlf
    For x = 0 To numdims% - 1
      mesg = mesg & dsn(x) & crlf
    Next x
  Else
    mesg = "There are no available data sources."
  End If
  Session.Echo mesg
End Sub

See Also
SQL Access on page 40

SQLOpen
Syntax

SQLOpen(connectionstr [, [outputref] [, driverprompt]])

Description
Establishes a connection to the specified data source, returning a Long representing the unique
connection ID. This function connects to a data source using a login string (connectionstr) and
optionally sets the completed login string (outputref) that was used by the driver. The following table
describes the named parameters to the SQLOpen function:



SmarTerm Macro Guide

468

Parameter Description

connectionstr String expression containing information required by the driver to connect
to the requested data source. The syntax must strictly follow the driver's
SQL syntax.

Outputref Optional string variable that will receive a completed connection string
returned by the driver. If this parameter is missing, then no connection
string will be returned.

Driverprompt Integer expression specifying any of the following values:
The driver's login dialog is always displayed.

The driver's dialog is only displayed if the connection string does not
contain enough information to make the connection. This is the default
behavior.

The driver's dialog is only displayed if the connection string does not
contain enough information to make the connection. dialog options that
were passed as valid parameters are dimmed and unavailable.

The driver's login dialog is never displayed.

The SQLOpen function will never return an invalid connection ID. The following example establishes a
connection using the driver's login dialog:

id& = SQLOpen("",,1)

The compiler returns 0 and generates a trappable runtime error if SQLOpen fails. Additional error
information can then be retrieved using the SQLError function.

Before you can use any SQL statements, you must set up a data source and relate an existing database
to it. This is accomplished using the odbcadm.exe program.

Example
Sub Main
  Dim s As String
  id& = SQLOpen("dsn=SAMPLE",s$,3)
  Session.Echo "The completed connection string is: " & s$
  id& = SQLClose(id&)
End Sub

See Also
SQL Access on page 40

SQLRequest
Syntax

SQLRequest(connectionstr, querytext, resultarray [, [outputref] [, [driverprompt] [,
colnameslogical]]])

Description
Opens a connection, runs a query, and returns the results as an array. The SQLRequest function takes the
following named parameters:



S

469

Parameter Description

connectionstr String specifying the connection information required to connect to the
data source.

Querytext String specifying the query to execute. The syntax of this string must
strictly follow the syntax of the ODBC driver.

Resultarray Array of variants to be filled with the results of the query. The
resultarray parameter must be dynamic: it will be resized to hold the
exact number of records and fields.

Outputref Optional string to receive the completed connection string as returned
by the driver.

Driverprompt Optional integer specifying the behavior of the driver's dialog.

Colnameslogical Optional boolean specifying whether the column names are returned as
the first row of results. The default is False.

There is a runtime error if SQLRequest fails. Additional error information can then be retrieved using the
SQLError function.

The SQLRequest function performs one of the following actions, depending on the type of query being
performed:

Type of Query Action

SELECT The SQLRequest function fills resultarray with the results of the
query, returning a long containing the number of results placed
in the array. The array is filled as follows (assuming an x by y

query):

(record 1,field 1)
(record 1,field 2)
:
(record 1,field y)
(record 2,field 1)
(record 2,field 2)
:
(record 2,field y)
:
:
(record x,field 1)
(record x,field 2)
:

(record x,field y)

INSERT, DELETE, UPDATE The SQLRequest function erases resultarray and returns a long
containing the number of affected rows.

Example
Sub Main
  Dim a() As Variant
  l& = SQLRequest("dsn=SAMPLE;","Select * From c:\sample.dbf",a,,3,True)
  For x = 0 To Ubound(a)



SmarTerm Macro Guide

470

    For y = 0 To l - 1
      Session.Echo a(x,y)
    Next y
  Next x
End Sub

SQLRetrieve
Syntax

SQLRetrieve(connectionnum, resultarray[, [maxcolumns] [, [ maxrows] [, [colnameslogical]
[, fetchfirstlogical]]]])

Description
Retrieves the results of a query. This function is called after a connection to a data source is
established, a query is executed, and the desired columns are bound. The following table describes the
named parameters to the SQLRetrieve function:

Parameter Description

connectionnum Long identifying a valid connected data source with pending query
results.

Resultarray Two-dimensional array of variants to receive the results. The array
has x rows by y columns. The number of columns is determined by
the number of bindings on the connection.

Maxcolumns Optional integer expression specifying the maximum number of
columns to be returned. If maxcolumns is greater than the number of
columns bound, the additional columns are set to empty. If
maxcolumns is less than the number of bound results, the rightmost
result columns are discarded until the result fits.

Maxrows Optional integer specifying the maximum number of rows to be
returned. If maxrows is greater than the number of rows available, all
results are returned, and additional rows are set to empty. If maxrows
is less than the number of rows available, the array is filled, and
additional results are placed in memory for subsequent calls to
SQLRetrieve.

Colnameslogical Optional boolean specifying whether column names should be
returned as the first row of results. The default is False.

Fetchfirstlogical Optional boolean expression specifying whether results are retrieved
from the beginning of the result set. The default is False.
Before you can retrieve the results from a query, you must:
Initiate a query by calling the SQLExecQuery function
Specify the fields to retrieve by calling the SQLBind function.

This function returns a long specifying the number of rows available in the array.

There is a runtime error if SQLRetrieve fails. Additional error information is placed in memory.

Example



S

471

Sub Main
  Dim a() As Variant
  Dim b() As Variant
  Dim c() As Variant
  On Error Goto Trap
  id& = SQLOpen("DSN=SAMPLE",,3)
  qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf"")
  i% = SQLBind(id&,b,3)
  i% = SQLBind(id&,b,1)
  i% = SQLBind(id&,b,2)
  i% = SQLBind(id&,b,6)
  l& = SQLRetrieve(id&,c)
  For x = 0 To Ubound(c,2)
    For y = 0 To l& - 1
      Session.Echo c(x,y)
    Next y
  Next x
  id& = SQLClose(id&)
  Exit Sub
Trap:
  rc% = SQLError(a)
  If (rc%) Then
    For x = 0 To (rc% - 1)
      Session.Echo "The SQLState returned was: " & a(x,0)
      Session.Echo "The native error code returned was: " & a(x,1)
      Session.Echo a(x,2)
    Next x
  End If
End Sub

See Also
SQL Access on page 40

SQLRetrieveToFile
Syntax

SQLRetrieveToFile(connectionnum, destination [, [colnameslogical] [, columndelimiter]])

Description
Retrieves the results of a query and writes them to the specified file. The following table describes the
named parameters to the SQLRetrieveToFile function:

Parameter Description

connectionnum Long specifying a valid connection ID.

Destination String specifying the file where the results are written.

Colnameslogical Optional boolean specifying whether the first row of results returned
are the bound column names. By default, the column names are not
returned.

Columndelimiter Optional string specifying the column separator. A tab (Chr$(9)) is used
as the default.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function.



SmarTerm Macro Guide

472

This function returns the number of rows written to the file. A runtime error is generated if there are no
pending results or if the compiler is unable to open the specified file.

There is a runtime error if SQLRetrieveToFile fails. Additional error information may be placed in
memory for later use with the SQLError function.

Example
Sub Main
  Dim a() As Variant
  Dim b() As Variant
  On Error Goto Trap
  id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
  t& = SQLExecQuery(id&, "Select * From c:\sample.dbf"")
  i% = SQLBind(id&,b,3)
  i% = SQLBind(id&,b,1)
  i% = SQLBind(id&,b,2)
  i% = SQLBind(id&,b,6)
  l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")
  id& = SQLClose(id&)
  Exit Sub
Trap:
  rc% = SQLError(a)
  If (rc%) Then
    For x = 0 To (rc-1)
      Session.Echo "The SQLState returned was: " & a(x,0)
      Session.Echo "The native error code returned was: " & a(x,1)
      Session.Echo a(x,2)
    Next x
  End If
End Sub

See Also
SQL Access on page 40

Sqr
Syntax

Sqr(number)

Description
Returns a Double representing the square root of number. The number parameter is a Double greater than
or equal to 0.

See Also
This example calculates the square root of the numbers from 1 to 10 and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
For x = 1 To 10
sx# = Sqr(x)
mesg = mesg & Format(x,"Fixed") & " - " & Format(sx#,"Fixed") & crlf

Next x
Session.Echo mesg

End Sub

Stop
Syntax



S

473

Stop

Description
Suspends execution of the current macro, returning control to the debugger.

Example
Sub Main
  For x = 1 To 10
    z = Random(0,10)
    If z = 0 Then Stop
    y = x / z
  Next x
End Sub

See Also
Macro Control and Compilation on page 36

Str, Str$
Syntax

Str[$](number)

Description
Returns a string representation of the given number. The number parameter is any numeric expression or
expression convertible to a number. If number is negative, then the returned string will contain a
leading minus sign. If number is positive, then the returned string will contain a leading space.

Singles are printed using only 7 significant digits. Doubles are printed using 15–16 significant digits.

These functions only output the period as the decimal separator and do not output thousands
separators. Use the CStr, Format, or Format$ function for this purpose.

Example
Sub Main
  x# = 100.22
  Session.Echo "The string value is: " + Str(x#)
End Sub

See Also
Character and String Manipulation on page 33

StrComp
Syntax

StrComp(string1,string2 [,compare])

Description
Returns an Integer indicating the result of comparing the two string arguments. One of the following
values is returned:

Value Description

0 string1 = string2

1 string1 > string2



SmarTerm Macro Guide

474

Value Description

–1 string1 < string2

Null string1 or string2 is null

The StrComp function accepts the following parameters:

Parameter Description

string1 First string to be compared, which can be any expression convertible to a
string.

string2 Second string to be compared, which can be any expression convertible to
a string.

Compare Optional integer specifying how the comparison is to be performed. It can
be either of the following values:

0 Case-sensitive comparison

1 Case-insensitive comparison

If compare is not specified, then the current Option Compare setting is
used. If no Option Compare statement has been encountered, then Binary
is used (i.e., string comparison is case-sensitive).

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This string is UPPERCASE and lowercase"
  b$ = "This string is uppercase and lowercase"
  c$ = "This string"
  d$ = "This string is uppercase and lowercase characters"
  abc = StrComp(a$,b$,0)
  mesg = mesg & "a and c (sensitive) : " & Format(abc,"True/False") & crlf
  abi = StrComp(a$,b$,1)
  mesg = mesg & "a and b (insensitive): " & Format(abi,"True/False") & crlf
  aci = StrComp(a$,c$,1)
  mesg = mesg & "a and c (insensitive): " & Format(aci,"True/False") & crlf
  bdi = StrComp(b$,d$,1)
  mesg = mesg & "b and d (sensitive) : " & Format(bdi,"True/False") & crlf
  Session.Echo mesg
End Sub

See Also
Character and String Manipulation on page 33; Keywords, Data Types, Operators, and Expressions on
page 34

StrConv
Syntax

StrConv(string, conversion)

Description



S

475

Converts a string based on a conversion parameter. The StrConv function takes the following named
parameters:

Parameter Description

string A string expression specifying the string to be converted.

Conversion An integer specifying the types of conversions to be performed.

The conversion parameter can be any combination of the following constants:

Constant Value Description

ebUpperCase 1 Converts string to uppercase.

ebLowerCase 2 Converts string to lowercase.

ebProperCase 3 Capitalizes the first letter of each word.

ebWide 4 Converts narrow characters to wide characters. This constant is
supported on Japanese locales only.

ebNarrow 8 Converts wide characters to narrow characters. This constant is
supported on Japanese locales only.

ebKatakana 16 Converts Hiragana characters to Katakana characters. This
constant is supported on Japanese locales only.

ebHiragana 32 Converts Katakana characters to Hiragana characters. This
constant is supported on Japanese locales only.

ebUnicode 64 Converts string from MBCS to UNICODE. (This constant can
only be used on Windows NT, which supports UNICODE.)

ebFromUnicode 128 Converts string from UNICODE to MBCS. (This constant can
only be used on Windows NT, which supports UNICODE.)

A runtime error is generated when an unsupported conversion is requested. For example, the ebWide

and ebNarrow constants can only be used on an MBCS platform.

The following groupings of constants are mutually exclusive and therefore cannot be specified at the
same time:

ebUpperCase, ebLowerCase, ebProperCase
ebWide, ebNarrow
ebUnicode, ebFromUnicode

Many of the constants can be combined. For example, ebLowerCase Or ebNarrow.

When converting to proper case (i.e., the ebProperCase constant), the following are seen as word
delimiters: tab, linefeed, carriage-return, formfeed, vertical tab, space, null.

Example
Sub Main
  a = InputBox("Type any string:")
  Session.Echo "Upper case: " & StrConv(a,ebUpperCase)
  Session.Echo "Lower case: " & StrConv(a,ebLowerCase)



SmarTerm Macro Guide

476

  Session.Echo "Proper case: " & StrConv(a,ebProperCase)
End Sub

See Also
Character and String Manipulation on page 33

String (data type)
Syntax

String

Description
Capable of holding a number of characters. Strings are used to hold sequences of characters, each
character having a value between 0 and 255. Strings can be any length up to a maximum length of
32767 characters. Strings can contain embedded nulls, as shown in the following example:

s$ = "Hello" + Chr$(0) + "there" 'String with embedded null

The length of a string can be determined using the Len function. This function returns the number of
characters that have been stored in the string, including unprintable characters.

The type-declaration character for string is $.

String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for storage of the
string depends on the size of its content. The following statements declare a variable-length string and
assign it a value of length 5:

Dim s As String
s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration:
Dim s As String * 20
s = "Hello" 'String length = 20 with spaces to end of string.

When a string expression is assigned to a fixed-length string, the following rules apply:

• If the string expression is less than the length of the fixed-length string, then the fixed-length string
is padded with spaces up to its declared length.

• If the string expression is greater than the length of the fixed-length string, then the string
expression is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as when passing
structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as described in the
following table:

Declared Stored

In structures In the same data area as that of the structure. Local structures are on the
stack; public structures are stored in the public data space; and private
structures are stored in the private data space. Local structures should be
used sparingly as stack space is limited.



S

477

Declared Stored

In arrays In the global string space along with all the other array elements.

In local routines On the stack. The stack is limited in size, so local fixed-length strings
should be used sparingly.

See Also
Character and String Manipulation on page 33; Keywords, Data Types, Operators, and Expressions on
page 34

String, String$
Syntax

String[$](number, character)

Description
Returns a string of length number consisting of a repetition of the specified filler character. String$
returns a String, whereas String returns a String variant. These functions take the following named
parameters:

Parameter Description

number Integer specifying the number of repetitions.

Character Integer specifying the character code to be used as the filler character. If
character is greater than 255 (the largest character value), then the compiler
converts it to a valid character using the following formula: character Mod

256. If character is a string, then the first character of that string is used as the
filler character.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This string will appear underlined."
  b$ = String$(Len(a$),"=")
  Session.Echo a$ & crlf & b$
End Sub

See Also
Character and String Manipulation on page 33

Sub...End Sub
Syntax

[Private | Public] [Static] Sub name[(arglist)]
[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are allowed):
[Optional] [ByVal | ByRef] parameter[()] [As type]



SmarTerm Macro Guide

478

Note that a comment line must immediately follow the initial Sub line. This line is intended to
identify who created the macro and when. The comment line format is:

'! Macro created by name on date.

You must at least include a '! line.

Description
Declares a subroutine. The Sub statement has the following parts:

Part Description

Private Indicates that the subroutine being defined cannot be called from other macros
in other modules.

Public Indicates that the subroutine being defined can be called from other macros in
other modules. If the Private and Public keywords are both missing, then
Public is assumed.

Static Recognized by the compiler but currently has no effect.

Name Name of the subroutine, which must follow naming conventions:
Must start with a letter.

May contain letters, digits, and the underscore character (_). Punctuation and
type-declaration characters are not allowed. The exclamation point (!) can
appear within the name as long as it is not the last character.

Must not exceed 80 characters in length.

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type variant. Furthermore, all parameters that follow the first
optional parameter must also be optional. If this keyword is omitted, then the
parameter is required.

Note: You can use the IsMissing function to determine whether an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.

ByRef Keyword indicating that the parameter is passed by reference. If neither the
ByVal nor the ByRef keyword is given, then ByRef is assumed.

Parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

Type Type of the parameter (i.e., integer, string, and so on). Arrays are indicated with
parentheses. For example, an array of integers is declared:

Sub Test(a() As Integer)End Sub

A subroutine terminates when one of the following statements is encountered:
End Sub
Exit Sub



S

479

Subroutines can be recursive.

Passing Parameters to Subroutines
Parameters are passed to a subroutine either by value or by reference, depending on the declaration of
that parameter in arglist. If the parameter is declared using the ByRef keyword, then any modifications
to that passed parameter within the subroutine change the value of that variable in the caller. If the
parameter is declared using the ByVal keyword, then the value of that variable cannot be changed in
the called subroutine. If neither the ByRef nor the ByVal keyword is specified, then the parameter is
passed by reference.

You can override passing a parameter by reference by enclosing that parameter within parentheses. For
instance, the following example passes the variable j by reference, regardless of how the third
parameter is declared in the arglist of UserSub:

UserSub 10,12,(j)

Optional Parameters
You can skip parameters when calling subroutines, as shown in the following example:

Sub Test(a%,b%,c%)
End Sub

Sub Main
  Test 1,,4      'Parameter 2 was skipped.
End Sub

You can skip any parameter with the following restrictions:

• The call cannot end with a comma. For instance, using the above example, the following is not
valid:

  Test 1,,

The call must contain the minimum number of parameters as required by the called subroutine. For
instance, using the above example, the following are invalid:

  Test ,1      'Only passes two out of three required parameters.
  Test 1,2      'Only passes two out of three required parameters.

When you skip a parameter in this manner, the compiler creates a temporary variable and passes this
variable instead. The value of this temporary variable depends on the data type of the corresponding
parameter in the argument list of the called subroutine, as described in the following table:

Value Data Type

0 Integer, long, single, double, currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean



SmarTerm Macro Guide

480

Within the called subroutine, you will be unable to determine whether a parameter was skipped unless
the parameter was declared as a variant in the argument list of the subroutine. In this case, you can use
the IsMissing function to determine whether the parameter was skipped:

Sub Test(a,b,c)
  If IsMissing(a) Or IsMissing(b) Then Exit Sub
End Sub

Example
Sub Main
  r! = 10
  PrintArea r!
End Sub
Sub PrintArea(r as single)
  area! = (r! ^ 2) * Pi
  Session.Echo "The area of a circle with radius " & r! & " = " & area!
End Sub

See Also
Macro Control and Compilation on page 36

Switch
Syntax

Switch(condition1,expression1 [,condition2,expression2 ... [,condition7,expression7]])

Description
Returns the expression corresponding to the first True condition. The Switch function evaluates each
condition and expression, returning the expression that corresponds to the first condition (starting from
the left) that evaluates to True. Up to seven condition/expression pairs can be specified. A runtime
error is generated it there is an odd number of parameters (i.e., there is a condition without a
corresponding expression). The Switch function returns null if no condition evaluates to True.

Example
wd = Weekday(date)
strwd = switch(wd=1, "Sunday", wd=2, "Monday", wd=3, "Tuesday",
  wd=4, "Wednesday", wd=5, "Thursday", _
  wd=6, "Friday", wd=7, "Saturday")
Session.Echo "Today is " & strwd
End Sub

See Also
Macro Control and Compilation on page 36

SYD
Syntax

SYD(cost, salvage, life, period)

Description
Returns the sum of years' digits depreciation of an asset over a specific period of time. The SYD of an
asset is found by taking an estimate of its useful life in years, assigning values to each year, and
adding up all the numbers. The formula used to find the SYD of an asset is as follows:

(Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following named parameters:



S

481

Parameter Description

cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful
life.

Life Double representing the length of the asset's useful life.

Period Double representing the period for which the depreciation is to be calculated.
It cannot exceed the life of the asset.

To receive accurate results, the parameters life and period must be expressed in the same units. If life
is expressed in terms of months, for example, then period must also be expressed in terms of months.

Example
In this example, an asset that cost $1,000.00 is depreciated over ten years. The salvage value is
$100.00, and the sum of the years' digits depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
  For x = 1 To 10
    dep# = SYD(1000,100,10,x)
    mesg = mesg & "Year: " & x & " Dep: " & Format(dep#,"Currency") & crlf
  Next x
  Session.Echo mesg
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36



T

Tab
Syntax

Tab (column)

Description
Prints the number of spaces necessary to reach a given column position.

Note:
This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position to which to advance. It can
be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the number of spaces is
calculated as:

column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are printed on the
next line.

If a line width is specified (using the Width statement), then the column position is adjusted as follows
before applying the above two rules:

column = column Mod width

The Tab function is useful for making sure that output begins at a given column position, regardless of
the length of the data already printed on that line.

Example
Sub Main
  Viewport.Open
  Print "Column1";Tab(10);"Column2";Tab(20);"Column3"
  Print Tab(3);"1";Tab(14);"2";Tab(24);"3"
  Sleep(10000) 'Wait 10 seconds.
  Viewport.Close
End Sub

See Also
Drive, Folder, and File Access on page 34

Tan
Syntax

Tan(number)

Description
Returns a Double representing the tangent of number. The number parameter is a Double value given in
radians.



SmarTerm Macro Guide

483

Example
Sub Main
  c# = Tan(Pi / 4)
  Session.Echo "The tangent of 45 degrees is: " & c#
End Sub

See Also
Numeric, Math, and Accounting Functions on page 36

Text
Syntax

Text x,y,width,height,title$ [,[.Identifier] [,[FontName$] [,[size] [,style]]]]

Description
Defines a text control within a dialog template. The text control only displays text; the user cannot set
the focus to a text control or otherwise interact with it. The text within a text control word-wraps.
Text controls can be used to display up to 32K of text. The Text statement accepts the following
parameters:

Parameter Description

x, y Integer positions of the control (in dialog units) relative to the upper left
corner of the dialog.

width,
height

Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control. This text may
contain an ampersand character to denote an accelerator letter, such as
"&Save" for Save. Pressing this accelerator letter sets the focus to the control
following the Text statement in the dialog template.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If this parameter is omitted, then
the first two words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If this
parameter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text control. If this
parameter is omitted, then the default size for the default font of the dialog is
used.

style Style of the font used for display of the text within the text control. This can
be any of the following values:

ebRegula-
r

Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font



T

484

Parameter Description

ebBoldIt-
alic

Bold-italic font. If this parameter is omitted, then
ebRegular is used.

Accelerators are underlined, and the Alt+letter accelerator combination is used.

Example
Begin Dialog UserDialog3 81,64,128,60,"Untitled"
  CancelButton 80,32,40,14
  OKButton 80,8,40,14
  Text 4,8,68,44,"This text is displayed in the dialog."
End Dialog

See Also
User Interaction on page 39

TextBox
Syntax

TextBox x,y,width,height,.Identifier [,[isMultiline] [,[FontName$] [,[size] [,style]]]]

Description
Defines a single or multiline text-entry field within a dialog template. The TextBox statement requires
the following parameters:

Parameter Description

x, y Integer position of the control (in dialog units) relative to the upper left
corner of the dialog.

width,
height

Integer dimensions of the control in dialog units.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the text box. This
variable can be accessed using the syntax

DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 =
single-line; 1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If
this parameter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If
this parameter is omitted, then the default size for the default font of the
dialog is used.

style Style of the font used for display of the text within the text box control. This
can be any of the following values:



SmarTerm Macro Guide

485

Parameter Description

ebRegula-
r

Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldIt-
alic

Bold-italic font. If this parameter is omitted, then
ebRegular is used.

If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the user types into
a multiline field, pressing the Enter key creates a new line rather than selecting the default button.

The isMultiLine parameter also specifies whether the text box is read-only and whether the text-box
should hide input for password entry. To specify these extra parameters, you can form the isMultiLine

parameter by ORing together the following values:

Value Meaning

0 Text box is single-line.

1 Text box is multi-line.

&H8000 Text box is read-only.

&H4000 Text box is password-entry.

For example, the following statement creates a read-only multiline text box:
TextBox 10,10,80,14,.TextBox1,1 Or &H8000

The TextBox statement can only appear within a dialog template (i.e., between the Begin Dialog and
End Dialog statements).

When the dialog is created, the .Identifier variable is used to set the initial content of the text box.
When the dialog is dismissed, the variable will contain the new content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a multiline text box is
the default memory limit specified by Windows 98/Me.

Example
Begin Dialog UserDialog3 81,64,128,60,"Untitled"
  CancelButton 80,32,40,14
  OKButton 80,8,40,14
  TextBox 4,8,68,44,.TextBox1,1
End Dialog

See Also
User Interaction on page 39

Time, Time$ (functions)
Syntax

Time[$][()]

Description



T

486

Returns the system time as a String or as a Date variant. The Time$ function returns a string that
contains the time in a 24-hour time format, whereas Time returns a Date variant. To set the time, use the
Time/Time$ statements.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  oldtime$ = Time$
  mesg = "Time was: " & oldtime$ & crlf
  Time$ = "10:30:54"
  mesg = mesg & "Time set to: " & Time$ & crlf
  Time$ = oldtime$
  mesg = mesg & "Time restored to: " & Time$
  Session.Echo mesg
End Sub

See Also
Time and Date Access on page 39

Time, Time$ (statements)
Syntax

Time[$] = newtime

Description
Sets the system time to the time contained in the specified string. The Time$ statement requires a string
variable in one of the following formats:

HH
HH:MM
HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59.

The Time statement converts any valid expression to a time, including string and numeric values.
Unlike the Time$ statement, Time recognizes many different time formats, including 12-hour times.

Note:
You may not have permission to change the time, causing runtime error 70 to be generated.

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  oldtime$ = Time$
  mesg = "Time was: " & oldtime$ & crlf
  Time$ = "10:30:54"
  mesg = mesg & "Time set to: " & Time$ & crlf
  Time$ = oldtime$
  mesg = mesg & "Time restored to: " & Time$
  Session.Echo mesg
End Sub

See Also
Time and Date Access on page 39



SmarTerm Macro Guide

487

Timer
Syntax

Timer

Description
Returns a Single representing the number of seconds that have elapsed since midnight.

Example
Sub Main
  start& = Timer
  Session.Echo "Click the OK button, please."
  total& = Timer - start&
  Session.Echo "The elapsed time was: " & total& & " seconds."
End Sub

See Also
Time and Date Access on page 39

TimeSerial
Syntax

TimeSerial(hour, minute, second)

Description
Returns a Date variant representing the given time with a date of zero. The TimeSerial function
requires the following named parameters:

Parameter Description

hour Integer between 0 and 23.

Minute Integer between 0 and 59.

Second Integer between 0 and 59.

Example
Sub Main
  start# = TimeSerial(10,22,30)
  finish# = TimeSerial(10,35,27)
  dif# = Abs(start# - finish#)
  Session.Echo "The time difference is: " & Format(dif#, "hh:mm:ss")
End Sub

See Also
Time and Date Access on page 39

TimeValue
Syntax

TimeValue(time)

Description



T

488

Returns a Date variant representing the time contained in the specified string argument. This function
interprets the passed time parameter looking for a valid time specification. The time parameter can
contain valid time items separated by time separators such as colon (:) or period (.). Time strings can
contain an optional date specification, but this is not used in the formation of the returned value. If a
particular time item is missing, then it is set to 0. For example, the string "10 pm" would be interpreted
as "22:00:00."

Example
Sub Main
  t1$ = "10:15"
  t2# = TimeValue(t1$)
  Session.Echo "The TimeValue of " & t1$ & " is: " & t2#
End Sub

See Also
Time and Date Access on page 39

Transfer (object)
The Transfer object is the current transfer method in use by the active session. With the Transfer

object you control or have access to those properties of SmarTerm that relate to file transfer, such as
generic File menu commands and any settings that appear on the Properties>File Transfer Properties
dialog (which vary depending on the transfer method). You can also access methods that relate to the
details of host connection (which also vary depending on the transfer method).

Note:
For macro commands dealing with data capture from the host, see the methods and properties of the
Session object.

All methods and properties unique to a given transfer method are prefixed with the name of the
transfer method, such as Transfer.FTPHostName. As of this version of SmarTerm, the supported file
transfer methods are FTP, IND$FILE, Kermit, XModem, YModem, and ZModem. However, because
ZModem handles so many file transfer issues automatically, there are no unique Transfer properties or
methods for it.

Transfer.Command
Kermit and FTP file transfer protocols only

Syntax
Transfer.Command(commandtext$)

where commandtext$ is the command to execute (string).

Description
Allows commands to be sent to the current SmarTerm file transfer method, returning the command’s
completion status (Boolean).

Example
Sub Main
  Dim RetVal as Boolean
  RetVal = Transfer.Command("cwd /pub/samples")
  If RetVal = False Then
     GoTo ErrorHandler
  End If
  RetVal = Transfer.Command("lcd c:\incoming")



SmarTerm Macro Guide

489

  If RetVal = False Then
     GoTo ErrorHandler
  End If
  RetVal = Transfer.Command("mget file1 file2")
  If RetVal = False Then
     GoTo ErrorHandler
  End If
  End
  ErrorHandler:
  Session.Echo "An error occurred, stopping the macro."
  End
End Sub

See Also
File Transfer on page 33

Transfer.FTPAutoConnect
Syntax

Transfer.FTPAutoConnect

Description
Returns or sets whether an FTP connection should be established automatically (boolean).

Example
Sub Main
  Dim AutoConnect as Boolean
  AutoConnect = Transfer.FTPAutoConnect
  Transfer.FTPAutoConnect = True
End Sub

See Also
File Transfer on page 33

Transfer.FTPConfirmDeleteFiles
Syntax

Transfer.FTPConfirmDeleteFiles

Description
Returns or sets whether or not FTP will display a dialog confirming the potential deletion of a file
(Boolean). If set to TRUE (the default), and the macro detects that a file will be deleted, then the
macro pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro
deletes the file without confirmation.

Note:
There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example
'This example deletes files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
   Transfer.FTPConfirmDeleteFiles = FALSE
   MsgBox "File will be deleted without warning!"
   Transfer.Command("mdel *.*")
Else
   MsgBox "Not connected. Exiting macro."



T

490

End If

End Sub

See Also
File Transfer on page 33

Transfer.FTPConfirmRemoveFolders
Syntax

Transfer.FTPConfirmRemoveFolders

Description
Returns or sets whether or not FTP will display a dialog confirming the potential removal of a folder
(Boolean). If set to TRUE (the default), and the macro detects that a folder will be removed, then the
macro pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro
removes the folder without confirmation.

Note:
There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example
'This example removes folders via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
   Transfer.FTPConfirmRemoveFolders = FALSE
   MsgBox "Folders will be removed without warning!"
   Transfer.Command("rmdir .")
Else
   MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also
File Transfer on page 33

Transfer.FTPConfirmReplaceFiles
Syntax

Transfer.FTPConfirmReplaceFiles

Description
Returns or sets whether or not FTP will display a dialog confirming the potential replacement of a file
(Boolean). If set to TRUE (the default), and the macro detects that a file will be replaced, then the
macro pauses until the user responds to the confirmation dialog. If set to FALSE, then the macro
replaces the file without confirmation.

Note:
There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example



SmarTerm Macro Guide

491

'This example replaces files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

|If Transfer.Command("dir") = TRUE Then
   Transfer.FTPConfirmReplaceFiles = FALSE
   MsgBox "File will be replaced without warning!"
   Transfer.Command("mget *.*")
Else
   MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also
File Transfer on page 33

Transfer.FTPConfirmTransferFiles
Syntax

Transfer.FTPConfirmTransferFiles

Description
Returns or sets whether or not FTP will display a dialog confirming file transfer (Boolean). If set to
TRUE, and the macro detects that a file will be transfered, then the macro pauses until the user
responds to the confirmation dialog. If set to FALSE (the default), then the macro transfers the file
without confirmation.

Note:
There must be an active FTP connection for this property to take effect; you cannot set this property
and then make the FTP connection. This is demonstrated in the example.

Example
'This example transfers files via FTP without confirmation
'It assumes an open connection, but tests anyway.
Sub Main

If Transfer.Command("dir") = TRUE Then
   Transfer.FTPConfirmTransferFiles = FALSE
   MsgBox "File will be transfered without warning!"
   Transfer.Command("mput *.*")
Else
   MsgBox "Not connected. Exiting macro."
End If

End Sub

See Also
File Transfer on page 33

Transfer.FTPConfirmTransferFolders
Syntax

Transfer.FTPConfirmTransferFolders

Description
Returns or sets whether or not FTP will display a dialog confirming folder transfer (Boolean).



T

492

Note:
This property is included in support of future capabilities. FTP is not currently able to transfer
folders.

See Also
File Transfer on page 33

Transfer.FTPDeleteIncompleteFiles
Syntax

Transfer.FTPDeleteIncompleteFiles

Description
Returns or sets whether or not FTP will delete incomplete files (boolean). If set to true (default), the
macro will tell ftp to delete incomplete files. If set to false, then FTP will not delete incomplete files.

See Also
File Transfer on page 33

Example
Sub Main

'! This example downloads a file from a remote host using FTP
    Transfer.FTPHostName = "ftp.host.com"
    Transfer.FTPUserName = "User"
    Transfer.FTPUserPassword = "Password"
    Transfer.Command "Lcd 'c:\'"
    Transfer.Command "Type binary"
Transfer.FTPDeleteIncompleteFiles=False
    Transfer.Command "Get SomeFile.dat"
    Transfer.Command "Quit"
End Sub

Transfer.FTPHostName
Telnet sessions only

Syntax
Transfer.FTPHostName

Description
Returns or sets the FTP host name (string).

Example
Sub Main
  Dim HostName as String
  HostName = Transfer.FTPHostName
  If HostName <> "ftp.host.com" Then
     Session.Echo "Using the ftp.host.com FTP site"
     Transfer.FTPHostName = "ftp.host.com"
  End If
End Sub

See Also
File Transfer on page 33

Transfer.FTPSecureCompression
Syntax

Transfer.FTPSecureCompression



SmarTerm Macro Guide

493

Description
Returns or sets whether SFTP supports data compression over the SSH connection (Boolean). If set to
FALSE (the default), the client will not negotiate data compression with the server. If set to TRUE, the
client will negotiate data compression with the server. If the server supports it and requests it, the data
will be compressed.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPSecureFirstTimeWarningsOff
Syntax

Transfer.FTPSecureFirstTimeWarningsOff

Description
Returns or sets whether to display initial warnings when first connecting to a host (Boolean). The
warnings would say that the host ID key was not found on the client. If this is FALSE (default), a
warning is displayed and the user is asked whether to continue. If this is TRUE, no warning is
provided and the ID key is automatically saved to the sftp/known_hosts2 folder.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPSecurePortNumber
Syntax

Transfer.FTPSecurePortNumber = ”22”

Description
Returns or sets the TCP/IP port number for the SFTP connection (string). The default, “22”, is standard
for both SSH and SFTP.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPSecureSocksEnabled
Syntax

Transfer.FTPSecureSocksEnables

Description



T

494

Returns or sets whether SFTP will use a SOCKS server to connect to the SFTP server (boolean).
Setting this to FALSE (default) will not use the SOCKS protocol for connecting. Setting this to TRUE
will use the SOCKS protocol and Secure Socks settings specified.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPSecureSocksPortNumber
Syntax

Transfer.FTPSecureSocksPortNumber = “1080”

Description
Returns or sets the TCP/IP port number to be used with the SOCKS server (string). The default,
“1080”, is standard for SOCKS servers.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPSecureSocksServerName
Syntax

Transfer.FTPSecureSocksServerName = “MySocksServer”

Description
Returns or sets the name of the current Socks Server (string). This is blank by default.

To change the default value, this setting needs to be set prior to establishing the SFTP connection.

Example
See the example for Transfer.FTPUseSecureFTP

See Also
File Transfer on page 33

Transfer.FTPUserName
Telnet sessions only

Syntax
Transfer.FTPUserName

Description
Returns or sets the FTP user name (string).

Example
Sub Main
  Dim UserName as String
  UserName = Transfer.FTPUserName
  If UserName <> "anonymous" Then
     Session.Echo "Using an anonymous login for this host."



SmarTerm Macro Guide

495

     Transfer.FTPUserName = "anonymous"
  End If
End Sub

See Also
File Transfer on page 33

Transfer.FTPUserPassword
Telnet sessions only

Syntax
Transfer.FTPUserPassword

Description
Returns or sets the FTP user password (string).

Example
Sub Main
  Dim Password as String
  Password = Transfer.FTPUserPassword
  If Password = "" Then
     Transfer.FTPUserPassword = "jarngy49"
  End If
End Sub

See Also
File Transfer on page 33

Transfer.FTPUseSecureFTP
Syntax

Transfer.FTPUseSecureFTP

Description
Returns or sets whether to use SFTP transfer method (boolean). If this is set to FALSE (default), a
standard FTP connection is established and the FTP Secure commands are not used. If this is set to
TRUE, an SFTP connection is established using the SFTP command settings as well as other FTP
commands.

To change the default value, this setting needs to be set prior to establishing the SFTP connection. For
SFTP commands to work correctly, FTP confirmation prompts should be disabled. Because of the
structure of SFTP, these should be disabled after establishing the SFTP connection.

Example
Sub testsftp
Dim bRet as Boolean 'Generic Return Boolean
'Enable compression prior to connecting.
'All other SFTP settings will remain at
'default values.
Transfer.FTPSecureCompression = True

'Establish the SFTP connection.
Transfer.FTPUseSecureFTP = True
Transfer.FTPHostName = "127.0.0.1"
Transfer.FTPUserName = "sftp_user"
Transfer.FTPUserPassword = "sftp_password"
bRet = Transfer.Command("pwd")

'Disable confirmations
Transfer.FTPConfirmDeleteFiles = False



T

496

Transfer.FTPConfirmReplaceFiles = False
Transfer.FTPConfirmTransferFiles = False
Transfer.FTPConfirmTransferFolders = False
Transfer.FTPConfirmRemoveFolders = False

'Transfer Files
bRet = Transfer.Command("put file1.txt")
bRet = Transfer.Command("get file2.bmp")
'Shut down SFTP session
bRet = Transfer.Command("quit")
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEAdditionalCommands
3270 and 5250 sessions only

Syntax
Transfer.INDFILEAdditionalCommands

Description
Returns or sets the additional syntax to be added to a given IND$FILE command (string).

Example
Sub Main
  Dim Commands as string
  Commands = Transfer.INDFILEAdditionalCommands
  Transfer.INDFILEAdditionalCommands = “Quiet”
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEEnableCRLFHandling
3270 and 5250 sessions only

Syntax
Transfer.INDFILEEnableCRLFHandling

Description
Returns or sets the CRLF (carriage return / line feed) processing for the selected file format (boolean).
Possible values:

Value Definition

True Strip CRLF from each line of a file sent to the host, and add CRLF to each line
received from the host.

False Use the default processing for the selected file format.

Example
Sub Main
  Dim CRLF as boolean
  CRLF = Transfer.INDFILEEnableCRLFHandling
  Transfer.INDFILEEnableCRLFHandling = True
End Sub



SmarTerm Macro Guide

497

See Also
File Transfer on page 33

Transfer.INDFILEHostEnvironment
3270 and 5250 sessions only

Syntax
Transfer.INDFILEHostEnvironment

Description
Returns or sets the host system environment (string). Possible values are:

Value Definition

CICS MVS/CICS

CMS VM/CMS

TSO MVS/TSO

Example
Sub Main
  Dim HostEnv as string
  HostEnv = Transfer.INDFILEHostEnvironment
  Transfer.INDFILEHostEnvironment = "CICS"
  MsgBox "The Previous Host Environment was: " & HostEnv
End Sub

See Also
File Transfer on page 33

Transfer.INDFILELocalFileFormat
3270 and 5250 sessions only

Syntax
Transfer.INDFILELocalFileFormat

Description
Returns or sets the format of the local file (string). Possible values:

Value Definition

ASCII Character translation is based on the current local system language. ASCII is the
DOS standard format.

ANSI Character translation is based on the character set selected in your session. ANSI
is the Windows standard format.

Binary The transfer takes place without character translation.

This property is supported where an extended terminal type is in use.

Example



T

498

Sub Main
  Dim FileFormat as string
  FileFormat = Transfer.INDFILELocalFileFormat
  Transfer.INDFILELocalFileFormat = "Binary"
End Sub

See Also
File Transfer on page 33

Transfer.INDFILELogicalRecordLength
3270 and 5250 sessions only

Syntax
Transfer.INDFILELogicalRecordLength

Description
Returns or sets the length of the set of data considered to be a logical record (integer). This number
can be between 0 and 32761.

Example
Sub Main
  Dim LogicalRecordLength as integer
  LogicalRecordLength = Transfer.INDFILELogicalRecordLength
  Transfer.INDFILELogicalRecordLength = 255
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEPacketSize
3270 and 5250 sessions only

Syntax
Transfer.INDFILEPacketSize

Description
Returns or sets the IND$FILE packet-size setting (integer). The default is 8Kb, which most hosts
support; the number can be from 1 to 32Kb. Larger packet size means faster transfer. However, if you
specify a value larger than your host supports, your session will be disconnected. This property is
supported with extended mode terminal types.

Example
Sub Main
  Dim PktSize as integer
  PktSize = Transfer.INDFILEPacketSize
  Transfer.INDFILEPacketSize = 16
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEPromptBeforeOverwrite
3270 and 5250 sessions only

Syntax
Transfer.INDFILEPromptBeforeOverwrite

Description



SmarTerm Macro Guide

499

Returns or sets whether the user sees a prompt before a host-to-local transfer overwrites any existing
files of the same name (boolean). Possible values:

Value Definition

True Prompt before overwriting existing files.

False Overwrite without prompting.

Example
Sub Main
  Dim Prompt as boolean
  Prompt = Transfer.INDFILEPromptBeforeOverwrite
  Transfer.INDFILEPromptBeforeOverwrite = True
End Sub

See Also
File Transfer on page 33

Transfer.INDFILERecordFormat
3270 and 5250 sessions only

Syntax
Transfer.INDFILERecordFormat

Description
Returns or sets the record format of the file on the host (string). Possible values:

Value Definition

Default Accepts the host file's record format.

Fixed Specifies that all records in the host file are the same length.

Undefined Accepts that the host file's records are of undefined or unknown length.

Variable Specifies that records in the host file can be of different lengths.

Example
Sub Main
  Dim RecordFormat as string
  RecordFormat = Transfer.INDFILERecordFormat
  Transfer.INDFILERecordFormat = "Variable"
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEResponseTimeout
3270 and 5250 sessions only

Syntax
Transfer.INDFILEResponseTimeout

Description



T

500

Returns or sets the amount of time SmarTerm should wait for the host to respond to each IND$FILE
command sent. The timeout range is 10 to 600 seconds; the default is 40 seconds (integer).

Example
Sub Main
  Dim Response as integer
  Response = Transfer.INDFILEResponseTimeout
  Transfer.INDFILEResponseTimeout = 20
End Sub

See Also
File Transfer on page 33

Transfer.INDFILEStartupTimeout
3270 and 5250 sessions only

Syntax
Transfer.INDFILEStartupTimeout

Description
Returns or sets the amount of time SmarTerm should wait for an initial response from the host before a
startup attempt fails. The timeout range is 10 to 600 seconds; the default is 40 seconds (integer).

Example
Sub Main
  Dim Startup as integer
  Startup = Transfer.INDFILEStartupTimeout
  Transfer.INDFILEStartupTimeout = 20
End Sub

See Also
File Transfer on page 33

Transfer.INDFILETSOAllocationUnits
3270 and 5250 sessions only

Syntax
Transfer.INDFILETSOAllocationUnits

Description
Returns or sets the unit in which space is to be allocated (string). Possible values are:

Value Definition

Blocks Subdivision of a track.

Tracks Path associated with a single read/write head as the data medium moves past
it.

Cylinders Set of all tracks that can be accessed without repositioning the access
mechanism.

None not in use

This property is supported in the TSO host environment only.

Example



SmarTerm Macro Guide

501

Sub Main
  Dim Allocation as string
  Allocation = Transfer.INDFILETSOAllocationUnits
  Transfer.INDFILETSOAllocationUnits = "Blocks"
End Sub

See Also
File Transfer on page 33

Transfer.INDFILETSOAUPrimary
3270 and 5250 sessions only

Syntax
Transfer.INDFILETSOAUPrimary

Description
Returns or sets the number of units to be allocated (integer). The unit is defined in
Transfer.INDFILETSOAllocationUnits.

This property is supported in the TSO host environment only.

Example
Sub Main
  Dim AUPrimary as integer
  AUPrimary = Transfer.INDFILETSOAUPrimary
  Transfer.INDFILETSOAUPrimary = 2000
End Sub

See Also
File Transfer on page 33

Transfer.INDFILETSOAUSecondary
3270 and 5250 sessions only

Syntax
Transfer.INDFILETSOAUSecondary

Description
Returns or sets the number of units to be allocated if the Primary number of units is exceeded (integer).
The unit is defined in Transfer.INDFILETSOAllocationUnits.

This property is supported in the TSO host environment only.

Example
Sub Main
  Dim AUSecondary as integer
  AUSecondary = Transfer.INDFILETSOAUSecondary
  Transfer.INDFILETSOAUSecondary = 15
End Sub

See Also
File Transfer on page 33

Transfer.INDFILETSOAverageBlockSize
3270 and 5250 sessions only

Syntax
Transfer.INDFILETSOAverageBlockSize



T

502

Description
Returns or sets the size of an average block, rather than having the host determine it (integer).
Relevant only when Allocation Units is set to Block. Possible values are between 0 and 32760.

This property is supported in the TSO host environment only. It applies to all file formats.

Example
Sub Main
  Dim AvBlock as integer
  AvBlock = Transfer.INDFILETSOAverageBlockSize
  TRANSFER.INDFILETSOAverageBlockSize = 6200
 End Sub

See Also
File Transfer on page 33

Transfer.INDFILETSOBlockSize
3270 and 5250 sessions only

Syntax
Transfer.INDFILETSOBlockSize

Description
Returns or sets the number of bytes to be allocated per block. This number can be between 0 and
32760. For fixed records, block size must be an even multiple of the logical record length. For variable
records, block size must be equal to or greater than the largest record, plus 8 (integer).

This property is supported in the TSO host environment only.

Example
Sub Main
  Dim BlockSize as integer
  BlockSize = Transfer.INDFILETSOBlockSize
  Transfer.INDFILETSOBlockSize = 6160
End Sub

See Also
File Transfer on page 33

Transfer.KermitCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.KermitCheckSumType

Description
Returns or sets the Kermit checksum-type setting. Possible values are:

"onebyte"
"twobyte"
"threebytecrc"

Example
Sub Main
  Dim CheckSum as String
  CheckSum = Transfer.KermitCheckSumType
  Transfer.KermitCheckSumType = "threebytecrc"
End Sub

See Also



SmarTerm Macro Guide

503

File Transfer on page 33

Transfer.KermitDuplicateFileWarning
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.KermitDuplicateFileWarning

Description
Returns or sets the Kermit duplicate-file-warning state (boolean).

Example
Sub Main
  Dim DupWarn as Boolean
  DupWarn = Transfer.KermitDuplicateFileWarning
  Transfer.KermitDuplicateFileWarning = True
End Sub

See Also
File Transfer on page 33

Transfer.KermitPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.KermitReceivePacketSize

Description
Returns or sets the Kermit send and receive packet-size setting (integer). Possible values for this
property are: 94, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192.

Example
Sub Main
  Dim PktSize as Integer
  PktSize = Transfer.KermitPacketSize
  Transfer.KermitPacketSize = 1024
End Sub

See Also
File Transfer on page 33

Transfer.ProtocolName
Syntax

Transfer.ProtocolName

Description
Returns the name of the current file transfer protocol (string). Transfer.ProtocolName returns one of the
following values:

XMODEM
YMODEM
ZMODEM
KERMIT
FTP
IND$FILE

Example



T

504

Sub Main
  Dim XferName as String
  XferName = Transfer.ProtocolName
  Session.Echo "The current file transfer protocol is " & XferName
End Sub

See Also
File Transfer on page 33

Transfer.ReceiveFile
Syntax

Transfer.ReceiveFile(pcfilename$)

where pcfilename$ is the name of the file on the PC (string).

Description
Invokes a receive file transfer in the active SmarTerm session, returning the command’s completion
status (boolean).

Example
Sub Main
  Dim RetVal as Boolean
  Change protocol to Kermit
  RetVal = Session.TransferProtocol("KERMIT")
  If RetVal = FALSE Then
     Goto ErrorHandler
  End IF

  'Start Transfer
  Session.Send "kermit" & Chr$(13)
  Session.Send "send filename.txt" & Chr$(13)
  sleep 2
  RetVal = Transfer.ReceiveFile("filename.txt")
  If RetVal = False Then
    Goto ErrorHandler
   End If
  End
  ErrorHandler:
    Session.Echo "The file transfer failed."
  End
End Sub

See Also
File Transfer on page 33

Transfer.ReceiveFileAs
Syntax

Transfer.ReceiveFileAs(hostfilename, pcfilename)

Hostfilename is the name of the file on the host and Pcfilename is the name of the file after transfer to
the PC.

Description
Invokes a receive file transfer in the active SmarTerm session, returning the completion status of the
file transfer (boolean).

Example
'This example downloads a file to a PC using IND$FILE
Sub Main
'!



SmarTerm Macro Guide

505

  Dim RetVal as Boolean
 'Change protocol to IND$FILE
  RetVal = Session.TransferProtocol("IND$FILE")
  If RetVal = FALSE Then
     Goto ErrorHandler
  End IF

  'Start Transfer
  RetVal = Transfer.ReceiveFileAs("hostexec.bak", "c:\autoexec.bat")
  If RetVal = False Then
    Goto ErrorHandler
   End If
  End
  ErrorHandler:
    msgbox "The file transfer failed."
  End
End Sub

See Also
File Transfer on page 33

Transfer.SendFile
Syntax

Transfer.SendFile(pcfilename$)

where pcfilename$ is the name of the file on the PC (string).

Description
Invokes a send file transfer, returning the completion status of the file transfer (boolean).

Example
Sub Main
  Dim RetVal as Boolean
 'Change protocol to YMODEM
  RetVal = Session.TransferProtocol("YMODEM")
  If RetVal = FALSE Then
     Goto ErrorHandler
  End IF

  'Start Transfer
  Session.Send "rb" & Chr$(13)
  sleep 2
  RetVal = Transfer.SendFile("c:\autoexec.bat")
  If RetVal = False Then
    Goto ErrorHandler
   End If
  End
  ErrorHandler:
    Session.Echo "The file transfer failed."
  End
End Sub

See Also
File Transfer on page 33

Transfer.SendFileAs
Syntax

Transfer.SendFileAs(pcfilename, hostfilename)



T

506

Pcfilename is the name of the file on the PC and hostfilename is the name of the file after transfer to
the host.

To receive a file from the host, replace the send syntax in the example below with the receive syntax
from above.

Description
Invokes a send file transfer in the active SmarTerm session, returning the completion status of the file
transfer (boolean).

Example
'This example uploads a file to a host using IND$FILE
Sub Main
'!
  Dim RetVal as Boolean
 'Change protocol to IND$FILE
  RetVal = Session.TransferProtocol("IND$FILE")
  If RetVal = FALSE Then
     Goto ErrorHandler
  End IF

  'Start Transfer
  Session.Send "rb" & chr$(13)
  sleep 2
  RetVal = Transfer.SendFileAs("c:\autoexec.bat", "hostexec.bak")
  If RetVal = False Then
    Goto ErrorHandler
   End If
  End
  ErrorHandler:
    msgbox "The file transfer failed."
  End
End Sub

See Also
File Transfer on page 33

Transfer.Setup
Syntax

Transfer.Setup setupstring$

where setupstring$ is the string containing the setup specifications (string).

Description
Sets file transfer parameters in SmarTerm.

Note:
This method is provided primarily for the support of PSL scripts.

The syntax of the string expression is identical between file transfer methods, although meaning varies
somewhat. Specify setup options one at a time with their own Transfer.Setup statements, or more than
one at a time, if you keep all options and settings within the quotation marks, separating the setup
statements with commas:

Transfer.Setup "streaming = yes,checksumtype = crc16,packetsize = 128"

FTP transfers
Host name
HostName=  legal FTP host name or IP address
Transfer.Setup "hostname = unixbox"



SmarTerm Macro Guide

507

User name
UserName=  legal FTP user name
Transfer.Setup "username = jpenn"
Password
UserPassword=  legal FTP password
Transfer.Setup "userpassword = mahler8"
Autoconnect
Autoconnect=  1
Autoconnect=  0
Transfer.Setup "autoconnect = 1"

KERMIT transfers
Discard partial file
DiscardPartialFile=  YES | NO
Transfer.Setup "discardpartialfile = yes"
Duplicate file warning
DuplicateFileWarning=  YES | NO
Transfer.Setup "duplicatefilewarning = yes"
Checksum type
ChecksumType=  OneByte | TwoByte | ThreeByteCRC
Transfer.Setup "checksumtype = threebytecrc"
Send packet size
SendPacketSize=  94 | 1024 | 2048 | 3072 | 4096 | 5120 | 6144 | 7168 | 8192
TRANSFER SETUP "sendpacketsize = 64"
Receive packet size
ReceivePacketSize=  94 | 1024 | 2048 | 3072 | 4096 | 5120 | 6144 | 7168 | 8192
TRANSFER SETUP "receivepacketsize = 512"

XMODEM, YMODEM, and ZMODEM transfers
Packet size
PacketSize= 128 | 1024
Transfer.Setup "packetsize = 128"
Checksum type
ChecksumType= SIMPLE | CRC16
Transfer.Setup "checksumtype = crc16"
Streaming
Streaming= YES | NO
Transfer.Setup "streaming = no"

See Also
File Transfer on page 33

Transfer.XMODEMCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.XMODEMCheckSumType

Description
Returns or sets the XMODEM-checksum-type setting (string). Transfer.XMODEMCheckSumType accepts or
returns one of the following strings: "simple" or "crc16".

Example
Sub Main
  Dim CheckSum as String
  CheckSum = Transfer.XMODEMCheckSumType
  Transfer.XMODEMCheckSumType = "crc16"
End Sub

See Also
File Transfer on page 33



T

508

Transfer.XMODEMPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.XMODEMPacketSize

Description
Returns or sets the XMODEM-packet-size setting (integer). Transfer.XMODEMPacketSize accepts or
returns either 128 or 1024.

Example
Sub Main
  Dim PktSize as Integer
  PktSize = Transfer.XMODEMPacketSize
  Transfer.XMODEMPacketSize = 1024
End Sub

See Also
File Transfer on page 33

Transfer.XMODEMStreaming
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.XMODEMStreaming

Description
Returns or sets a the XMODEM-streaming-mode setting (boolean).

Example
Sub Main
  Dim Streaming as Boolean
  Streaming = Transfer.XMODEMStreaming
  Transfer.XMODEMStreaming = False
End Sub

See Also
File Transfer on page 33

Transfer.YMODEMCheckSumType
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.YMODEMCheckSumType

Description
Returns or sets the YMODEM-checksum-type setting (string). Transfer.YMODEMCheckSumType accepts or
returns one of the following strings: "simple" or "crc16".

Example
Sub Main
  Dim CheckSum as String
  CheckSum = Transfer.YMODEMCheckSumType
  Transfer.YMODEMCheckSumType = "crc16"
End Sub

See Also
File Transfer on page 33



SmarTerm Macro Guide

509

Transfer.YMODEMPacketSize
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.YMODEMPacketSize

Description
Returns or sets the YMODEM-packet-size setting (integer). Transfer.YMODEMPacketSize accepts or
returns either 128 or 1024.

Example
Sub Main
  Dim PktSize as Integer
  PktSize = Transfer.YMODEMPacketSize
  Transfer.YMODEMPacketSize = 1024
End Sub

See Also
File Transfer on page 33

Transfer.YMODEMStreaming
VT, ANSI, SCO, and DG sessions only

Syntax
Transfer.YMODEMStreaming

Description
Returns or sets the YMODEM-streaming-mode setting (boolean).

Example
Sub Main
  Dim Streaming as Boolean
  Streaming = Transfer.YMODEMStreaming
  Transfer.YMODEMStreaming = True
End Sub

See Also
File Transfer on page 33

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
Syntax

Trim[$](string)
LTrim[$](string)
RTrim[$](string)

Description
Returns a copy of the passed string expression (string) with leading and/or trailing spaces removed.

Trim returns a copy of the passed string expression (string) with both the leading and trailing spaces
removed. LTrim returns string with the leading spaces removed, and RTrim returns string with the
trailing spaces removed.

Trim$, LTrim$, and RTrim$ return a String, whereas Trim, LTrim, and RTrim return a String variant.

Null is returned if string is Null.

Examples



T

510

This first example uses the Trim$ function to extract the nonblank part of a string and display it.
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  text$ = "      This is text           "
  tr$ = Trim$(text$)
  Session.Echo "Original =>" & text$ & "<=" & crlf & _
    "Trimmed =>" & tr$ & "<="
End Sub

This second example displays a right-justified string and its LTrim result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "          <= This is a right-justified string"
  b$ = LTrim$(a$)
  Session.Echo a$ & crlf & b$
End Sub

This third example displays a left-justified string and its RTrim result.
Const crlf = Chr$(13) + Chr$(10)

Sub Main
  a$ = "This is a left-justified string.              "
  b$ = RTrim$(a$)
  Session.Echo a$ & "<=" & crlf & b$ & "<="
End Sub

Type
Syntax

Type username
variable As type
variable As type
variable As type
  :
End Type

Description
Creates a structure definition that can then be used with the Dim statement to declare variables of that
type. The username field specifies the name of the structure that is used later with the Dim statement.
Within a structure definition appear field descriptions in the format:

variable As type

where variable is the name of a field of the structure, and type is the data type for that variable. Any
fundamental data type or previously declared user-defined data type can be used within the structure
definition (structures within structures are allowed). Only fixed arrays can appear within structure
definitions.

The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as fixed-length. Fixed-
length strings are stored within the structure itself rather than in the string space. For example, the
following structure will always require 62 bytes of storage:

Type Person
  FirstName As String * 20
  LastName As String * 40



SmarTerm Macro Guide

511

  Age As Integer
End Type

Note:
Fixed-length strings within structures are size-adjusted upward to an even byte boundary. Thus, a
fixed-length string of length 5 will occupy 6 bytes of storage within the structure.

Example
This example displays the use of the Type statement to create a structure representing the parts of a
circle and assign values to them.

Type Circ
  mesg As String
  rad As Integer
  dia As Integer
  are As Double
  cir As Double
End Type'!
  Dim circle As Circ
  circle.rad = 5
  circle.dia = c
Sub Main
ircle.rad * 2
  circle.are = (circle.rad ^ 2) * Pi
  circle.cir = circle.dia * Pi
  circle.mesg = "The area of the circle is: " & circle.are
  Session.Echo circle.mesg
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

TypeName
Syntax

TypeName(varname)

Description
Returns the type name of the specified variable. The returned string can be any of the following:

Returned String Returned If varname Is

"String" A string.

Objecttype A data object variable. In this case, objecttype is the name of the
specific object type.

"Integer" An integer.

"Long" A long.

"Single" A single.

"Double" A double.

"Currency" A currency value.



T

512

Returned String Returned If varname Is

"Date" A date value.

"Boolean" A boolean value.

"Error" An error value.

"Empty" An uninitialized variable.

"Null" A variant containing no valid data.

"Object" A data or OLE automation object.

"Unknown" An unknown type of OLE automation object.

"Nothing" An uninitialized object variable.

class A specific type of OLE automation object. In this case, class is the name
of the object as known to OLE.

If varname is an array, then the returned string can be any of the above strings follows by a empty
parenthesis. For example, "Integer()" would be returned for an array of integers.

If varname is an expression, then the expression is evaluated and a String representing the resultant
data type is returned.

If varname is a collection, then TypeName returns the name of that object collection.

Example
Sub Foo(a As Variant)
  If VarType(a) <> ebInteger Then
    Session.Echo "Foo does not support " & TypeName(a) & " variables"
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

TypeOf
Syntax

TypeOf objectvariable Is objecttype

Description
Returns True if objectvariable is the specified type; False otherwise. This function is used within the
If...Then statement to determine if a variable is of a particular type. This function is particularly
useful for determining the type of OLE automation objects.

Example
Sub Main
  Dim a As Object
  Set a = CreateObject("Excel.Application")
  If TypeOf a Is "Application" Then
    Session.Echo "We have an Application object."
  End If
End Sub

See Also



SmarTerm Macro Guide

513

Keywords, Data Types, Operators, and Expressions on page 34



U

UBound
Syntax

UBound(ArrayVariable() [,dimension])

Description
Returns an Integer containing the upper bound of the specified dimension of the specified array
variable. The dimension parameter is an integer that specifies the desired dimension. If not specified,
then the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an array returned by an
OLE Automation method or property:

UBound(object.property [,dimension])

UBound(object.method [,dimension])

Examples
Sub Main
  Dim a(5 To 12)
  Dim b(2 To 100, 9 To 20)
  uba = UBound(a)
  ubb = UBound(b,2)
  Session.Echo "The upper bound of a is: " & uba & _
    " The upper bound of b is: " & ubb
'This example uses Lbound and Ubound to dimension a dynamic
'array to hold a copy of an array redimmed by the FileList
'statement.
Dim fl$()
FileList fl$,"*"
count = Ubound(fl$)
If ArrayDims(a) Then
  Redim nl$(Lbound(fl$) To Ubound(fl$))
  For x = 1 To count
    nl$(x) = fl$(x)
  Next x
  Session.Echo "The last element of the new array is: " & nl$(count)
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34

UCase, UCase$
Syntax

UCase[$](string)

Description
Returns the uppercase equivalent of the specified string. UCase$ returns a String, whereas UCase returns
a String variant. Null is returned if string is Null.



SmarTerm Macro Guide

515

Example
Sub Main
  a1$ = "this string was lowercase, but was converted."
  a2$ = UCase$(a1$)
  Session.Echo a2$
End Sub

See Also
Character and String Manipulation on page 33

Unlock
See Lock, Unlock; Drive, Folder, and File Access on page 34.

User-Defined Types (topic)
User-defined types (UDTs) are structure definitions created using the Type statement. UDTs are
equivalent to C language structures.

Declaring Structures
The Type statement is used to create a structure definition. Type declarations must appear outside the
body of all subroutines and functions within a macro and are therefore global to an entire macro. Once
defined, a UDT can be used to declare variables of that type using the Dim, Public, or Private
statement. The following example defines a rectangle structure:

Type Rect
  left As Integer
  top As Integer
  right As Integer
  bottom As Integer
End Type
  :
Sub Main
  Dim r As Rect
    :
    r.left = 10
  End Sub

Any fundamental data type can be used as a structure member, including other user-defined types.
Only fixed arrays can be used within structures.

Copying Structures
UDTs of the same type can be assigned to each other, copying the contents. No other standard
operators can be applied to UDTs.

Dim r1 As Rect
Dim r2 As Rect
  :
r1 = r2

When copying structures of the same type, all strings in the source UDT are duplicated and references
are placed into the target UDT.

The LSet statement can be used to copy a UDT variable of one type to another:



U

516

LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the two structures
determines how many bytes get copied.

Passing Structures
UDTs can be passed both to user-defined routines and to external routines, and they can be assigned.
UDTs are always passed by reference. Since structures are always passed by reference, the ByVal

keyword cannot be used when defining structure arguments passed to external routines (using
Declare). The ByVal keyword can only be used with fundamental data types such as Integer and
String.

Note:
Passing structures to external routines actually passes a far pointer to the data structure.

Size of Structures
The Len function can be used to determine the number of bytes occupied by a UDT:

Len(udt_variable_name)

Since strings are stored in the compiler's data space, only a reference (currently, 2 bytes) is stored
within a structure. Thus, the Len function may seem to return incorrect information for structures
containing strings.



V

Val
Syntax

Val(string)

Description
Converts a given string expression to a number. The string parameter can contain any of the
following:

• Leading minus sign (for nonhexadecimal or octal numbers only)

• Hexadecimal number in the format &Hhexdigits

• Octal number in the format &Ooctaldigits

• Floating-point number, which can contain a decimal point and an optional exponent

Spaces, tabs, and line feeds are ignored.

If string does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first nonnumeric character.

The Val function always returns a double-precision floating-point value. This value is forced to the
data type of the assigned variable.

Example
Sub Main
  a$ = InputBox$("Enter anything containing a number", _
    "Enter Number")
  b# = Val(a$)
  Session.Echo "The value is: " & b#
End Sub

See Also
Character and String Manipulation on page 33

Variant (data type)
Syntax

Variant

Description
Used to declare variables that can hold one of many different types of data. During a variant's
existence, the type of data contained within it can change. Variants can contain any of the following
types of data:



SmarTerm Macro Guide

518

Type of Data Data Types

Numeric Integer, long, single, double, boolean, date, currency.

Logical Boolean.

Dates and times Date.

String String.

Object Object.

No valid data A variant with no valid data is considered null.

Uninitialized An uninitialized variant is considered empty.

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of data contained
within the variant.

Variant is the default data type. If a variable is not explicitly declared with Dim, Public, or Private,
and there is no type-declaration character (i.e., #, @, !, %, or &), then the variable is assumed to be
Variant.

Determining the Subtype of a Variant
The following functions are used to query the type of data contained within a variant:

Function Description

VarType Returns a number representing the type of data contained within the variant.

IsNumeric Returns True if a variant contains numeric data. The following are considered
numeric: integer, long, single, double, date, boolean, currency. If a variant
contains a string, this function returns True if the string can be converted to a
number. If a variant contains an object whose default property is numeric, then
IsNumeric returns True.

IsObject Returns True if a variant contains an object.

IsNull Returns True if a variant contains no valid data.

IsEmpty Returns True if a variant is uninitialized.

IsDate Returns True if a variant contains a date. If the variant contains a string, then
this function returns True if the string can be converted to a date. If the variant
contains an object, then this function returns True if the default property of
that object can be converted to a date.

Assigning to Variants
Before a Variant has been assigned a value, it is considered empty. Thus, immediately after
declaration, the VarType function will return ebEmpty. An uninitialized variant is 0 when used in



V

519

numeric expressions and is a zero-length string when used within string expressions.

A Variant is Empty only after declaration and before assigning it a value. The only way for a Variant

to become Empty after having received a value is for that variant to be assigned to another Variant
containing Empty, for it to be assigned explicitly to the constant Empty, or for it to be erased using the
Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in all subsequent
operations involving that variant, the variant will behave like the type of data it contains.

Operations on Variants
Normally, a Variant behaves just like the data it contains. One exception to this rule is that, in
arithmetic operations, variants are automatically promoted when an overflow occurs. Consider the
following statements:

Dim a As Integer,b As Integer,c As Integer
Dim x As Variant,y As Variant,z As Variant
a% = 32767
b% = 1
c% = a% + b% 'This will overflow.
x = 32767
y = 1
z = x + y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving Integer variables overflows because the result (32768)
overflows the legal range for integers. With Variant variables, on the other hand, the addition operator
recognizes the overflow and automatically promotes the result to a Long.

Adding Variants
The + operator is defined as performing two functions: when passed strings, it concatenates them;
when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are not known until
execution time. If you use +, you may unintentionally perform the wrong operation.

It is recommended that you use the & operator if you intend to concatenate two String variants. This
guarantees that string concatenation will be performed and not addition.

Variants That Contain No Data
A Variant can be set to a special value indicating that it contains no valid data by assigning the
Variant to Null:

Dim a As Variant
a = Null

The only way that a Variant becomes Null is if you assign it as shown above.

The Null value can be useful for catching errors since its value propagates through an expression.

Variant Storage
Variants require 16 bytes of storage internally:

• A 2-byte type

• A 2-byte extended type for data objects



SmarTerm Macro Guide

520

• 4 bytes of padding for alignment

• An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not write 16 bytes. With
variants, a 2-byte type is written, followed by the data (2 bytes for Integer and so on).

Disadvantages of Variants
The following list describes some disadvantages of variants:

• Using variants is slower than using the other fundamental data types (i.e., Integer, Long, Single,
Double, Date, Object, String, Currency, and Boolean). Each operation involving a Variant requires
examination of the variant's type.

• Variants require more storage than other data types (16 bytes as opposed to 8 bytes for a Double, 2
bytes for an Integer, and so on).

• Unpredictable behavior. You may write code to expect an Integer variant. At runtime, the variant
may be automatically promoted to a Long variant, causing your code to break.

Passing Nonvariant Data to Routines Taking Variants
Passing nonvariant data to a routine that is declared to receive a variant by reference prevents that
variant from changing type within that routine. For example:

Sub Foo(v As Variant)
  v = 50 'OK.
  v = "Hello, world." 'Get a type-mismatch error here!
End Sub

Sub Main
  Dim i As Integer
  Foo i 'Pass an integer by reference.
End Sub

In the above example, since an Integer is passed by reference (meaning that the caller can change the
original value of the Integer), the caller must ensure that no attempt is made to change the variant's
type.

Passing Variants to Routines Taking Nonvariants
Variant variables cannot be passed to routines that accept nonvariant data by reference, as
demonstrated in the following example:

Sub Foo(i as Integer)
End Sub

Sub Main
  Dim a As Variant
  Foo a 'Compiler gives type-mismatch error here.
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



V

521

VarType
Syntax

VarType(varname)

Description
Returns an Integer representing the type of data in varname. The varname parameter is the name of any
Variant. The following table shows the different values that can be returned by VarType:

Value Constant Data Type

0 ebEmpty Uninitialized

1 ebNull No valid data

2 ebInteger Integer

3 ebLong Long

4 ebSingle Single

5 ebDouble Double

6 ebCurrency Currency

7 ebDate Date

8 ebString String

9 ebObject OLE Automation object

10 ebError User-defined error

11 ebBoolean Boolean

12 ebVariant Variant (not returned by this function)

13 ebDataObject Non-OLE Object

When passed an object, the VarType function returns the type of the default property of that object. If
the object has no default property, then either ebObject or ebDataObject is returned, depending on the
type of variable.

Example
Sub Main
  Dim v As Variant
  v = 5& 'Set v to a Long.
  If VarType(v) = ebInteger Then
    Session.Echo "v is an Integer."
  ElseIf VarType(v) = ebLong Then
    Session.Echo "v is a Long."
  End If
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



W - X - Y

Weekday
Syntax

Weekday(date [,firstdayofweek])

Description
Returns an Integer value representing the day of the week given by date. Sunday is 1, Monday is 2,
and so on.

Parameter Description

date Any expression representing a valid date.

Firstdayofweek Indicates the first day of the week. If omitted, then Sunday is
assumed (i.e., the constant ebSunday described below).

The firstdayofweek parameter, if specified, can be any of the following constants.

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

Example
Sub Main
  Dim a$(7)
  a$(1) = "Sunday"
  a$(2) = "Monday"
  a$(3) = "Tuesday"
  a$(4) = "Wednesday"
  a$(5) = "Thursday"
  a$(6) = "Friday"
  a$(7) = "Saturday"
Reprompt:
  bd = InputBox$("Please enter your birthday.","Enter Birthday")
  If Not(IsDate(bd)) Then Goto Reprompt
  dt = DateValue(bd)



SmarTerm Macro Guide

523

  dw = WeekDay(dt)
  Session.Echo "You were born on day " & dw & ", which was a " & a$(dw)
End Sub

See Also
Time and Date Access on page 39

While...Wend
Syntax

While condition
[statements]

Wend

Description
Repeats a statement or group of statements while a condition is True. The condition is initialized and
then checked at the top of each iteration through the loop. Due to errors in program logic, you can
inadvertently create infinite loops in your code. When you're running a macro within the macro editor,
you can break out of an infinite loop by pressing Ctrl+Break.

Example
Sub Main
  x% = 0
  count% = 0
  While x% <> 1 And count% < 500
    x% = Rnd(1)
    If count% > 1000 Then
      Exit Sub
    Else
      count% = count% + 1
    End If
  Wend
  Session.Echo "The loop executed " & count% & " times."
End Sub

See Also
Macro Control and Compilation on page 36

Width#
Syntax

Width# filenumber, width

Description
Specifies the line width for sequential files opened in either Output or Append mode. The Width#

statement requires the following named parameters:

Parameter Description

filenumber Integer used to refer to the open file—the number passed to the Open

statement.

Width Integer between 0 to 255 inclusive specifying the new width. If width is 0,
then no maximum line length is used.



W - X - Y

524

When a file is initially opened, there is no limit to line length. This command forces all subsequent
output to the specified file to use the specified value as the maximum line length.

The Width statement affects output in the following manner: if the column position is greater than 1
and the length of the text to be written to the file causes the column position to exceed the current
line width, then the data is written on the next line.

The Width statement also affects output of the Print command when used with the Tab and Spc
functions.

Example
Sub Main
  Width #1,80
End Sub

See Also
Drive, Folder, and File Access on page 34

Word$
Syntax

Word$(text$,first[,last])

Description
Returns a String containing a single word or sequence of words between first and last. The Word$

function requires the following parameters:

Parameter Description

text$ String from which the sequence of words will be extracted.

First Integer specifying the index of the first word in the sequence to return. If last
is not specified, then only that word is returned.

Last Integer specifying the index of the last word in the sequence to return. If last
is specified, then all words between first and last will be returned, including
all spaces, tabs, and end-of-lines that occur between those words.

Words are separated by any nonalphanumeric characters such as spaces, tabs, end-of-lines, and
punctuation. Embedded null characters are treated as regular characters.

If first is greater than the number of words in text$, then a zero-length string is returned.

If last is greater than the number of words in text$, then all words from first to the end of the text
are returned.

Example
Sub Main
  s$ = "My surname is Williams; Stuart is my given name."
  c$ = Word$(s$,5,6)
  Session.Echo "The extracted name is: " & c$ 
End Sub

See Also
Character and String Manipulation on page 33



SmarTerm Macro Guide

525

WordCount
Syntax

WordCount(text$)

Description
Returns an Integer representing the number of words in the specified text. Words are separated by
spaces, tabs, and end-of-lines. Embedded null characters are treated as regular characters.

Example
Sub Main
  s$ = "My surname is Williams; Stuart is my given name."
  i% = WordCount(s$)
  Session.Echo "'" & s$ & "' has " & i% & " words."
End Sub

See Also
Character and String Manipulation on page 33

Write#
Syntax

Write [#]filenumber [,expressionlist]

Description
Writes a list of expressions to a given sequential file. The file referenced by filenumber must be
opened in either Output or Append mode. The filenumber parameter is an Integer used to refer to the
open file—the number passed to the Open statement. The following summarizes how variables of
different types are written:

Data Type Description

Any numeric type Written as text. There is no leading space, and the period is always
used as the decimal separator.

String Written as text, enclosed within quotes.

Empty No data is written.

Null Written as #NULL#.

Boolean Written as #TRUE# or #FALSE#.

Date Written using the universal date format:
#YYYY-MM-DD HH:MM:SS#

User-defined errors Written as #ERROR ErrorNumber#, where ErrorNumber is the value of
the user-defined error. The word ERROR is not translated.

The Write statement outputs variables separated with commas. After writing each expression in the list,
Write outputs an end-of-line.

The Write statement can only be used with files opened in Output or Append mode.

Example
Sub Main
  Open "test.dat" For Output Access Write As #1



W - X - Y

526

  For x = 1 To 10
    r% = x * 10
     Write #1,x,r%
  Next x
  Close
  Open "test.dat" For Input Access Read As #1
  For x = 1 To 10
    Input #1,a%,b%
    mesg = mesg & "Record " & a% & ": " & b% & Basic.Eoln$
  Next x
  Session.Echo mesg
  Close
End Sub

See Also
Drive, Folder, and File Access on page 34

WriteIni
Syntax

WriteIni section$,ItemName$,value$[,filename$]

Description
Writes a new value into an INI file. The WriteIni statement requires the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"Windows." Section names are specified without the enclosing brackets.

ItemName$ String specifying which item from within the given section you want to
change. If ItemName$ is a zero-length string (""), then the entire section
specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a zero-length
string (""), then the item specified by ItemName$ is deleted from the INI file.

Filename$ String specifying the name of the INI file.

If filename$ is not specified, the win.ini file is used.

If the filename$ parameter does not include a path, then this statement looks for INI files in the
Windows directory.

Example
Sub Main
  WriteIni "Extensions","txt", _
    "c:\windows\notepad.exe ^.txt","win.ini"
End Sub

See Also
Drive, Folder, and File Access on page 34

Xor
Syntax



SmarTerm Macro Guide

527

result = expression1 Xor expression2

Description
Performs a logical or binary exclusion on two expressions. If both expressions are either Boolean,
Boolean variants, or Null variants, then a logical exclusion is performed as follows:

If expression1 is and expression2 is then the result is

True True False

True False True

False True True

False False False

If either expression is Null, then Null is returned.

Binary Exclusion
If the two expressions are Integer, then a binary exclusion is performed, returning an Integer result.
All other numeric types (including Empty variants) are converted to Long, and a binary exclusion is
then performed, returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary representations of
the two expressions according to the following table:

If bit in expression1 is and bit in expression2 is the result is

1 1 0

0 1 1

1 0 1

0 0 0

Example
Sub Main
  For x = -1 To 0
    For y = -1 To 0
      z = x Xor y
      mesg = mesg & Format(x,"True/False") & " Xor "
      mesg = mesg & Format(y,"True/False") & " = "
      mesg = mesg & Format(z,"True/False") & Basic.Eoln$
    Next y
  Next x
  Session.Echo mesg
End Sub

See Also
Keywords, Data Types, Operators, and Expressions on page 34



W - X - Y

528

Year
Syntax

Year(date)

Description
Returns the year of the date encoded in the specified date parameter. The value returned is between
100 and 9999 inclusive. The date parameter is any expression representing a valid date.

Example
Sub Main
  tdate$ = Date$
  tyear! = Year(DateValue(tdate$))
  Session.Echo "The current year is: " & tyear$
End Sub

See Also
Time and Date Access on page 39



PSL EQUIVALENTS FOR METHODS AND PROPERTIES
This table is provided for users of earlier SmarTerm versions, which relied on the Persoft Script
Language (PSL). PSL has been replaced by the SmarTerm macro language, which is substantially
similar to Visual Basic, but tailored for the SmarTerm user.

This table, like all the reference material in this book, is available in online help.

Note:
Where the Macro Language side says "Not a one-for-one replacement," more than a single line of
code is required to accomplish the translation.

PSL Macro Language

ABS Abs

AND And

ANSWER Not a one-for-one replacement.

APPKEYBOARDMAP Session.LoadKeyboardMap

ASC Asc

ATEOF Eof

AUXKEYBOARDMAP Session.KeyboardMap

BUFFERFORMATTED Session.BufferFormatted

BUFFERMODIFIED Session.BufferModified

BUTTONPALETTE Session.LoadSmarTermButtons

BUTTONPALETTE Session.UnloadSmarTermButtons

CAPTURE Session.Capture

CAPTURE SETUP Session.CaptureFileHandling

CHAIN Not a one-for-one replacement.

CHDIR ChDir

CHDRIVE ChDrive

CHR$ Chr$

CIRCUIT CONNECT Circuit.Connect

CIRCUIT DISCONNECT Circuit.Disconnect

CIRCUIT SETUP Circuit.Setup

CLOSE Close

CLS Session.ClearScreen



SmarTerm Macro Guide

530

PSL Macro Language

CMDLINE Application.CommandLine

COLLECT Session.Collect.Start

COLLECT Session.Collect.Status

COLLECT Session.Collect.CollectedCharacters

COLLECT Session.Collect.Consume

COLLECT Session.Collect.MaxCharacterCount

COLLECT Session.Collect.TermString

COLLECT Session.Collect.Reset

COLLECT Session.Collect.TimeoutMS

COLLECT Session.Collect.Timeout

COLLECT Session.Collect.TermStringExact

COLLECT Session.Collect

COLUMN Session.Column

CONNECTED Session.Connected

CURDIR$ CurDir$

CURMOUSEX Session.MouseCol

CURMOUSEY Session.MouseRow

DATE$ Date$

DDE _ ASSIGN DDEPoke

DDE _ COMMAND DDEExecute

DDE _ CONNECT, NEXTDDECHAN DDEInitiate

DDE _ DISCONNECT DDETerminate

DDE _ FETCH DDERequest

DDESTATUS Not a one-for-one replacement.

DIAL Circuit.Connect (Modem Connection)

DIM Dim

ECHO Session.Echo

EMULATION$ Session.EmulationInfo

ENDCAPTURE Session.EndCapture

ENVIRON$ Environ$

ERRORBOX MsgBox

ESCREEN$ Session.NativeScreenText

EXECUTE Shell

EXIT Exit Sub



PSL Equivalents for Methods and Properties

531

PSL Macro Language

FIELD$ Session.FieldText

FIELDENDCOL Session.FieldEndCol

FIELDENDROW Session.FieldEndRow

FIELDMODIFIED Session.FieldModified

FIELDSTARTCOL Session.FieldStartCol

FIELDSTARTROW Session.FieldStartRow

FILEEXISTS FileExists

FILEOPEN FileAttr

FILEPOS Loc

FILESELECT$ SaveFilename

FILESELECT$ OpenFilename

FLISTBOX$ SelectBox

FUNCTION Session.DoMenuFunction

GETPROFILE$ ReadIni$

GOSUB GoSub

GOTO Goto

HANGUP Circuit.Disconnect (Modem Connection)

HEX$ Hex$

IF..THEN..ELSEIF..ELSE..ENDIF If..Then..ElseIf..Else..End If

IN3270 Session.EmulationInfo(0)

INPUT Input#

INPUT Line Input#

INPUT$ InputBox

INPUT$ AskPassword$

INSERTMODE Session.InsertMode

INSTR InStr

INVOKE Invoke

ISDDEOPEN Not a one-for-one replacement.

ISFIELDMARK Session.IsFieldMark

ISNUMERIC Session.IsNumeric

ISPROTECTED Session.IsProtected

KEYBOARDLOCKED Session.KeyboardLocked

KEYWAIT Session.Keywait.Reset

KEYWAIT Session.Keywait.KeyType



SmarTerm Macro Guide

532

PSL Macro Language

KEYWAIT Session.Keywait.Start

KEYWAIT Session.Keywait.Value

KEYWAIT Session.Keywait

KEYWAIT Session.Keywait.KeyCount

KEYWAIT Session.Keywait.MaxKeyCount

KEYWAIT Session.Keywait.KeyCode

KEYWAIT Session.Keywait.Status

KEYWAIT Session.Keywait.TimeOutMS

KEYWAIT Session.Keywait.TimeOut

LCASE$ Lcase$

LEFT$ Left$

LEN Len

LET Let

LISTBOX$ SelectBox

LTRIM$ Ltrim$

MAXIMIZE Session.WindowState = 2

MCICMD Mci

MESSAGEBOX MsgBox (statement)

MID$ Mid$

MINIMIZE Session.WindowState = 0

MOUSEX Session.InitialMouseCol

MOUSEY Session.InitialMouseRow

NEGATE Not

NEXTDDECHAN Not a one-for-one replacement.

NEXTFILENO FreeFile

NOT Not

OKBOX MsgBox

OPEN Open

OR Or

PAGE Session.Page

PAUSE Sleep

PLAYWAVE Not a one-for-one replacement.

POSITION Seek

PRINT Print#



PSL Equivalents for Methods and Properties

533

PSL Macro Language

PRODUCT$ Application.Product

PUTPROFILE WriteIni

RESTORE Session.WindowState = 1

RETURN Return

RIGHT$ Right$

ROW Session.Row

RTRIM$ Rtrim$

SCREEN$ Session.ScreenText

SELECTWAIT Session.StringWait.Status

SELECTWAIT Session.StringWait.MaxCharacterCount

SELECTWAIT Session.StringWait.TimeoutMS

SELECTWAIT Session.StringWait.Timeout

SELECTWAIT Session.StringWait.MatchStringExact

SELECTWAIT Session.StringWait.MatchString

SELECTWAIT Session.StringWait.Start

SELECTWAIT Session.StringWait.Reset

SELECTWAIT Session.StringWait

SEND Session.Send

SEND +keyword Session.SendKey

SEND BINARY Circuit.SendRawToHost

SEND LITERAL Session.SendLiteral

SEND NORMAL Session.Send

SET / RESET BLINK Session.Blink

SET / RESET BOLD Session.Bold

SET / RESET CONCEALED Session.Concealed

SET / RESET CRITICAL Session.Lockstep

SET / RESET FLASHICON Application.FlashIcon

SET / RESET INTERPRET Session.InterpretControls

SET / RESET INVERSE Session.Inverse

SET / RESET KEYABORT Not a one-for-one replacement.

SET / RESET LOCAL Session.Online

SET / RESET NORMAL Session.Normal

SET / RESET ONLINE Session.Online

SET / RESET UNDERLINE Session.Underline



SmarTerm Macro Guide

534

PSL Macro Language

SET / RESET WRAP Session.Autowrap

SETFONTSIZE Session.SetFontSize

SETTITLE Session.Caption

SHARE Public

SNAPALL Session.ScreenToFile

STATUS Not a one-for-one replacement.

STCONFIG Session.ConfigInfo

STOP End

STR$ Str$

STRING$ String$

SYSTEMTICKS Timer * 1000

TERMINATE [SESSION] Session.Close

TERMINATE ALL Application.Quit

TIME$ Time$

TRANSFER COMMAND Transfer.Command

TRANSFER PROTOCOL Session.TransferProtocol

TRANSFER RECEIVEFILE Transfer.ReceiveFile

TRANSFER SENDFILE Transfer.SendFile

TRANSFER SETUP Transfer.Setup

TRANSLATEBINARY Session.TranslateBinary

TRANSLATETEXT Session.TranslateText

TRANSMIT Session.TransmitFile

TYPE Session.TypeFile

UCASE$ Ucase$

USERHELP Application.UserHelpFile

USERHELP Application.UserHelpMenu

VAL Val

VERSION Application.Version

VERSION$ Application.Version

WAITFOR Session.EventWait.EventType

WAITFOR Session.EventWait.Value

WAITFOR Session.EventWait.EventCount

WAITFOR Session.EventWait.Status

WAITFOR Session.EventWait.Abort



PSL Equivalents for Methods and Properties

535

PSL Macro Language

WAITFOR Session.EventWait.Start

WAITFOR Session.EventWait.Reset

WAITFOR Session.EventWait.TimeOut

WAITFOR Session.EventWait.MaxEventCount

WAITFOR Session.EventWait

WAITFOR Session.EventWait.TimeoutMS

WARNINGLEVEL Circuit.SuppressConnectErrorDialog

WHILE/WEND While .. Wend

WINSTATE Session.WindowState

XOR Xor



ERROR MESSAGES
This section contains listings of all the runtime errors. It is divided into two subsections, the first
describing error messages compatible with "standard" Basic as implemented by Microsoft Visual Basic
and the second describing error messages specific to the macro compiler.

A few error messages contain placeholders which are replaced to form the completed runtime error
message. These placeholders appear in the following list as the italicized word placeholder.

Visual Basic Compatible error messages
Error Number Error Message

3 Return without GoSub

5 Invalid procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

18 User interrupt occurred

19 No Resume

20 Resume without error

26 Dialog needs End Dialog or push button

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

49 Bad DLL calling convention

51 Internal error

52 Bad file name or number

53 File not found



SmarTerm Macro Guide

537

Error Number Error Message

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

93 Invalid pattern string

94 Invalid use of Null

139 Only one user dialog may be up at any time

140 Dialog control identifier does not match any current control

141 The placeholder statement is not available on this dialog control type

143 The dialog control with the focus may not be hidden or disabled

144 Focus may not be set to a hidden or disabled control

150 Dialog control identifier is already defined

163 This statement can only be used when a user dialog is active

260 No timer available

281 No more DDE channels

282 No foreign application responded to a DDE initiate

283 Multiple applications responded to a DDE initiate



Error Messages

538

Error Number Error Message

285 Foreign application won't perform DDE method or operation

286 Timeout while waiting for DDE response

287 User pressed Escape key during DDE operation

288 Destination is busy

289 Data not provided in DDE operation

290 Data in wrong format

291 Foreign application quit

292 DDE conversation closed or changed

295 Message queue filled; DDE message lost

298 DDE requires ddeml.dll

380 Invalid property value

423 Property or method not found

424 Object required

429 OLE Automation server can't create object

430 Class doesn't support OLE Automation

431 OLE Automation server cannot load file

432 File name or class name not found during OLE Automation operation

438 Object doesn't support this property or method

440 OLE Automation error

442 Connection to type library or object library for remote process has been
lost. Press OK for dialog to remove reference.

443 Object does not have a default value

445 Object doesn't support this action

446 Object doesn't support named arguments

447 Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

452 Invalid ordinal



SmarTerm Macro Guide

539

Error Number Error Message

453 Specified DLL function not found

454 Code resource not found

455 Code resource lock error

460 Invalid Clipboard format

481 Invalid picture

520 Can't empty clipboard

521 Can't open clipboard

600 Set value not allowed on collections

601 Get value not allowed on collections

603 ODBC - SQLAllocEnv failure

604 ODBC - SQLAllocConnect failure

608 ODBC - SQLFreeConnect error

610 ODBC - SQLAllocStmt failure

3129 Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE',
'SELECT', or 'UPDATE'

3146 ODBC - call failed

3148 ODBC - connection failed

3276 Invalid database ID

Compiler-Specific error messages
Number Error Message

800 Incorrect Windows version

801 Too many dimensions

802 Can't find window

803 Can't find menu item

804 Another queue is being flushed

805 Can't find control

806 Bad channel number

807 Requested data not available



Error Messages

540

Number Error Message

808 Can't create pop-up menu

810 Command failed

811 Network error

812 Network function not supported

813 Bad password

814 Network access denied

815 Network function busy

816 Queue overflow

817 Too many dialog controls

818 Can't find list box/combo box item

819 Control is disabled

820 Window is disabled

821 Can't write to INI file

822 Can't read from INI file

823 Can't copy file onto itself

824 OLE Automation unknown object name

825 Redimension of a fixed array

826 Can't load and initialize extension

827 Can't find extension

828 Unsupported function or statement

829 Can't find ODBC libraries

830 OLE Automation Lbound or Ubound on non-Array value

831 Incorrect definition for dialog procedure

832 Incorrect number of arguments for intermodule call

833 OLE Automation object does not exist

834 Access to OLE Automation object denied

835 OLE initialization error

836 OLE Automation method returned unsupported type

837 OLE Automation method did not return a value



SmarTerm Macro Guide

541

Compiler errors
The following table contains a list of all the errors generated by the macro compiler. With some errors,
the compiler changes placeholders within the error to text from the macro being compiled. These
placeholders are represented in this table by the word placeholder.

Number Error Message

1 Variable Required - Can't assign to this expression

2 Letter range must be in ascending order

3 Redefinition of default type

4 Out of storage for variables

5 Type-character doesn't match defined type

6 Expression too complex

7 Cannot assign whole array

8 Assignment variable and expression are different types

9 No type-characters allowed on a function with an explicit type

10 Array type mismatch in parameter

11 Array type expected for parameter

12 Array type unexpected for parameter

13 Integer expression expected for an array index

14 Integer expression expected

15 String expression expected

16 Identifier is already a user defined type

17 Property value is the incorrect type

18 Left of "." must be an object, structure, or dialog

19 Invalid string operator

20 Can't apply operator to array type

21 Operator type mismatch

22 "placeholder" is not a variable

23 "placeholder" is not a array variable or a function

24 Unknown placeholder "placeholder"

25 Out of memory

26 placeholder: Too many parameters encountered



Error Messages

542

Number Error Message

27 placeholder: Missing parameter(s)

28 placeholder: Type mismatch in parameter placeholder

29 Missing label "placeholder"

30 Too many nested statements

31 Encountered new-line in string

32 Overflow in decimal value

33 Overflow in hex value

34 Overflow in octal value

35 Expression is not constant

36 Not inside a Do statement

37 No type-characters allowed on parameters with explicit type

39 Can't pass an array by value

40 "placeholder" is already declared as a parameter

41 Variable name used as label name

42 Duplicate label

43 Not inside a function

44 Not inside a sub

46 Can't assign to function

47 Identifier is already a variable

48 Unknown type

49 Variable is not an array type

50 Can't redimension an array to a different type

51 Identifier is not a string array variable

52 0 expected

54 placeholder is not an assignable property of the object

55 Integer expression expected for file number

56 placeholder is not a method of the object

57 placeholder is not a property of the object

58 Expecting 0 or 1

59 Boolean expression expected



SmarTerm Macro Guide

543

Number Error Message

60 Numeric expression expected

61 Numeric type FOR variable expected

62 For...Next variable mismatch

63 Out of string storage space

64 Out of identifier storage space

68 Division by zero

69 Overflow in expression

70 Floating-point expression expected

72 Invalid floating-point operator

74 Single character expected

75 Subroutine identifier can't have a type-declaration character

76 Macro is too large to be compiled

77 Variable type expected

78 Can't evaluate expression

79 Can't assign to user or dialog type variable

80 Maximum string length exceeded

81 Identifier name already in use as another type

84 Operator cannot be used on an object

85 placeholder is not a property or method of the object

86 Type-character not allowed on label

87 Type-character mismatch on routine placeholder

88 Destination name is already a constant

89 Can't assign to constant

91 Identifier too long

92 Expecting string or structure expression

93 Can't assign to expression

94 Dialog and Object types are not supported in this context

95 Array expression not supported as parameter

96 Dialogs, objects, and structures expressions are not supported as a
parameter



Error Messages

544

Number Error Message

97 Invalid numeric operator

98 Invalid structure element name following "."

99 Access value can't be used with specified mode

101 Invalid operator for object

102 Can't LSet a type with a variable-length string

103 Syntax error

104 placeholder is not a method of the object

105 No members defined

106 Duplicate type member

107 Set is for object assignments

109 Invalid character in octal number

110 Invalid numeric prefix: expecting &H or &O

111 End-of-macro encountered in comment: expecting */

112 Misplaced line continuation

113 Invalid escape sequence

114 Missing End Inline

115 Statement expected

116 ByRef argument mismatch

117 Integer overflow

118 Long overflow

119 Single overflow

120 Double overflow

121 Currency overflow

122 Optional argument must be Variant

123 Parameter must be optional

124 Parameter is not optional

125 Expected: Lib

126 Illegal external function return type

127 Illegal function return type

128 Variable not defined



SmarTerm Macro Guide

545

Number Error Message

129 No default property for the object

130 The object does not have an assignable default property

131 Parameters cannot be fixed length strings

132 Invalid length for a fixed length string

133 Return type is different from a prior declaration

134 Private variable too large. Storage space exceeded

135 Public variables too large. Storage space exceeded

136 No type-characters allowed on variable defined with explicit type

137 Missing parameters are not allowed when using named parameters

138 An unnamed parameter was found following a named parameter

139 Unknown parameter name: placeholder

140 Duplicate parameter name: placeholder

141 Expecting: #If, #ElseIf, #Else, #End If, or #Const

142 Invalid preprocessor directive

143 Expecting preprocessor variable

144 Expecting: =

145 Expecting: [end of line]

146 Expecting: <expression>

148 Expecting: )

149 Unexpected value

150 Expecting: #End If

151 Expecting: Then

152 Missing #End If

153 #Else encountered without #If

154 #ElseIf encountered without #If

155 #End If encountered without #If

156 Invalid use of Null

157 Type mismatch

158 Not a number

159 Duplicate subroutine function



Error Messages

546

Number Error Message

160 Duplicate function definition

161 MBCS characters not allowed in identifiers

162 Out of range

163 Invalid date

164 Date overflow

165 Expecting: <identifier>

166 Constant type and expression are different types

167 Invalid use of New



INDEX

-
- (subtraction)[#a] , 103

#
#Const 103

#If...Then...#Else 103-105

&
& (concatenation) , 105

(
( ) (precedence) 105-106

*
* (multiplication) , 107

.
. (dot) , 108

/
/ (division) , 109

/* */ (comment block) 60, 108, 181

\
\\ (integer division) 109

^
^ (exponentiation) 109-110

_
_ (line continuation) 44, 60, , 111

’
’ (comment) 60, , 181

’! (macro description) 44, 101

‹
‹, ‹ =, ‹ ›, =, ›, › = (comparison
operators) See Compare 112

+
+ (addition/concatenation) , 111-112

=
= (assignment) , 112

>
>Application (object)

Sessions 125

3
3270 sessions

constants for 188
SNA connections 172-174

3270/5250 sessions
macro files for 50
send keystrokes to host 95-96
wait for form pages in 47

A
Abs (Absolute Value) 113

Accelerators
assign to dialog controls 73, 79
for Dialog Editor 68-69
for Macro Editor 58-59
in dialogs, test 86

Access
object methods 349
object properties 349

Accounting operations
convert expressions to
currency 155
depreciation 209
future value of annuity 286
interest payment 307-308
interest rate 381
internal rate of return 309-310
modified internal rate of
return 334
net present value 346-347
number of periods 345
payment of annuity 368
present value of annuity 379
principal payment of annuity 369-
370
random number 380
random numbers 387-388
square root 472

straight-line depreciation 460
sum of years’ depreciation 480-
481

Active
application 116-117, 119
session 121

Active session 122

Addition , 111-112
of variants 519

Annuities 345-347
interest payment 307-308
interest rate 381
payment 368
present value 379
principal payment 369-370

ANSI sessions
macro files for 50
send string to host 95-96
wait for strings in 47

Any (data type) 116

Application
send keys to 396

Application (object) 46, 121, 396-397
application object 122, 126-128
change caption of window 122
command line for 122-123
constants for 184, 191
exit from 125
file locations 130-132
focus 128
help 128-129, 132
icon for 123-124
languages installed 124
make visible 133
name of product 125
parent object 124-125
run menu commands 123
session object 121-122, 126-127
startup language for 128
version 132
window 133

Applications
activate 116-117
close 117-118
constants 137, 139
find running 118-119
generate list of 133-134
get minimized state of active 120-
121
get name of active 119
get screen position of active 119,
120
hide 121
list 133-134
maximize 134-135, 137-138
minimize 135, 137-138
move 135-136
resize 138-139
restore 136-138
retain focus after launching 128
return type of 139-140



run 457-458
run using DDE 209-214
send keys to 394, 396
show 138

Applications, external, yield control
to 246-247

Area code 164-165

Arrays 141-143
base of 358
bounds of 318, 514
define 226-228
define and fill 88
delete elements in 251-252
dialog controls and 234-235
dimension 318, 383-384
fill with list of filenames 269-271
fill with list of open
applications 133-134
fixed 141
iterate across 273-274
operations on 142-143
pass 142
querying 142
redimension 383-384
return dimensions of 141
sort 143
upper bounds 514
zero-based 358

ASCII text
format for IND\$File 497-498
mode, constant for 175
Telnet mode for 175
transfer 96-98

example 97-98

Assign
expression to variable 321
value to object variable 349, 455-
456
value to variable , 112
value to variant 518

Atangent 146-147

Attributes, file and directory 229,
266-267, 289-290, 456-457

B
Baud rate

of serial connection 167

Beep 148

Binary
comparison of strings 358-359
mode (Telnet) 175
mode for IND\$File 497-498

Binary operations
and 113-114
equivalence 250-251
exclusive or 526-527
implication 300-301
not 344

or 363-364
precedence of 357
precision of 357-358

Bitmaps
constants for 177

Boolean
constants 103
convert from expressions 154-155
data type 150
functions 113-114
operations

CBool 154-155
comparison 181-183
equivalence 250-251
exclusive or 526-527
or 363-364

Bounds of arrays 318, 514

Break
assert 161
constant for 174
duration of (serial connection)

167-168
mode (Telnet) 175

Breakpoints
remove 63
set 63

Buffer, display (3270 and 5250
sessions) 398-399

Buffers
for serial port 170-171

Buttons
embed macros in 49, 93
help 295
on dialogs 351-352
option 362-363
push 376-377

C
C language

comment blocks in 60, 108, 181
create picture library with 81
escape sequences in strings 359,
360
structures 510-511, 515-516

Call subroutines 153

Cancel button 153-154

Caption of session window 122

Caption of session window,
change 399

Capture
dialogs 83
text from host 97-98, 399-400

Case statements 392-393, 480

Change
case of string 318-319, 514-515
directories 156
drives 156-157

Character mode (Telnet) 175

Characters
constants for 185
convert from integers 158-160
convert to integers 143-144
fill string with 477
special, constants for 185
translate during transmission to
host 166-167

Check boxes 70, 157-158

Chinese 188, 298, 300

Circuit (object) 48, 161, 400
break 161
connect 161-162, 173
disconnect 162
example 93-94
LAT 162-163
modem 163-166
send data to host 166-167
serial 167-171, 185
Setup 171-172
SNA 172-174
Telnet 175-176, 186

Clear
Clipboard 177
screen 400-401

Clear error 253

Clipboard (object) 48, 176
clear 177
constants for 177, 186
copy strings into 176
get format of 177
get text from 177-178
insert text into 178
return contents of 176

Close 179
active session 401
files 179, 384
other application 117-118

Collect (Session object) 46-47

Collections 350
Sessions 125-126

Count 127
Item 127
Open 127
Parent 127-128

Sessions.Application 126-127

Collections, iterate across 273-274

Collectives 49-50, 54-56, 99-100

Combo boxes 70, 180-181

Command line 122-123

Comments 60, , 101, 108, 181, 384



Communications
assert break 161
automatically connect 161
connect to host 161-162, 173
constants for 168, 174-175, 185-
186
disconnect from host 162
LAT 162-163
method, current 400
Modem 163-166
send data to host 166-167
serial 167-171
set up 171-172
SNA 172-174
Telnet 175-176
verify connection 162

Compare
comparison operators 181-183
dates 311
numbers 182
object variables 350
objects 310-311
strings 182, 321-322, 358-359,
473-474
variants 182, 311

Compile macros 49
compiler constants 186
conditionally 103-105
saving file 99-100

Concatenation 105, , 111-112

Conditional compilation 103-105

ConfigInfo, constants for 190

Connect 161-162, 173

Connected 162

Connections
assert break 161
automatic 161
break 162
constants for 168, 174-175, 185-
186
establish 161-162, 173
LAT 162-163
Modem 163-166
serial 167-171
set up 171-172
SNA 172-174
Telnet 175-176
verify 162

Constants 184-192
application 137, 139
application state 184
Boolean 103
character 185
Clipboard 177, 186
Collect 190
communication 185-186
compiler 186
configuration 190
dates 187
declare 183-184
directory 187, 190

drive 187
file 187, 189
flow control 168
font 188
for conditional compilation 103
in subroutines and functions 184
installed languages 124, 128
Keywait 190
language 188, 191
macro language 191
math 188
MsgBox 189
operating system 191
parity 169
program window 133
session type 190
Session.Eventwait 188
Shell 191
string 192
Stringwait 190
Telnet communications 174-175
types of 183
variant 192
window state 133

Constants (sml) 124, 128, 133

Contents
of Clipboard, return 176

Controls on dialogs
add 71
assign accelerators to 73, 79
Cancel button 153-154
change labels of 78
checkbox 157-158
combo box 180-181
delete 82
drop listbox 70, 247-248
duplicate 81-82
group boxes 70, 293-294
help buttons 295
incorporate into macro 86
listbox 70, 324-325
OK button 351-352
option buttons 70, 73, 362-363
option group 362-363
paste into Dialog Editor 66, 83
paste into macro 83
picture 70
picture buttons 70, 80-81, 366-367
pictures 238-239, 365-366
position 71
push buttons 70, 376-377
reposition 77
resize 78
select 74
specify pictures for 80
tabbing order of 72, 85
text 70, 483-484
text boxes 70, 86, 88, 484-485
text on 239-241
types of 70-71
values of 241-244

Convert
data types 264
date to variant 208
to integer 208

Convert to
Boolean 154-155
currency 155
date 155-156, 487-488
double 156
error number 196-197
hexadecimal 296
integer 143-144, 160, 209, 306-307
long 179
lower case 318-319
number 517
numbers 313
octal 351
single 194
string 194-195, 473-476
variant 196, 207

Copy
controls on dialog 81-82
files 267
string 388
string or variant 330
strings into Clipboard 176

Cosine 193

Count words in text 525

Country codes 165-166

Create
directory 335
new instance of object 343

Create OLE object 193-194

Currency (data type) 195-196
convert from expression 155

D
Data

print 370-371

Data bits
of serial connection 168

Data types
Any 116
arrays 141-143
Boolean 113-114, 150
conversion 264
currency 155, 195-196
date 155-156, 187, 198, 201-209,
311, 335-336, 344-345, 487-488
define 222, 224, 226-228
double 156, 247
get 511-512
integer 109, 208-209, 306-307
literals 325-326
object variables 512-513
of variables, determine 521
rounding 264
set default 360-361
single 194, 459
string 194-195, 318-319
time 296, 333-334, 344-345, 390,
485-486
user-defined 510-511, 515-516



variant , 111-112, 207-208, 311

Date (data type) 198, 201, 325-326,
335-336, 487-488

compare 311
constants for 187
current 344-345
file 267-268
literals 198
operations 201-202

add 202-203
convert 155-156, 207-209
diff 203-205
parse 205-207
subtract 203-205

Date, Date$
functions 201
statements 201-202

DBCS 298, 300

DDE
close channel 213
execute commands 209-210
get value of data 211-212
initiate link 210-213
set timeout 214
set value of data 211-213
terminate link 213

Debug macros 61-65

Decimal 325-326

Declare 116
constants 183-184
private variables 373-374
public variables 374-376
subroutines and functions 214-215,
218-222
variables as OLE objects 348-349

Define
arrays 88
data type 222, 224
user-defined data types 510-511,
515-516
variables 51

Delete
contents of Clipboard 177
dialog controls 82
directories 386-387
elements in array 251-252
files 317
watch variables 65

Depreciation 209, 460, 480-481

DG Dasher sessions
macro files for 50
send strings to host 95-96
wait for strings in 47

Dialog
(function) 88
(statement) 89
functions 226

Dialog Editor
accelerators 68-69
application window 67
grid 71-72
Information dialog 74-77
move controls using 78
status bar 67
test dialogs with 84
toolbar 67
undo in 82

Dialogs
AnswerBox 115-116
AskBox and AskBox$ 144-145
AskPassword and
AskPassword$ 145-146
Begin Dialog 148-150
caption 231-232
capture from other applications 83
controls 232-235, 241-244

add 71
assign accelerators to 73, 79
cancel buttons 153-154
change labels of 78
checkbox 157-158
combo box 180-181
delete 82
drop listbox 70, 247-248
duplicating 81-82
group boxes 70, 293-294
Help button 295
incorporate into macro 86
listbox 324-325
listboxes 70
OK button 351-352
option button 70, 73, 362-363
option group 362-363
paste into Dialog Editor 66,
83
paste into macro 83
picture 365-366
picture button 70, 80-81, 366-
367
pictures 70
position with grid 71
push buttons 70, 376-377
reposition 77
resize 78
select 74
specify pictures for 80
tabbing order of 72, 85
text 70, 483-484
text boxes 70, 86, 88, 484-485
types of 70-71

create custom 69
Dialog function 88
Dialog statement 89
display 88-89
duplicating controls in 81-82
dynamic 49

have respond to user
actions 91
make 49, 91
use 89, 91
with dialog function 91-92

edit custom 73, 82
focus 88, 234
functions 91-92, 224-225, 231-238,

240-243
incorporate into macro 86
InputBox 304-305
message box 338, 340-341
modeless 48-49, 48, 336-338
move, with Information dialog 77
open file 356-357
paste into macro 83
picture libraries 80-81
pictures 238-239
put information into 87
record for, create 87
reposition 77
resize 78
retrieve information from 89
save file 389-390
select box 393-394
select, in editor 74
statements 231-235, 238-240, 242-
244
tabbing order 88
template files for 84
templates for 148-150
test 84-86
text on 239-241
Tools\>Macros 44
use custom, in macro 86

Digital VT sessions
macro files for 50
send strings to host 95-96
wait for strings in 47

Dimension
arrays 88, 141, 226-228, 318, 383-
384
of arrays, return 141
OLE objects 227
variables 51, 226-228

Directories
change 156
constants for 187, 190
create 335
list 229-230, 268-269
list, to array 269-271
remove 386-387
return current 195

Disable
Triggers 453

Disconnect from host 162

Display
applications 138
custom dialogs 88-89
description of macro in
Tools\>Macros dialog 44
dialogs 88-89
program 133
user-defined help 132

Division , 109
integer 109

Dlg (object) 49
caption 231-232
controls 232-235, 241-244
focus 234



functions 236-238
pictures 238-239
text on 239-241

Do loops 244-246, 261-262

DOS
applications 139-140
constants for 187

Dot notation , 108

Double (data type) 247, 325-326
convert from expression 156
logarithm 329
rounding 264

Drives
change 156-157
constants for 187
list 230-231
list free space on 231

Drop list boxes 70

DTR/DTR flow control 168-169

Duplicate
controls on dialog 81-82
files 267

E
eb constants 184

ebCFBitmap 177
ebCFDIB 177
ebCFMetafile 177
ebCFPalette 177
ebCFText 177
ebCFUnicodeText 177
ebDOS 139
ebMaximized 137, 184
ebMinimized 137, 184
ebRestored 137, 184
ebWindows 139

Edit pane (Macro Editor) 57

Elapsed time 487

Empty (constant) 103

EmulationInfo, constants for 190

Enable
Triggers 453

End
loops 261-262
macro 249
of file 249-250

English 124, 128, 191
constant for 124, 128

Environment variables 249

EOF (End-of-file marker) 249-250

Equivalence 250-251

Erase
dialog controls 82
directories 386-387
elements in array 251-252
files 317

Err (object) 49, 252-259

Errors
cascading 259
clear 253
description of 253-254
functions 260
generate 257-258
handling 49, 252-261
help file for 254-255
in external DLLs 255-256
number 256
OLE 258-259
resume after trapping 385
return line number of 252-253
runtime 257-258
set return value 257
simulate 260-261
source of 258-259
SQL 463-464
statement 260-261
trap 352-353
user-defined 196, 312
Visual Basic 259-260
while running macros 42

Escape sequences 359-360

Eventwait (Session object) 47
constants for 188

Exclusive or 526-527

Exit
functions and subroutines 262-263
loops 261-262

Exit program 125

Exponentiation 109-110, 263

Expressions 263-264
assign to variable 321
choose among a list 158
convert from numbers 517
convert to

Boolean 154-155
currency 155
dates 155-156
error numbers 196-197
hexadecimal 296
integer 160
long 179
number 313
single 194
string 194-195, 473-476
variant 196

evaluate 263-264
imply 300-301
in dialog templates 149
string, compare 321-322

External routines
check for parameters 312

declare 214-215, 218-222
explicit declaration of 361
return errors in 255-256

F
False (constant) 103

Files
access 327-328
attributes 229, 266-267, 456-457
attributes of 289-290, 353, 355-356
button pictures 131
capture text into 399-400
check existence of 269
close 179
constants for 187, 189
copy 267
date and time 267-268
delete all 317
dialog template 84
end of 249-250
file numbers 282
file pointer in 390-392
help, customize 128-129
HotSpots 130
initialization 526
initialization (ini) 381-383
keyboard maps 130
length of 269, 329, 353, 355-356
list 268-269
list, to array 269-271
lock 327-328, 353, 355-356
macros 49-50, 94-95, 130
name 342
names of 271-272
open 353, 355-356
open, with dialog 356-357
parse names 271-272
phone books 130-131
picture 80
picture library 80-81
position file pointer in 326-327
print 461
print spaces in 482
read 301-304, 322-323
receive 504-505
rename 342
retrieve data from 287, 289
save, with dialog 389-390
send 505-506
sessions 131
size 329, 353, 355-356
timestamp 267-268
transfer 48, 98-99, 132, 488
unlock 327-328, 353, 355-356
width 523-524
write 371-373, 377-379, 461, 525-
526
write out and close 384

Find
other application 118-119
substrings 305-306, 319, 323-324,
332-333, 386, 524

Fixed arrays 141

Flash program icon 123-124



Flow control
constants for 168
of serial connection 168-169

Focus 128

Folders, See Directories 156

Fonts
constants for 188

For loops 262, 274-275
iterate across a collection or
array 273-274

Format
constants for 177
of Clipboard 177

Format strings 276-282

French 124, 128, 191
constant for 124, 128

FTP file transfer
connect to host 489
host name 492
password 495
send command 488-492
user name 494

Functions 282-284, 286
check for parameters 312
constants in 184
declare 214-215, 218-222
described 44-45
dialog 224-226, 236-238
Dialog 88, 91-92
error 260
exit 262-263
go to label in 291-293
pass parameters to 150-152
private variables in 373-374
public variables in 374-376
returning variables 44

Future value of annuity 286

G
German 124, 128, 191

constant for 124, 128

Get
data from file 287, 289
file attributes 289-290
OLE object 290-291

Global variables 54-55

Group boxes 70, 293-294

H
Help

button on dialog 295
user-defined 128-129, 132

Hexadecimal 325-326
convert number to 296

Hide
application 121
program 133

Hosts
assert break 161
communicating with 92-95
connect to 161-162, 173

automatically 161
example 93-95
LAT 162-163
modem 163-166
serial port 167-171
SNA 172-174
Telnet 175-176

disconnect from 162
set up connection to 171-172
transfer files from 98-99
transfer text from 96-98
transfer text to 98
verify connection to 162

HotSpots
embed macros in 49
location of 130

Hour, current 296

I
Icon, flash 123-124

If loops 297-298

IME 188

Implication 300-301

Information dialog. See Dialog
Editor, Information dialog 75

Initialization files
read 381-383
write 526

Input
file into variables 301-304, 322-
323
user, via dialog 304-305

Instance of object 343

Integer (data type) 307, 325-326
convert from character 143-144
convert from date 208-209
convert from expression 160
convert from string 143-144
convert to character codes 158-
160
division of 109
return from real 306-307

Interest payments 307-308

Interest rate 381

Internal rate of return 309-310

Interrupt, constant for 174

IPX/SPX 172-173

J
Japanese 188, 298, 300

K
Kermit file transfer

checksum 502-503
duplicate files 503
packet size 503
send command 488-492

Keyboard maps
embed macros in 49
return location of 130

Keyboard shortcuts, See
Accelerators 58

Keystrokes
Dialog Editor 68-69
Macro Editor 58-59
send to host 95-96
send, to external application 394,
396

Keywait (Session object) 47
constants for 190

Keywords 316-317

Kill 317

Korean 188, 298, 300

L
Labels

in subroutines and functions 291-
293
of dialog controls 78

Languages
constants for 124, 128
installed 124
startup 128

Languages, constants for 188, 191

LAT
Host name 162-163
Password 163
save password 163

LBound 142

Length
file 329, 353, 355-356
IND\$File records 498
of files 269

Length of string 319-321



Line-continuation character (_) 44,
60, , 111

List
boxes 70, 324-325
directories 229-230
drives 230-231
files and directories 268-271
items in string 314-315
of open applications 133-134

Literals 325-326

Local Area Transport, See LAT 162

Location
of phone books 130-131

Locations
button pictures 131
HotSpots 130
keyboard maps 130
macros 130
sessions 131
transferred files 132

Lock file 327-328

Lockstep (Session object) 47-48
example 97-98

LOF 269

Logarithm 329

Logical operations
and 113-114
CBool 154-155
equivalence 250-251
implication 300-301
not 344
or 363-364
precedence of 357
precision of 357-358

Login/logout macros 49-54

Long (data type) 325-326, 329-330
convert from expression 179

Loops
Choose 158
Do 244-246
exit 261-262
For 273-275
If 297-298
while 523

LU (SNA communications)
host names 172

M
Macro Editor

accelerators 58-59
edit pane 57
instruction pointer 62
search and replace 61
status bar 57
toolbar 58

watch pane 57

Macros
case statements 392-393, 480
change caption of session
window 122
check syntax 61
collectives 49-50, 54-56
comment 44, 60, , 101, 108, 181
compiling 49, 99-100
conditional execution 244-246,
297-298
constants for 191
debug 61-65
description of, in Tools\>Macros
dialog 44
display user-defined help 132
editing 59-61
end 249
errors in 42
files 130
files of 49
hide or show program 133
in buttons 49, 93
in HotSpots 49
in keyboard maps 49
in sessions 49-54
instance program object 122
instance session object 121-122
login and logout 49-54
loops 244-246, 297-298
modules 49-50, 54-56
open session 127
organization of 43
pause 459-460
quit program 125
record 41-42
recording 41
return

all sessions 125-126
application object 126-127
installed languages 124
location of phone book 130-
131
number of 127
number of sessions 127
parent object 124-125
parent of session 127-128
product name 125
program’s command line 122-
123
session 127
startup language 128
version of program 132

return location of 130
button pictures 131
macro files 130
sessions 131
transferred files 132

run 42
menu commands 123

Session_Connect 49
Session_QueryClose 49
set program to flash minimized
icon 123-124
sharing of variables between 49
stop 249
stop running 472-473

switch statements 392-393, 480
syntax 44-45
trace 61-62
user macro file 49-50
watch variables 63, 65

Math functions
absolute value 113
addition , 111-112
atn 146-147
CDbl 156
CInt 160
Clng 179
constants for 188
cosine 193
division , 109
exponentiation 109-110
integer division 109
multiplication , 107
subtraction , 103

Math operations
convert number to
hexadecimal 296
convert to numbers 313
convert to octal 351
exponentiation 263
logarithm 329
modular arithmetic 335-336
parse real numbers 272-273
precedence of 357
precision of 357-358
random number 380
random numbers 387-388
return integer from real 306-307
sign 457
sine 458-459
square root 472
tangent 482-483

Maximize 184
applications 134-135, 137-138

MBCS text
insert, into Clipboard 178
return from Clipboard 177-178

MBCS text, constants for 188

Menus
customize 129
run from macro 123

Methods 45-49, 48, 161, 252, 349,
488

dot notation , 108

Minimize 184
applications 135, 137-138

Minute, current 333-334

Mnemonics 96

Modeless dialogs 48-49

Modem
area code 164-165
country code 165
country codes 166



phone numbers 163-166

Modular arithmetic 335-336

Modules 49-50, 54-56

Month, current 335-336

Move
applications 135-136

Msg (object) 48-49, 48, 336-338

MsgBox constants 189

Multibyte Character Sets, See MBCS
text 177-178

Multiplication , 107

MVS/CICS 497

MVS/TSO 497

N
Name

of active application 119

Names
data type 511-512
file 342
file, parse 271-272
host 162-163, 172, 492
product, return 125
SNA server 173-174
Triggers 418

Negation 344

Negative numbers 457

Non-printing characters
constants for 185

Null
constant 103
variables 313

Numbers
compare 182
convert from expressions 517
convert to expressions 197
random 380, 387-388

Numeric functions, See Math
functions 113

O
Object Linking and Embedding See
OLE 92

Objects 45-46
Application 46, 121-122, 128, 350
Application.Sessions 128
Application.Sessions (collection)

125-127
assign values to variables 455-456

check for 314
Circuit 48, 161, 350
Clipboard 48, 176
collections 350
compare 310-311
create 193-194
create new instance 343
define 227
Dlg 49
dot notation , 108
Err 49, 252
get data type for variables 512-513
methods 349
Msg 48-49, 48, 336-338
OLE 193-194, 290-291, 348-350
properties 264, 349
Session 46, 350
Session.Collect 46-47
Session.Eventwait 47
Session.Keywait 47
Session.Lockstep 47-48
Session.LockStep

example 97-98
Session.Stringwait 47
Transfer 48, 350, 488
variables 349-350

Octal 325-326, 351

OLE
compare objects 310-311
CreateObject 193-194
define objects 227
errors 258-259
get objects 290-291
objects 264, 348-350
return dimensions of arrays in 318
using 92

Open
applications, generate list of 133-
134
file, with dialog 356-357
session 127

Open files 353, 355-356

Operating system
beep speaker 148
change directories 156
change drives 156-157
close applications 117-118
close files 179
constants for 191
environment variables 249
find running applications 118-119
hide application 121
Input method 298, 300
list open applications 133-134
maximize applications 134-135
minimize applications 135
move applications 135-136
resize application 138-139
restore applications 136-137
return name of active
application 119
return screen position of active
application 119-120
return state of active

application 120-121
return type of application 139-140
set time 486
show application 138
switch applications 116-117

Operators 357-358
addition , 111-112
array 142
assignment , 112
comparison 181-183
comparison, See Compare 112
concatenation 105, , 111-112
division 109
dot , 108
exponentiation 109-110
multiplication , 107
precedence 105-106
subtraction , 103

Output
data to printer 370-371

P
Packet size

IND\$File 498
Kermit 503
XMODEM 508
YMODEM 509

Parameters 343
check for presence of 312
pass by reference 150-151
pass by value 151-152

Parity
constants for 169
of serial connection 169

Parse
names of files 271-272
real numbers 272-273

Passwords
FTP 495
LAT 163
prompt user for 145-146

Patterns
Trigger 418

Pause macro 459-460

Persoft Script language, See PSL
scripts 42

Phone books
location of 130-131

Phone numbers 163-166

Pi 188

Picture button 80-81

Picture buttons 70

Picture control on dialog 365-367



Pictures 70, 238-241
files 80
libraries of 80-81
location of 131
specify 80

Pointer, file 326-327, 390-392

PopUpMenu 368

Port
serial 169

Port number (Telnet) 175-176

Positive numbers 457

Powers 109-110, 263

Precedence operators 105-106

Precendence 357

Precision 357-358

Print 461

Print data 370-371

Private
arrays 141
variables 55, 373-374

Properties 45-48, 48-49, 48, 161,
252, 264, 349, 488

dot notation , 108

Protocols
file transfer 503-504
SNA 172-173

Prototypes 214-215, 218-222

PSL scripts
run 42
set up host connections 171

Public
arrays 141
variables 54-55, 374-376

Q
Quit macro 249

Quit program 125

R
Random numbers 380

Rate of return 309-310, 334

Read
file 301-304, 322-323
initialization files 381-383

Receive files 504-505

Record
macros 41

Record macros 41-42

Reference, pass parameters by 150-
151

REM (keyword) 60, 181

Remarks 384

Remove directories 386-387

Rename file 342

Reserved words 316-317

Resize
applications 138-139

Restore 184
applications 136-138

Resume macro after trapping
error 385

Return
contents of clipboard 176
current directory 195
from subroutine 385-386

Rounding 264

RTS/CTS flow control 168-169

Run
external application 457-458
macros 42
PSL scripts 42

S
Save file dialog 389-390

SCO ANSI sessions
macro files for 50
send string to host 95-96
wait for strings in 47

Search and replace 61

Second, current 390

Seconds since midnight 487

secure FTP file transfer 495
compression 492
port number 493
secure socks enabled 493
secure socks port number 494
secure socks server name 494
warnings 493

Send 95-96
data to host 166-167
files 505-506
keys to external application 394,
396
keystrokes to a host 95-96
strings to a host 95

SendKey 96

SendLiteral 95-96

SendRawToHost 166-167

Serial communications
constants for 185

Serial connections
baud rate 167
break duration 167-168
buffer size 170-171
constants for 168
data bits 168
flow control 168-169
parity 169
port 169
stop bits 170

Servers (SNA) 173-174

Session (object) 46
blink text 397
bold text 397-398
capture text from host 410
capture text in 399-400
capturing text with 97-98
Capturing text with 189
change caption of 399
clear screen 400-401
close active session 401
Collect (sub-object) 46-47, 401-
402

constants for 190
pass collected characters to
screen 403
reset 403
return collected
characters 402-403
return number of collected
characters 402
return status of 404
set number of collected
characters 403
set pattern to end on 405
set timeout for 405-406
start collecting characters 404

connect to host 407
constants for 184, 190-191
display buffer 398-399
display text on screen 409
emulation 409-410

constants for 190
EventWait (sub-object) 47, 410-
411

constants for 188
reset 412
return number of events 411
return status of 413
return type of event 411-412
set number of events 412
set timeout 413-414
start waiting 412-413

file locations 407
constants for 190

hide or show 406
Keywait (sub-object) 47

constants for 190



LockStep (sub-object) 47, 97-98
move cursor 406
return circuit object 400
return cursor location 414-415
return parent object 396-397
run menu command 408-409
send keystrokes to host 95-96
Sendkey 96
Stringwait (sub-object) 47

constants for 190
transferring text with 97-98
turn Dialog View on or off 407-
408
wrap text in 397

Session_Connect macros 49-54

Session_QueryClose macros 49-50,
54

Sessions
change caption of 122
embed macros in 49-54
open 127
return active 121-122
return command line 122-123
return location of 131
return number of open 127
return parent 127-128
return specified 127

Set up file transfer method 506-507

Shell constants 191

Sine 458-459

Single (data type) 325-326, 459
convert from expression 194
rounding 264

Size
array 383-384
file 329, 353, 355-356
of serial buffers 170-171
of string 321
string 319-320

SmarTerm Buttons, See Buttons 131

sml constants 184
smlMAXIMIZE 184
smlMINIMIZE 184
smlRESTORE 184

sml Constants
smlDTRDSR 168
smlEVENPARITY 169
smlMARKPARITY 169
smlNOFLOWCONTROL 168
smlNOPARITY 169
smlODDPARITY 169
smlRTSCTS 168
smlXONXOFF 168
SPACEPARITYCommunications

constants 169

smlEnglish 124, 128

smlFrench 124, 128

smlGerman 124, 128

smlMaximize 133

smlMinimize 133

smlRestore 133

smlSpanish 124, 128

SNA
LU 172
protocol 172-173
server name 173-174

Sort arrays 143

Spaces
in strings 460-461
print 482
print or write to file 461

Spanish 124, 128, 191
constant for 124, 128

Special characters, constants for 185

SQL operations
close connection to data 462-463
errors in 463-464
execute query 464-465, 468, 470
get information on data
source 465, 467
get query results 470-472
open connection to data 467-468,
470
specify fields to return 461-462

Square root 472

Statements
constants in 184
dialog 225-226
Dialog 89
error 260-261
pass parameters to 150-152

Status bar (Macro Editor) 57

Stop
functions and subroutines 262-263
loops 261-262
macro 249, 472-473

Stop bits
for serial connections 170

String (data type) 325-326, 476-477
align 330
C-style escape sequences 359-360
case-sensitivity 358-359
change case 318-319, 514-515
compare 321-322, 358-359, 473-
474
convert expression to 473
convert from expression 474-476
copy 330, 388
fill with character 477
fill with spaces 460-461
find substring in 305-306
fixed-length 373, 375
length 319-321
return items in 314-315

size in bytes 319-321
substring 323-324, 524
substrings 319, 332-333, 386
trim 509-510

String operations
change case 514-515
compare 473-474
comparison type 358-359
copy 388
find substring 305-306, 323-324
length 319-321
return leftmost characters 319
size 319-321
substring 332-333, 386, 524
trim 509-510

Strings
compare 182
concatenate 105, , 111-112
constants for 192
convert from expression 194-195
convert from integers 158-160
convert to integers 143-144
copy into Clipboard 176
format 276-282
return, from Clipboard 176
send to host 95
wait for 47

Stringwait (Session object) 47
constants for 190

Structures, dot notation for , 108

Subroutines 477, 479-480
call 153
constants in 184
declare 214-215, 218-222
described 44-45
example of 44-45
exit 262-263
go to label in 291-293
pass parameters to 150-152
private variables in 373-374
public variables in 374-376
return from 385-386

Subtraction , 103

Suspend macro 459-460

Switch
to other application 116-117

Switch statements 392-393, 480

Syntax of macros 44-45

T
Tangents 146-147, 482-483

TCP/IP 172-173

Telnet
break mode 175
character mode 175
constants for 174-175, 186



host name 175
port number 175-176

Testing
dialogs 86

Testing dialogs 84-86

Text
blinking 397
bold 397-398
capture 399-400
comparison of strings 358-359
control on dialog 483-484
count words in 525
dialog control 70
in session window, wrap 397
insert, into Clipboard 178
on screen, clear 400-401
return, from Clipboard 177-178
transfer from host 96-98
transfer to host 98

Textbox dialog control 86, 484-485
setting default text 88

Time (data type) 390, 485-486
current 344-345
operations 296, 333-334

Time since midnight 487

Time, current 485-486

Timestamp 267-268

Toolbar
Dialog Editor 67
Macro Editor 57-58

Transfer (object) 48, 488
connect to host 489
end-of-line handing for
IND\$File 496-497
example 98-99
file locations 132
FTP

connect to host 489
host name 492
password 495
secure FTP 495
send command 488-492
user name 494

IND\$File
end-of-line handling 496-497
host environment 497
local file format 497-498
packet size 498
record length 498
send commands 496

Kermit
checksum 502-503
duplicate files 503
packet size 503
send command 488-492

protocol 503-504
receive files 504-505
secure FTP

compression 492
port number 493

secure socks enabled 493
secure socks port number 494
secure socks server name 494
warnings 493

send files 505-506
setup 506-507
XMODEM

checksum 507
packet size 508
streaming 508

YMODEM
checksum 508
packet size 509
streaming 509

Translation 166-167

Triggers
get name of 418
get pattern for 418
turn on or off 453

Trim strings 509-510

True (constant) 103

Type
of applications 139-140

Type checking 116

Types, of constants 183

U
Ubound 142

Undo in Dialog Editor 82

Unicode text
insert, into Clipboard 178
return, from Clipboard 177-178

Unlock file 327-328

Upper bounds of arrays 514

Uppercase 514-515

User-defined
data types 226-228, 510-511, 515-
516
errors 196, 312, 352-353
help 128-129, 132

User files 131

User interface
AnswerBox 115-116
AskBox and AskBox$ 144-145
AskPassword and
AskPassword$ 145-146
constants for 189
dialogs 338, 340-341
InputBox 304-305
listbox 324-325
modeless dialogs 48, 336-338
save file dialog 389-390
select box 393-394

User macro file 49-50
example 94-95

UserButtonPicturesLocation 131

UserHelpFile 128-129

UserHelpmenu 129

UserHotSpotsLocation 130

UserKeyMapsLocation 130

UserMacrosLocation 130

UserPhoneBookLocation 130-131

UserSessionsBookLocation 131

UserTransfersLocation 132

V
Value, pass parameters by 151-152

Variables
array 141-143
assign expression to 321
assign values to , 112
Boolean 150
checking type of 116
copy 330
declaring as OLE objects 348-349
define 51
determine if objects 314
determine type of 521
dimension 226-228
empty 313
environment 249
get data type 511-512
global 54-55
input file into 301-304, 322-323
object 349-350, 455-456, 512-513
of objects See Properties 45
private 55, 373-374
public 54-55, 374-376
returned by functions 44
set default data type 360-361
shared between macros 49
store data from file in 287, 289
watch 63, 65

Variant (data type) 517, 519-520
assign value to 518
compare 182, 311
concatenate , 111-112
constants for 192
convert from date 207-208
convert from expression 196
copy 330
determine if object 314
empty 313
passing to subroutines 520

Variants
convert from date 208

Version 132

ViewUserHelp 132



Visible 133

VM/CMS 497

W
Wait for

3270/5250 form pages 47
keystrokes 47
strings 47

Watch pane (Macro Editor) 57

Watch variables 63, 65

Weekday 522-523

While loops 523

Width of files 523-524

Win32 (constant) 103

Windows
applications 139-140
constants for 133, 184
of program, set state of 133

WindowState 133

Words, count 525

Wrap text in session window 397

Write
data to file 371-373, 377, 379
file 384, 525-526

Write data to file 378

WYSE sessions
macro files for 50
send string to host 95-96
wait for strings in 47

X
XMODEM file transfer

checksum 507
packet size 508
streaming 508

Xon/xoff flow control 168-169

Y
Year 528

YMODEM file transfer
packet size 509
streaming 508-509

Z
Zero-based arrays 358

ZModem example 98-99


	Introduction
	File Transfer
	Character and String Manipulation
	Drive, Folder, and File Access
	Keywords, Data Types, Operators, and Expressions
	Host Connections
	Numeric, Math, and Accounting Functions
	Macro Control and Compilation
	Application and Session Features
	Operating System Control
	User Interaction
	Time and Date Access
	Objects
	SQL Access
	DDE Access

	Recording and Running Macros
	Recording macros
	Running macros
	What can go wrong?
	Running PSL Scripts


	Creating Macros
	Features and organization
	Macro syntax

	Using SmarTerm’s objects
	Understanding the SmarTerm objects
	Application
	Session
	Circuit
	Transfer
	Clipboard
	Msg
	Dlg
	Err


	Modules and collectives
	Predefined login and logout macros
	Session_Connect macro
	Session_QueryClose macro

	Why macros, modules, and collectives


	Programming Macros
	Using the macro editor
	The macro editor window
	Getting help
	Using the toolbar
	Edit>CutN
	Edit>Copy
	Edit>Paste
	Edit>Undo
	Macro>Start
	Break
	Macro>Stop
	Debug>Toggle Breakpoint
	Debug>Add Watch
	Calls
	Debug>Single Step
	Debug>Procedure Step

	Using accelerators
	Editing macros
	Moving around in a macro
	Color coding in macros
	Adding comments to macros
	Breaking a macro statement across multiple lines
	Searching and replacing

	Debugging macros
	Tracing macro execution
	Setting and removing breakpoints
	Using Watch variables


	Creating Dialogs
	Using the Dialog Editor
	Toolbar
	Dialog
	Status bar
	The Dialog Editor
	Test Dialog
	Information
	Cut
	Copy
	Paste
	Undo
	Select
	OK Button
	Cancel Button
	Help Button
	Push Button
	Option Button
	Check Box
	Group Box
	Text
	Text Box
	Listbox
	Combo Box
	Drop List Box
	Picture
	Picture Button
	Accelerators for the Dialog Editor

	Creating a Custom Dialog
	Types of Controls
	Push button
	Option button
	Checkbox
	Group box
	Text
	Text box
	Listbox
	Combo box
	Drop-down listbox
	Picture
	Picture button
	Adding Controls to a Dialog
	Using the Grid to Help You Position Controls within a Dialog
	Creating Controls Efficiently
	Tabbing order
	Option button grouping
	Accelerator keys

	Editing a Custom Dialog
	Selecting Items
	Using the Information Dialog
	Position and Size
	Keeping Track of Position and Size
	Changing Titles and Labels
	Assigning Accelerator Keys
	Specifying Pictures
	Creating or Modifying Picture Libraries under Windows
	Duplicating Controls
	Deleting Controls
	Undoing Editing Operations

	Editing an Existing Dialog
	Pasting an Existing Dialog into the Dialog Editor
	Capturing a Dialog
	Opening a Dialog Template File

	Testing a Dialog
	Tabbing order
	Option button grouping
	Text box functioning
	Accelerator keys

	Incorporating a Dialog into a Macro

	Using Dialogs
	Creating a Dialog Record
	Putting Information into the Dialog
	Defining and Filling an Array
	Setting Default Text in a Text Box
	Setting the Initial Focus and Controlling the Tabbing Order

	Displaying the Custom Dialog
	Using the Dialog() Function
	Using the Dialog Statement

	Retrieving Values from the Custom Dialog
	Using a Dynamic Dialog in a Macro
	Making a Dialog Dynamic
	Using a Dialog Function
	Responding to User Actions


	Using objects in an external OLE application
	Communicating with a host
	Handling host connections
	Possible improvements

	Sending and receiving data
	Sending and receiving strings and keystrokes
	Transferring text
	Transferring files


	Compiling Macros
	Using compiled macros


	Symbols
	' (single quote)
	'! (description comment)
	- (subtraction)
	expression1 - expression2
	-expression

	#Const
	#If...Then...#Else
	& (concatenation)
	( ) (precedence)
	* (multiplication)
	. (dot)
	/* and */ (C-style comment block)
	/ (division)
	\ (integer division)
	^ (exponentiation)
	_ (line continuation)
	+ (addition/concatenation)
	Numeric add
	Variant add

	<,  <=, <>, =, >, >= (comparison)
	= (assignment)

	A
	Abs
	And
	Binary conjunction

	AnswerBox
	Any (data type)
	AppActivate
	AppClose
	AppFind, AppFind$
	AppGetActive$
	AppGetPosition
	AppGetState
	AppHide
	Application (object)
	Application.ActiveSession
	Application.Application
	Application.Caption
	Application.CommandLine
	Application.DoMenuFunction
	Application.FlashIcon
	Application.InstalledLanguages
	Application.Parent
	Application.Product
	Application.Quit
	Application.Sessions (collection)
	Application.Sessions.Application
	Application.Sessions.Count
	Application.Sessions.Item
	Application.Sessions.Open
	Application.Sessions.Parent
	Application.StartupLanguage
	Application.SuppressRefocus
	Application.UserHelpFile
	Application.UserHelpMenu
	Application.UserHotSpotsLocation
	Application.UserKeyMapsLocation
	Application.UserMacrosLocation
	Application.UserPhoneBookLocation
	Application.UserSessionsLocation
	Application.UserButtonPicturesLocation
	Application.UserSmarTermButtonsLocation
	Application.UserTransfersLocation
	Application.Version
	Application.ViewUserHelp
	Application.Visible
	Application.WindowState

	AppList
	AppMaximize
	AppMinimize
	AppMove
	AppRestore
	AppSetState
	AppShow
	AppSize
	AppType
	ArrayDims
	Arrays (topic)
	Declaring array variables
	Fixed arrays
	Dynamic arrays
	Passing arrays
	Querying arrays
	Operations on arrays

	ArraySort
	Asc, AscB, AscW
	AskBox, AskBox$
	AskPassword, AskPassword$
	Atn

	B
	Beep
	Begin Dialog
	Expression Evaluation within the dialog Template

	Boolean (data type)
	ByRef
	ByVal

	C
	Call
	CancelButton
	CBool
	CCur
	CDate, CVDate
	CDbl
	ChDir
	ChDrive
	CheckBox
	Choose
	Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$
	CInt
	Circuit (object)
	Circuit.AssertBreak
	Circuit.AutoConnect
	Circuit.Connect
	Circuit.Connected
	Circuit.Disconnect
	Circuit.LATHostName
	Circuit.LATPassword
	Circuit.LATSavePassword
	Circuit.ModemAlt1Number
	Circuit.ModemAlt2Number
	Circuit.ModemAlt3Number
	Circuit.ModemAreaCode
	Circuit.ModemCountryCode
	Circuit.ModemGetCountryCodeString
	Circuit.ModemPhoneNumber
	Circuit.ModemTotalCountryCodes
	Circuit.ModemUseCodes
	Circuit.SendRawToHost
	Circuit.SerialBaudRate
	Circuit.SerialBreakDuration
	Circuit.SerialDataBits
	Circuit.SerialFlowControl
	Circuit.SerialParity
	Circuit.SerialPort
	Circuit.SerialReceiveBufferSize
	Circuit.SerialStopBits
	Circuit.SerialTransmitBufferSize
	Circuit.Setup
	Serial COM1-COM4
	Telnet

	Circuit.SNALogicalUnit
	Circuit.SNAProtocol
	Circuit.SNAServerName
	Circuit.SuppressConnectErrorDialog
	Circuit.TelnetBreakMode
	Circuit.TelnetCharacterMode
	Circuit.TelnetHostName
	Circuit.TelnetPortNumber

	Clipboard (object)
	Clipboard$ (function)
	Clipboard$ (statement)
	Clipboard.Clear
	Clipboard.GetFormat
	Clipboard.GetText
	Clipboard.SetText

	CLng
	Close
	ComboBox
	Comments (topic)
	Comparison Operators (topic)
	String comparisons
	Numeric comparisons
	Variant comparisons

	Const
	Constants (topic)
	Application State Constants
	Application.WindowState, Session.WindowState
	Character Constants
	Circuit.SerialFlowControl
	Circuit.SerialParity
	Circuit.TelnetBreakMode
	Circuit.TelnetCharacterMode
	Clipboard Constants
	Compiler Constants
	Date Constants
	File Constants
	File Type Constants
	Font Constants
	IMEStat Constants
	Math Constants
	Session.EventWait
	MsgBox Constants
	Session.Capture File Handling
	Session.KeyWait, Session.Collect
	Session.StringWait
	Session.ConfigInfo
	Session.EmulationInfo
	Session.KeyWait
	Session.Language, Application.InstalledLanguages,Application.StartupLanguage
	Shell Constants
	Macro Language Constants
	String Conversion Constants
	Variant Constants

	Cos
	CreateObject
	CSng
	CStr
	CurDir, CurDir$
	Currency (data type)
	CVar
	CVErr

	D
	Date (data type)
	Date literals
	Dates and Year 2000 Calculations
	Compensating for dates specifying two-digit years


	Date, Date$ (functions)
	Date, Date$ (statements)
	DateAdd
	DateDiff
	DatePart
	DateSerial
	DateValue
	Day
	DDB
	DDEExecute
	DDEInitiate
	DDEPoke
	DDERequest, DDERequest$
	DDESend
	DDETerminate
	DDETerminateAll
	DDETimeout
	Declare
	Prototying macro subroutines and functions
	Adding and subtracting via prototypes

	Declaring routines in external .DLL files
	Passing parameters
	Calling conventions with external routines
	Passing null pointers
	Passing data to external routines
	Returning values from external routines
	Calling external routines


	DefType
	Dialog (function)
	Dialog (statement)
	Dialogs (topic)
	Dim
	Fixed-length strings
	Implicit variable declaration
	Declaring explicit OLE automation objects
	Creating new objects
	Initial values
	Naming conventions

	Dir, Dir$
	Wildcards
	Attributes

	DiskDrives
	DiskFree
	DlgCaption (function)
	DlgCaption (statement)
	DlgControlId
	DlgEnable (function)
	DlgEnable (statement)
	DlgFocus (function)
	DlgFocus (statement)
	DlgListBoxArray (function)
	DlgListBoxArray (statement)
	DlgProc
	DlgSetPicture
	DlgText
	DlgText$
	DlgValue (function)
	DlgValue (statement)
	DlgVisible (function)
	DlgVisible (statement)
	Picture Caching

	Do...Loop
	DoEvents (function)
	DoEvents (statement)
	Double (data type)
	Storage

	DropListBox

	E
	End
	Environ, Environ$
	EOF
	Eqv
	Binary equivalence

	Erase
	Err (object)
	Erl
	Err.Clear
	Err.Description
	Err.HelpContext
	Err.HelpFile
	Err.LastDLLError
	Err.Number
	Err
	Err.Raise
	Err.Source

	Error Handling (topic)
	Cascading Errors
	Visual Basic Compatibility
	Error, Error$ (functions)
	Error (statement)

	Exit Do
	Exit For
	Exit Function
	Exit Sub
	Exp
	Expression Evaluation (topic)
	Type Coercion
	Rounding
	Default Properties


	F
	FileAttr
	FileCopy
	FileDateTime
	FileDirs
	FileExists
	FileLen
	FileList
	Wildcards
	File attributes

	FileParse$
	Fix
	For...Each
	For...Next
	Format, Format$
	Built-in formats
	User-defined formats

	FreeFile
	Function...End Function
	Returning Values from Functions
	Passing Parameters to Functions
	Optional Parameters

	Fv

	G
	Get
	Variable types

	GetAttr
	GetObject
	GoSub
	Goto
	GroupBox

	H
	HelpButton
	Hex, Hex$
	Hour

	I
	If...Then...Else
	Iif
	IMEStatus
	Imp (operator)
	Binary implication

	Input#
	Input, Input$, InputB, InputB$
	InputBox, InputBox$
	InStr, InstrB
	Int
	Integer (data type)
	IPmt
	IRR
	Is
	IsDate
	IsEmpty
	IsError
	IsMissing
	IsNull
	IsNumeric
	IsObject
	Item$
	ItemCount

	K
	Keywords (topic)
	Restrictions

	Kill

	L
	Lbound
	LCase, LCase$
	Left, Left$, LeftB, LeftB$
	Len, LenB
	Let
	Like
	Line Input#
	Line Numbers (topic)
	Line$
	LineCount
	ListBox
	Literals (topic)
	Constant folding

	Loc
	Lock, Unlock
	Lof
	Log
	Long (data type)
	LSet
	LTrim, LTrim$

	M
	Mid, Mid$, MidB, MidB$ (functions)
	Mid, Mid$, MidB, MidB$ (statements)
	Minute
	MIRR
	MkDir
	Mod
	Month
	Msg (object)
	Msg.Close
	Msg.Open
	Msg.Text
	Msg.Thermometer

	MsgBox (function)
	Breaking Text across Lines

	MsgBox (statement)

	N
	Name
	Named Parameters (topic)
	New
	Not
	Now
	NPer
	Npv

	O
	Object (data type)
	Using objects
	Automatic destruction

	Objects (topic)
	What is an object
	Declaring Object Variables
	Assigning a Value to an Object Variable
	Accessing Object Properties
	Accessing Object Methods
	Comparing Object Variables
	Collections
	Predefined Objects

	Oct, Oct$
	OKButton
	On Error
	Errors within an Error Handler

	Open
	OpenFilename$
	Operator Precedence (topic)
	Operator Precision (topic)
	Option Base
	Option Compare
	Option CStrings
	Option Default
	Option Explicit
	OptionButton
	OptionGroup
	Or
	Binary Disjunction


	P
	Picture
	PictureButton
	Pmt
	PopUpMenu
	PPmt
	Print
	Print#
	Private
	Fixed-Length Strings
	Initial Values

	Public
	Fixed-Length Strings
	Sharing Variables

	PushButton
	Put
	Pv

	R
	Random
	Randomize
	Rate
	ReadIni$
	ReadIniSection
	Redim
	Rem
	Reset
	Resume
	Return
	Right, Right$, RightB, RightB$
	RmDir
	Rnd
	RSet
	RTrim, RTrim$

	S
	SaveFilename$
	Second
	Seek (function)
	Seek (statement)
	Select...Case
	SelectBox
	SendKeys
	Specifying Keys

	Session (object)
	Session.Application
	Session.AutoWrap
	Session.Blink
	Session.Bold
	Session.BufferFormatted
	Session.BufferModified
	Session.Caption
	Session.Capture
	Session.CaptureFileHandling
	Session.Circuit
	Session.ClearScreen
	Session.Close
	Session.Collect (object)
	Session.Collect.CollectedCharacters
	Session.Collect.CollectedString
	Session.Collect.Consume
	Session.Collect.MaxCharacterCount
	Session.Collect.Reset
	Session.Collect.Start
	Session.Collect.Status
	Session.Collect.TermString
	Session.Collect.TermStringExact
	Session.Collect.Timeout
	Session.Collect.TimeoutMS
	Session.Column
	Session.Concealed
	Session.ConfigInfo
	Session.Connected
	Session.DialogView
	Session.DoMenuFunction
	Session.Echo
	Session.EmulationInfo
	Session.EndCapture
	Session.EventWait (object)
	Session.EventWait.EventCount
	Session.EventWait.EventType
	Session.EventWait.MaxeventCount
	Session.EventWait.Reset
	Session.EventWait.Start
	Session.EventWait.Status
	Session.EventWait.Timeout
	Session.EventWait.TimeoutMS
	Session.FieldEndCol
	Session.FieldEndRow
	Session.FieldModified
	Session.FieldStartCol
	Session.FieldStartRow
	Session.FieldText
	Session.FontAutoSize
	Session.FontHeight
	Session.FontWidth
	Session.GetMostRecentTriggerName
	Session.GetMostRecentTriggerPattern
	Session.HotSpotsActive
	Session.HotSpotsFileName
	Session.InitialMouseCol
	Session.InitialMouseRow
	Session.InsertMode
	Session.InterpretControls
	Session.Inverse
	Session.IsFieldMark
	Session.IsNumeric
	Session.IsProtected
	Session.KeyboardLocked
	Session.KeyWait (object)
	Session.KeyWait.KeyCode
	Session.KeyWait.KeyCount
	Session.KeyWait.KeyType
	Session.KeyWait.MaxKeyCount
	Session.KeyWait.Reset
	Session.KeyWait.Start
	Session.KeyWait.Status
	Session.KeyWait.Timeout
	Session.KeyWait.TimeoutMS
	Session.KeyWait.Value
	Session.Language
	Session.LoadKeyboardMap
	Session.LoadSmarTermButtons
	Session.LockStep (object)
	Session.LockStep.Reset
	Session.LockStep.Start
	Session.MouseCol
	Session.MouseRow
	Session.NativeScreenText
	Session.Normal
	Session.Online
	Session.Page
	Session.ReplayCaptureFile
	Session.Row
	Session.ScreenText
	Session.ScreenToFile
	Session.SelectScreenAtCoords
	Session.SelectionEndColumn
	Session.SelectionEndRow
	Session.SelectionStartColumn
	Session.SelectionStartRow
	Session.SelectionRectangular
	Session.SelectionType
	Session.Send
	Session.SendKey
	Session.SendLiteral
	Session.SetFontSize
	Session.SetHotSpotsFile
	Session.StringWait (object)
	Session.StringWait.MatchString
	Session.StringWait.MatchStringEx
	Session.StringWait.MatchStringExact
	Session.StringWait.MaxCharacterCount
	Session.StringWait.Reset
	Session.StringWait.Start
	Session.StringWait.Status
	Session.StringWait.Timeout
	Session.StringWait.TimeoutMS
	Session.TotalColumns
	Session.TotalPages
	Session.TotalRows
	Session.Transfer
	Session.TransferProtocol
	Session.TranslateBinary
	Session.TranslateText
	Session.TransmitFile
	Session.TransmitFileUntranslated
	Session.TriggersActive
	Session.TypeFile
	Session.Underline
	Session.UnloadSmarTermButtons
	Session.Visible
	Session.WindowState

	Set
	SetAttr
	Sgn
	Shell
	Sin
	Single (data type)
	Storage

	Sleep
	Sln
	Space, Space$
	Spc
	SQLBind
	SQLClose
	SQLError
	SQLExecQuery
	SQLGetSchema
	SQLOpen
	SQLRequest
	SQLRetrieve
	SQLRetrieveToFile
	Sqr
	Stop
	Str, Str$
	StrComp
	StrConv
	String (data type)
	String, String$
	Sub...End Sub
	Passing Parameters to Subroutines
	Optional Parameters

	Switch
	SYD

	T
	Tab
	Tan
	Text
	TextBox
	Time, Time$ (functions)
	Time, Time$ (statements)
	Timer
	TimeSerial
	TimeValue
	Transfer (object)
	Transfer.Command
	Transfer.FTPAutoConnect
	Transfer.FTPConfirmDeleteFiles
	Transfer.FTPConfirmRemoveFolders
	Transfer.FTPConfirmReplaceFiles
	Transfer.FTPConfirmTransferFiles
	Transfer.FTPConfirmTransferFolders
	Transfer.FTPDeleteIncompleteFiles
	Transfer.FTPHostName
	Transfer.FTPSecureCompression
	Transfer.FTPSecureFirstTimeWarningsOff
	Transfer.FTPSecurePortNumber
	Transfer.FTPSecureSocksEnabled
	Transfer.FTPSecureSocksPortNumber
	Transfer.FTPSecureSocksServerName
	Transfer.FTPUserName
	Transfer.FTPUserPassword
	Transfer.FTPUseSecureFTP
	Transfer.INDFILEAdditionalCommands
	Transfer.INDFILEEnableCRLFHandling
	Transfer.INDFILEHostEnvironment
	Transfer.INDFILELocalFileFormat
	Transfer.INDFILELogicalRecordLength
	Transfer.INDFILEPacketSize
	Transfer.INDFILEPromptBeforeOverwrite
	Transfer.INDFILERecordFormat
	Transfer.INDFILEResponseTimeout
	Transfer.INDFILEStartupTimeout
	Transfer.INDFILETSOAllocationUnits
	Transfer.INDFILETSOAUPrimary
	Transfer.INDFILETSOAUSecondary
	Transfer.INDFILETSOAverageBlockSize
	Transfer.INDFILETSOBlockSize
	Transfer.KermitCheckSumType
	Transfer.KermitDuplicateFileWarning
	Transfer.KermitPacketSize
	Transfer.ProtocolName
	Transfer.ReceiveFile
	Transfer.ReceiveFileAs
	Transfer.SendFile
	Transfer.SendFileAs
	Transfer.Setup
	FTP transfers
	KERMIT transfers
	XMODEM, YMODEM, and ZMODEM transfers

	Transfer.XMODEMCheckSumType
	Transfer.XMODEMPacketSize
	Transfer.XMODEMStreaming
	Transfer.YMODEMCheckSumType
	Transfer.YMODEMPacketSize
	Transfer.YMODEMStreaming

	Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$
	Type
	TypeName
	TypeOf

	U
	UBound
	UCase, UCase$
	Unlock
	User-Defined Types (topic)
	Declaring Structures
	Copying Structures
	Passing Structures
	Size of Structures


	V
	Val
	Variant (data type)
	Determining the Subtype of a Variant
	Assigning to Variants
	Operations on Variants
	Adding Variants
	Variants That Contain No Data
	Variant Storage
	Disadvantages of Variants
	Passing Nonvariant Data to Routines Taking Variants
	Passing Variants to Routines Taking Nonvariants

	VarType

	W - X - Y
	Weekday
	While...Wend
	Width#
	Word$
	WordCount
	Write#
	WriteIni
	Xor
	Binary Exclusion

	Year

	PSL Equivalents for Methods and Properties
	Error Messages
	Visual Basic Compatible error messages
	Compiler-Specific error messages
	Compiler errors

	Index

