SmarTerm version 11
Copyright 2002, Esker S.A. All Rights Reserved.
Issued February 2002

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means without the prior written consent of Esker

S.A.
{} Esker
SOFTWARE

Esker S.A., 10 rue des Emeraudes, 69006 Lyon, France
Tel: +33 (0)4.72.83.46.46 & Fax: +33 (0)4.72.83.46.40 & info@esker.fr ¢ www.esker.fr

Esker, Inc., 465 Science Drive, Madison, WI 53711 USA
Tel: +1.608.273.6000 ¢ Fax: +1.608.273.8227 ¢ info@esker.com ¢ www.esker.com

Esker Australia Pty Ltd. & Tel: +61.2.9565.5688 & info@esker.com.au ¢ www.esker.com.au
Esker GmbH ¢ Tel: +49.201.821.57-0 ¢ info@esker.de ¢ www.esker.de

Esker Italia SRL ¢ Tel: +39.02.89.20.03.03 ¢ info@esker.it ¢ www.esker.it

Esker Ibérica, S.L. & Tel: +34.91.552.92.65 ¢ info@esker.es ¢ www.esker.es

Esker UK Ltd. & Tel: +44.1332.799622 ¢ info@esker.co.uk ¢ www.esker.co.uk

Esker, Inc. (Stillwater, OK) ¢ Tel: +1.405.624.8000 ¢ info@esker.com ¢ www.esker.com
Esker, Inc. (Lake Forest, CA) ¢ Tel: +1.949.462.2200 ¢ info@esker.com ¢ www.esker.com

Portions ©1991-1998 Microsoft Corporation. All rights reserved.

Portions ©1992-1998 Summit Software Company. All rights reserved.

©1998-2000 The OpenSSL Project. This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This software is derived in part from ssh software which is ©1995 Tatu Ylonen <ylo@cs.hut.fi>
Espoo, Finland. ©1999-2000 Markus Friedl. © 1999-2000 Damien Miller. ©1998 CORE SDI S.A.,
Buenos Aires, Argentina. ©1996 Internet Software Consortium. ©1983, 1990, 1993, 1994 The
Regents of the University of California. ©1993 Digital Equipment Corporation. ©1995, 1996, 1998
Theo de Raadt. ©1998 Todd C. Miller <toddmiller@courtesan.com>. All rights reserved.

Esker, the Esker logo, SmarTerm, Faxgate, SmartMouse, Persona, and Tun are either registered trade-
marks or trademarks of Esker S.A. Citrix, WinFrame, Independant Computing Architecture (ICA),
and the Citrix logo are registered trademarks and MultiWin and MetaFrame are trademarks of Citrix
Systems, Inc. DEC, VT, LAT, and VAX are trademarks of Digital Equipment Corporation. IBM and
PC AT are registered trademarks of International Business Machines. Microsoft and Windows are
registered trademarks and Active Server is a trademark of Microsoft Corporation. Novell is a trade-
mark of Novell, Inc. Netscape and Netscape Navigator are registered trademarks of Netscape Com-
munications Corporation. UNIX is a registered trademark of The Open Group. All other trademarks
mentioned are the property of their respective owners.

Contents

INtrodUCTION . . . 1
Macro Features Listed by PUrpose e 2
File Transfer. 2
Character and String Manipulation 3

Drive, Folder, and File ACCESS oo e 4
Keywords, Data Types, Operators, and EXpressions 5

HOSt CONNECLIONS oo e e e 6
Numeric, Math, and Accounting FUNCtions 6

Macro Control and Compilation. e 7
Application and Session Features e 8
Operating System Control e 9

User INTeraction 9

Time and Date ACCESSttt ittt e e e e 10

L0] o] 1= £ 10

SO ACCESS . v v ittt e e 10

DD ACCESS . . . oo ittt 10
Recording and RUNNING MacCrosS. i e e e e e e e 11
RecOrding MacCKOSo ot e e e e e 12
RUNNING MaCr0S . .ottt e e e e e e e e e e e e 13
What Can go WEONG?ttt e e e e e e 13
RUNNING PSL SCHIPtS . .. e e e e e e 13
Creating MaCKOSot e 15
Features and organization e 15
MaCK0 SYNEAX. 16

UsiNg SMarTerm’s ODJeCtSttt e e e e 17
Understanding the SmarTermobjects 18
Modules and collectives e 22
Predefined login and logout Macros. 23

Why macros, modules, and collectives e 28

Programming MacCrOS 31
Using the macro editor 31
The macro editor Window 31
Getting help 32
Using the toolbar. 32
Using acCelerators 33
Editing MacCroS.o 34
Debugging MAaCK0Sttt e 36
Creating Dialogso e e 41
Using the Dialog Editor e e e e e e 42
Creatinga Custom Dialog. oot e 45
Editing a Custom Dialog. 50
Editing an EXisting Dialog e 61
Testing a Dialog.o e e e 63
Incorporating a Dialog into @a Macro.ttt e e 65
UsSiNg Dialogso 65
Creating a Dialog Record 66
Putting Information intothe Dialog. 66
Displaying the Custom Dialog 67
Retrieving Values from the Custom Dialog 68
Using a Dynamic Dialogina Macro. 69
Making a Dialog DynamicC.o 70
Using objects in an external OLE application 71
Communicatingwith a host e 72
Handling host coNNections e 72
Sending and receiving data. e 75
Compiling MacCros e e 80
Using compiled Macrosot e 81
SYMDOIS . . 83
T(SINGle QUOTE) . .. e e 83
T(description COMMIENT). e 83
S (SUBLraCtioN) e e 84
B ONSE . . o o 85
HI . Then. BEISe ... 85
& (Concatenation) e 87
() (PreCedBNCE) ..o e e 88
*multiplication) 89
(0 1) 89

[*and */ (C-style comment block). 90

L (AIVISION) . 90
N (iNteger diVISION)o e 91
AN (eXpoNentiation)o 92
C(line continuation) e e 92
+ (addition/concatenation) 93
<, ST, <>, S, >, ST (COMPANISON). o o vttt e e 94
S (ASSIgNMENT) . . o oo 94
... 97
ADS L 97
AN, . 98
ANSWEIBOX. . . oot 99
ANy (data tyPe) . . . oo e 100
APPACTIVALE . . . e e e e 100
APPCIOSE .« 102
AppFind, AppFiNdS. e 103
APPGETACTIVESo 103
APPGEtPOSIION e e 104
APPGELSTAte 104
APPHIE. . L 105
Application (0bJect) 106
Application. ACtiVeSESSION o e 106
Application. Application 106
Application.Caption 106
Application.CommandLine 107
Application.DoMenuFuNnction e 107
Application.Flashlcon. 108
Application.InstalledLanguages 108
Application.Parent 109
Application.Product 109
Application. QUIt 109
Application.Sessions (collection) 109
Application.Sessions. Application. e 111
Application.Sessions.CouNt e 111
Application.Sessions. Item 111
Application.SessioNS.OPEN o oo e 111
Application.Sessions.Parent 112
Application.StartupLanguUagettt e 112

Application.SuppressRefoCUS. 113

vi

Application.UserHelpFile 113

Application.UserHelpMenu e e 113
Application.UserHotSpotsLocation i, 114
Application.UserKeyMapsLocation, 114
Application.UserMacrosLocation e 115
Application.UserPhoneBookLocation. i 115
Application.UserSessionsLocationt e 115
Application.UserButtonPicturesLocation 115
Application.UserSmarTermButtonsLocationv.... 116
Application.UserTransfersLocation 116
Application. Version e 116
Application.ViewUserHelp e 116
Application.Visible. e e 117
Application.WindowsState 117
APPLISt . o e e 117
APPMaAXIMIZE . . .o 118
APPMINIMIZE . .. e e 119
APPMIOVE . . 119
APPRESIONE . . . o 120
APPSO At . . . o 121
APPSO, . . e e 122
AP SIZE . o 122
AP YR oot 123
ArraY DM . . 124
ATAYS (BOPIC) .« v vt vttt e e e 125
ATy SO T L o o 127
ASC, ASCB, ASCWV . . oo o 128
ASKBOX, ASKBOXSEo 130
AskPassword, AskPasswords 130
N 1 0 131
.. 133
B . 133
Begin Dialog. . ..o e e 133
Boolean (data type) oo e 135
BYRET . e e 136
By VAl . e 136
.. 139
Call . 139

CBOOl . . e 140
UL, . . 141
CDate, CVDaAtE e 142
CDbl . . e 142
CNDIT . o e 143
CDMIVE .« o o e 143
CheCKBOX. . ..o 143
C00SE . o ottt e 144
Chr, Chr$, ChrB, ChrB$, ChrW, ChrWS. e 145
Nt o e 146
CIrCUIt (OB ECT) . . . oot e 147
CircUuit. AssertBreak oo e 147
CircUIt. AUTOCONNECT. . . . oot e e e e e e e 147
CIrCUIT. CONNECT. . . o ot e e e e e e 148
CircUit.ConNNECtEd ot e e 148
CircUIt. DiSCONNECTt e e e 148
CirCUIt. LATHOSINGAMEo e e e e e e e e e 149
CirCUIt. LATPASSWOId . . . o ottt e e e e e e e e 149
CircUuit.LATSavePasswordo e e e 149
Circuit.ModemAItINUMDbBEr 150
Circuit.ModemAIt2NUMDbBEr 150
Circuit.ModemAItSNUMDbBEr 151
Circuit.ModemAreaCode oottt e 151
Circuit.ModemCountryCodettt e 151
Circuit.ModemGetCountryCodeStringttt e 151
Circuit.ModemPhoneNumber e 152
Circuit.ModemTotalCountryCodesottt e e e 152
Circuit.ModemuUSECOodESottt e 152
Circuit.SendRawWTOHOST.o e 153
Circuit.SerialBaudRate i 153
Circuit.SerialBreakDurationt e e 153
Circuit.SerialDataBitso 154
Circuit.SerialFlowControl 154
Circuit.SerialParity e e 155
Circuit.SerialPort 155
Circuit.SerialReceiveBufferSize e 156
Circuit.SerialStopBits e 156
Circuit.SerialTransmitBufferSize i 156
CIrCUIT. SB UD. . . o e e e e e e 157
Circuit.SNALogicalUnit. e e 158
Circuit.SNAPIrotocol e 158

vii

viii

CircUIt.SNASEIrVErNaAME. . . . o e e e e e e e e e e e 159

Circuit.SuppressConnectErrorDialog. e 159
Circuit.TelnetBreakMode 160
Circuit.TelnetCharacterMode. e e 161
Circuit. TelnetHostName. e 161
Circuit. TelnetPortNUmMber 161
Clipboard (0DJect)o 162
Clipboard$ (funCtion).o 162
Clipboard$ (Statement)ot e 162
Clipboard.Clear 162
Clipboard.GetFormat 163
Clipboard.GetTexXt e 163
Clipboard.SetText e 164
NG . o 164
Cl0SE . . o 165
COMBOBOX. . . ottt 165
ComMMENTS (L0PIC) . . o v oot e e e 166
Comparison Operators (TOPIC) oot e e 167
CONSt. L e 169
ConStants (TOPIC) . . . oot 170
Application State ConstantsS. 170
Application.WindowState, Session.WindowState 170
Character ConsStantst e 171
Circuit.SerialFlowControl. e 171
Circuit.SerialParity 171
Circuit.TelnetBreakMode 171
Circuit.TelnetCharacterMode. e 172
Clipboard Constants e 172
Compiler Constants. 172
Date CoNStants 172
File CoNStants 173
File Type Constants. e 173
FONt CoNStants 173
IMEStat Constants 173
Math Constants. 174
Session.EventWalt. e 174
MSOBOX CONSTANTS. 174
Session.Capture File Handling. 175
Session.KeyWait, Session.Collect. 175
Session. StringWait 175
Session.Configlnfo. e 175
Session.EmulationInfo 176
SessioN. KeyWaltl 176

Session.Language, Application.InstalledLanguages,

Application.StartupLanguUage oot 176
Shell Constants. 176
Macro Language Constantsottt 177
String Conversion Constants.ot e 177
Variant ConsStants 177
G0 o ot e e e e 178
CreateObeCt e e e 178
NG, . o o 179
) 1 179
CUIDIr, CUIDIrS . . o 180
CUrTeNCY (Aata tyYPe) . . o ettt e e e e 180
[- T 181
CV T . o o e e e 181
.. 183
Date (data tyPe).ttt 183
Date literals 183
Dates and Year 2000 Calculations i 184
Date, Date$ (fUNCLIONS).ot e e 187
Date, Date$ (SLateMENTS) oottt ettt e e 187
Date Add. . . 188
DateDiff . . . 189
Date P At 191
DateSerial 193
DateValue 193
DAY . . . 193
DD B . . . 194
DDE EXECUTE . . .ttt e 195
DDEINITIALE. . . . o e 195
DD POKE . . ottt 196
DDERequest, DDEReqUESES 196
DDE SENd . . .ttt e 197
DDETEIrMINGAteo e e 198
DDETerminateAll. 198
DDETIMEOUL . . . ottt e e e e 199
DeClare. . . e 199
Prototying macro subroutines and functions 201

D Ty . oo e 208
Dialog (funCtion). e e 210
Dialog (Statement)o e 212
Dialogs (T0PIC) . . . oo e 212
3 1 212
Dir, DI . o 215
DISKDIIVES . o e 217
DISK e . . o 217
DlgCaption (fUNCLion) e 218
DlgCaption (statement)t e e 218
DIgCoNtrolld. e e 218
DIgEnable (function) e 219
DIgEnable (statement). e 220
DIgFocus (fuNCLioN)o e 220
DIgFocus (Statement). i e e 221
DlgListBoxArray (fUNCLion). e e 221
DlgListBoxArray (statement) i e e 222
DIgPIOC . . o o e 222
DSt P I U e 226
DT Xt . o oo e 227
DT Xtot 228
DlgValue (function) e 228
DlgValue (Statement).o e e 229
DlgVisible (fFUNCLION) e 230
DlgVisible (statement) e 230
D0, 00 . . e e 232
DoEveNnts (fuNCLion)o e e 233
DoOEvVeNts (Statement) e 234
Double (data type) oottt e e 234
DropLiStBOX e 235
.. 237
o 237
ENVIron, ENVIFONSo e 237

Erase . . e 239
8 (0] o =T o 240
P 240
Brr Clear. . .o 241
Err DesCripliono e 241
Err.HelpContext. e 242
Err.HelpFile . .. 243
Err LastDLLErIOr e e 243
Err NUMDEr. . 244
e 245
Brr RaISE . . .o e 245
Err S OUNCE . . . 246
Error Handling (T0PiC)o e e e e e e 247
Cascading ErrOrSt e e 247
Visual Basic Compatibility. 248
Error, Error$ (fuNCtions) 248
Error (Statement) e 249
EXIE DO, . . 250
L 0 250
EXIt FUNCHION. . .. 251
EXIt SUD . . e 251
E XD . oo 251
Expression Evaluation (topic) i e 252
TYPE COBICION . . oot e e e 252
ROUNAING . . . e e e e 252
Default Properties e e e e 253
.. 255
FI A .o 255
FIleC 0Py . . o oot 256
FileDateTime. . . oo e 256
FIlEDirS o e 257
FIEEXIStS. . o 258
Filel en. . . 258
FIlELiSt. . oo e 258
FileParseso 260
X e 261
FOr. EaCh ... 262
FOr NEXE. . o e 263

Xi

Xii

Format, Formatso 265

FreeFile. . ..o 271
Function...End Function 272
Returning Values from Functions i i 273
Passing Parameters to FUNCLIONS.ttt e e e 274
Optional Parameters. e e 274

IV o 275
.. 277
GO, L o 277
Gt .« . 279
GetOD et . . . e e 280
GOSUD . . 281
GOt0. . o e 282
GroUPBOX . . .o 283
.. 285
HelpBULION . . . e 285
HeX, HeX S . . .o 286
HOUL o 286
.. 289
I Then. EISe ... 289
L 290
IMESTAtUSo e 291
IMP (OPEFatOr) . . .o 292
I DU . . 293
Input, Input$, InputB, INputBS 296
INPUEBOX, INPUEBOXS o e 296
INStr, INSErB 297
0 299
Integer (data typPe) 299
DIt L 300
IR R L 301
LS o 302
ISt . . . 303
IS EMIPY . . e 304
LSBT .. 304

ISV SING . . e e 304

ISNUIL. L 305
ISNUMEEIC .« o oo e e e 305
ISODJECt 306
e . o 306
HemMCOUNT . . . e e 308
.. 309
KeYWOrds (T0PIC) . . vttt e e e e e 309
Kl L e 310
.. 311
LboUNd. . . 311
LCase, LCase . . . ottt 312
Left, Left$, LeftB, LeftBS 312
Len, LenB . . 313
- 314
LiKE 315
Line INpULH . . o e 316
Line NUMDbBErs (10PIC)ottt e e e e e 316
LiNEd . . 317
LiNECOUNT . . . 317
LiStBOX. . . it e 318
Literals (T0PiC)o e e 319
0 320
LocK, UNIOCK . ..o 320
0) 322
0 o 322
Long (data type)o oot e 323
LSt . e 323
LTrim, LTrimS . .. 324
.. 325
Mid, Mid$, MidB, MidBS$ (functions)t e 325
Mid, Mid$, MidB, MidB$ (Statements)ttt e 326
MINUEE . . oo 327
MIR R L e e 327

xiii

Xiv

MO . 328
MOt . 329
MG (ODJECT). . o e 329
MSG.Cl0SE . . . ettt 329
M. 0PN . . 330
MISg. T XL, . o o 331
MSQ. ThermOomMETer 331
MsgBOX (FUNCLION) e e e 332
MsSBOX (Statement)o e 334
.. 335
NaME. . . 335
Named Parameters (TOPIC).ottt e e e 336
N W . 336
Ot . 337
N O . . 337
NPT o 338
NV o 339
.. 341
Object (data By Pe) . . . o o oo e 341
ODBJECtS (TOPIC) . - o o ottt e e 342
What is an object 342
Declaring Object Variables 342
Assigning a Value to an Object Variable 343
Accessing Object Properties 343
Accessing Object Methods. 343
Comparing Object Variables. 343
ColleCtioNS 344
Predefined Objects. 344
OCt, OC . . . o 345
O BULEON . . . o e e e e 345
L 0 T o 346
Errors withinan Error Handler. 346
DD . . 348
OpenFilenamesd 350
Operator Precedence (TOPIC) oot e e e e 351
Operator Precision (T0PiC) v vttt e e e e 351
OPtION Baseo 352

OPtION COMPANE . . ottt e e e e e e 352

OPtioN CSIFINGSot e e 353
Option Default. e 354
Option EXPIICITo e 355
OPtIONBULION. e e 355
OPLIONGIOUP . . o oottt e e e e e e 356
O 357
Binary DisjuNCLioN e e 357
.. 359
PICtUNE . . . 359
PICtUrEBULION . .. e e 360
PINE. .. e 362
POPUPMENU. . .. 363
PPt . . 363
o 364
PNt . . 366
PrIVatE e 367
Fixed-Length Strings e e e e 368
Initial Values e 368
PUDLIC . . 370
Fixed-Length Strings 370
Sharing Variables. 371
PUSHBULION e e 371
PUL . . 372
PV e 374
.. 377
RaANAOM . . . e e 377
RaNAOMIZE . . . 377
RatE . . . 378
Readlni® 378
ReadlniSection e e 379
RediMm . . . 380
RN L 381
= 381
RESUMIE . . . 382

RN DT . . . e 383
RN . . 384
RSt . oo 385
RTrim, RTrimM . . .o e e 385
S 387
SaveFilenames. 387
SBCONA. . ottt e 388
Seek (FUNCLION)o 388
Seek (Statement) e e 389
SelECT...CaSE . . it i e 390
SIECEBOX . . ottt e 391
SENAK Y S . . et 392
SPECITYING KeYS . . . 392
SeSSION (0DJECE)o e e 394
Session. Application e 394
SESSION AULOW AP .« . . .t ettt e 395
SeSSION. BIINK 395
SeSSION. BOId. e 395
Session.BufferFormatted 396
Session.BufferModified 396
SESSION. CaPtION e 396
SESSION. CaPtUNE. . . .ttt e 397
Session.CaptureFileHandling. 397
SESSION. CIICUIT. . . .ot e e e e 398
SESSION.ClEAIrSCIEEN . . . ittt 398
SESSION.CIOSE . . .ttt 398
Session.Collect (object) e 399
Session.Collect.CollectedCharacters 400
Session.Collect.CollectedString e e 400
SessioN.ColleCt.CONSUME. oot e e e e e e 400
Session.Collect.MaxCharacterCountttt e 401
SesSioN.COlIECE. RESEt. . . . o e 401
Session.Collect.Start 401
SessioN.Collect.Status o e 402
Session.Collect. TermString. e e e 402
Session.Collect. TermStringEXact. e i e 402
Session.Collect. TimeoULo e 403
Session.Collect. TIimeoUtMS. e e 403
SeSSION. COIUMN . . . oo e 403
Session.Concealed e 404

Xvi

Session.ConfigIinfo e e 404

SeSSION. CoNNECtEd 404
SeSSION. DIalogVIeW. e e e 405
Session.DOMENUFUNCEION. e 405
SeESSION.EChOo e 407
Session.EmulationInfo. 407
SesSION. ENACaptUre. 408
Session.EventWait (Object). 408
Session.EventWait.EventCount. 409
Session. EventWait.EVentType.ot e 409
Session.EventWait.MaxeventCount i 409
Session. EventWait.ReSet i e 410
Session. EventWait.Start 410
Session. EventWait.Status i 410
Session. EventWait. TImeouUt. e e e 411
Session.EventWait. TimeoutMS e 411
Session.FieldENdCol. e 411
SessSiON. FIeldENAROW o e e 412
Session.FieldModified. e 412
Session.FieldStartCol. e 413
Session. FieldStartROW e 413
Session. FieldText e 414
SESSION. FONTAULOSIZE. e e 414
Session.FontHeight 415
Session. FontWidth e 415
Session.GetMostRecentTriggerName 415
Session.GetMostRecentTriggerPattern. 416
SessioN. HOtSPOTSACLIVEo oo 416
Session.HotSpotsFileName e 416
Session.InitialMouseCol. e 418
Session. InitialMoUSEROW e 418
SessioN. INSErtMoOde e 419
Session. InterpretControls e 419
SESSION. INVEISE . . . o e e e 419
Session.IsFieldMark. e 419
SESSION. ISNUMEBIIC . .. o e e e e e e 420
Session. IsProtected. e 420
Session.KeyboardLocked 421
Session.KeyWait (0bject) 421
Session.KeyWait.KeyCode 423
Session.KeyWait. KeyCount 423
Session. KeyWait. Key Ty e . . . oo e 424
Session.KeyWait.MaxKeyCount e 424
Session.KeyWait.Reset. 424
Session.KeyWait.Start 425

Xvii

Xviii

Session. KeyWait.Status i e e 425

Session. KeyWait. TImeoUL. e e e 425
Session. KeyWait. TImeoUtMS e e e e e 426
Session.KeyWait.Value. e 426
SESSION. LaANQUAGE . .. vt ittt 426
Session.LoadKeyboardMap. e 427
Session.LoadSmarTermBuUttonS. o 427
Session.LockStep (0bJect) o e 427
SessionN. LoCKStep. ReSEL. e e 429
Session. LoCKStep.Start e e 429
SessSioN.MoUSECOl 430
SeSSION.MOUSEROW. . . . o 430
Session.NativeScreenTeXt.o 430
Session.NoOrmal 431
SesSIoN.ONIINE 431
SESSION. PagE . . . 432
Session.ReplayCaptureFile. 432
SESSION. ROW . . e 432
SESSION.SCrEENTEXL . . . o oo 433
Session.ScreenToFile. e 433
Session.SelectScreeNALCOONASot o ot e 433
Session.SelectionENdCOIUMN e 434
Session.SelectioNnENAROW e 434
Session.SelectionStartColumn e 435
Session.SelectionStartRoOwW 435
Session.SelectionRectangular. e 436
SesSIioN. SeleCtioNTYPe oo e 436
SESSION.SENA 437
SeSSION. SENAKEY 437
Session.SendLiteral. 439
SesSION. SEtFONTSIZEo e 439
Session.SetHotSpotsFile e 440
Session.StringWait (object). e 440
Session.StringWait.MatchString 442
Session.StringWait.MatchStringEXx 442
Session.StringWait.MatchStringExact 443
Session.StringWait.MaxCharacterCount. i 443
Session. StringWait.Reset 444
Session.StringWait.Start e 444
Session. StringWait.Status e 445
Session. StringWait. Timeout. e 445
Session. StringWait. TImeoutMS e 445
Session. TotalColumMNS e 446
SesSioN. TotalPageso e 446
SeSSION. TOtalROWSo e 446

SESSION. TraNS el e 447

Session. TransferProtocol e 447
Session. TranslateBinary 447
SesSION. Translate TeXt 448
Session.TransmitFile 448
Session.TransmitFileUntranslated 449
SeSSION. TrIggerSACHIVE e e e 449
SessioN. TYpPeFIle. e 450
Session.Underline. e e e 450
Session.UnloadSmarTermButtons i 450
SessioN.Visible e 450
SessioN. WindowState e e 451
T 451
SE ALY 452
SO . o 453
Shell. . 454
SIN o e 455
Single (data type)o 455
1 0] = T = 455
S 1T o 456
SIN L 456
SPACE, SPACEE . . . it 457
S i 457
SOLBING . .. e e e 458
SQLCI0SE . . oo 459
SOLENTOr. . . e e e 459
SOQLEXECQUENY . . ottt e e e 460
SOLGEtSChEMA 461
SOLOPEN . o 464
SOLREQUEST. . . .o 465
SQLRELIIEVE . .. 466
SQLRetrieveToRileo 468
SOF ottt 469
S0P . ottt 469
SHr, S . . . 469
SEECOMIP . . . oo 470
SErCONV o e e e 471
String (data tyPe) oo 472

Xix

XX

String, StriNg 473

SUb..ENd SUD. 474
Passing Parameters to Subroutines. 475
Optional Parameters. e 476

SWITCN . . 477

SY D . o e 477

.. 479

1 1= o 1 479

AN o e 480

T EXE . o e e e 480

X B OX. .« o ottt e 481

Time, Time$ (fFUNCLIONS). e e 483

Time, Time$ (Statements) oot e 483

TUIEE o e 484

TimeSerial e 484

TimeEValUE . .. 484

Transfer (0DJeCt)o 485
Transfer.Commando 485
Transfer.FTPAUTOCONNECTo .ot e e e e e e 486
Transfer.FTPConfirmDeleteFiles. 486
Transfer.FTPConfirmRemoveFolders 487
Transfer.FTPConfirmReplaceFiles. e 487
Transfer.FTPConfirmTransferFiles. e 488
Transfer.FTPConfirmTransferFolders. e 488
Transfer.FTPHOSTINAME e e 488
Transfer.FTPUSerName e e 489
Transfer.FTPUSErPasswordo e e e 489
Transfer.INDFILEAdditionalCommands 489
Transfer.INDFILEEnableCRLFHandling. 490
Transfer.INDFILEHOStENvVIironmeNnt. e e 490
Transfer.INDFILELocalFileFormat. e 491
Transfer.INDFILELogicalRecordLength 491
Transfer.INDFILEPacketSIize e 491
Transfer.INDFILEPromptBeforeOverwrite. 492
Transfer.INDFILERecordFormat. i e 492
Transfer.INDFILEResSponseTIimeout. e i 493
Transfer. INDFILEStartupTimeout e e 493
Transfer.INDFILETSOAlocationUnNits. e 493
Transfer INDFILETSOAUPKIMArYot e e 494
Transfer. INDFILETSOAUSeCONdArY e 494
Transfer.INDFILETSOAverageBlockSize i 495

Transfer. INDFILETSOBIOCKSIZE e 495

Transfer. KermitChecKSUMTYPeot e e e e 495
Transfer.KermitDuplicateFileWarning. i i e 496
Transfer.KermitPacketSize 496
Transfer.ProtocolName 496
Transfer.ReceiveFile. 497
Transfer.ReceiVeFIleAS 497
Transfer.SendFile. 498
Transfer.SendFileAs. e 499
Transter. SetUD e e 499
Transfer, XMODEMCHheCKSUMTYPE . . .ttt e e e e e e 501
Transfer XMODEMPaACKetSIze e e 501
Transfer XMODEMStreaming.ttt e e e e 501
Transfer. YMODEMCHheCKSUMTYPEttt e e e e e e 502
Transfer. YMODEMPacketSize e 502
Transfer. YMODEMStreaming.ottt e e e 502
Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ 503
1/ L 503
TYPENAME . . o 505
TYPEOT .« o o 506
.. 507
UBOUNG . . . 507
UCase, UCaSed . . .t 508
UNIOCK . .o e 508
User-Defined Types (10PIC) . . . oot e e e e e e e 508
Declaring StruCtUIeS e e e e 508
COopPYiNgG STrUCTUNES. oo e e e e 509
PasSiNg StrUCTUNES e e 509
Size Of SErUCTUNES . . . o o 509
.. 511
VAl 511
Variant (data tyPe)o oo e 512
Determining the Subtype ofaVariant 512
AsSIgNING o Variants. 513
Operations 0N Variants 513
AddIiNg Variants 513
Variants That Contain NoData e 514
Variant Storage 514
Disadvantages of Variants. 514
Passing Nonvariant Data to Routines Taking Variants 515
Passing Variants to Routines Taking Nonvariants 515

XXi

WV - X Y 517
WeekKday 517
While.. Wend 518
WidEh# . 518
VOIS . .o 519
WOrdCOUNT 520
Vet . L 520
W N 521
(6 521

Binary EXCIUSION e e 522
D (= 522

PSL Equivalents for Methods and Properties 525

ErrOr MeSSages . .. oottt e e 531
Visual Basic Compatible error messages oo 531
Compiler-Specific error MESSAgES oot ittt e 534
COMPIlEr BITOFS . 535

DX .o 541

XXii

Introduction

The SmarTerm macro language is a powerful Visual-Basic compatible macro language tailored
especialy for use with SmarTerm. The final chapters of the User Guide provide a brief overview of
and tutorial for the language. This Macro Guide provides comprehensive descriptions of al the
features of the language. This chapter covers basic features of the languages, such as data types,
operators, expressions, compilation control features, and keywords. The next chapter is an a-to-z
reference of all macro language statements and functions, aswell asall object properties and methods.
Thislong chapter is followed by two short appendices, one listing equivalents to the older Persoft
Script Language (PSL), and the other listing the numeric error messages you might receive from the
macro compiler.

I:I All information covered in this manual is aso availablein the online help system. In addition, the
online version of this manual may be more up to date than the printed version.

Throughout this manual we use the following conventions:

e Examplesareshowninatype-in font.

e Optional parameters are enclosed in square brackets: [] .
e Named parametersarei tal i ci zed.

e Optionsin aseries are separated with the pipe character: | .

« If you can specify multiple similar parameters, only the first and last are specified, and the inter-

Macro Features Listed by Purpose

File Transfer
Application.UserTransfersL ocation 96
Session.Transfer 351

Session. TransferProtocol 351
Session.TranslateBinary 352
Session.TranslateText 352
Session.TransmitFile 352
Session.TransmitFileUntranslated 353
Transfer (object) 388

Transfer.Command 388
Transfer.FTPAutoConnect 389
Transfer.FTPConfirmDel eteFiles 389
Transfer.FTPConfirmRemoveFolders 390
Transfer.FTPConfirmReplaceFiles 390
Transfer.FTPConfirmTransferFiles 391
Transfer.FTPConfirmTransferFolders 391
Transfer.FTPHostName 392
Transfer.FTPUserName 392
Transfer.FTPUserPassword 392
Transfer.INDFIL EAdditional Commands
393
Transfer.INDFILEEnableCRLFHandling
393

Transfer.INDFILEHostEnvironment 393
Transfer.INDFILEL ocalFileFormat 394
Transfer.INDFILEL ogical RecordL ength
394

Transfer.INDFIL EPacketSize 395
Transfer.INDFIL EPromptBeforeOverwrite

Macro Features Listed by Purpose

395

Transfer.INDFIL ERecordFormat 396
Transfer.INDFIL EResponseTimeout 396
Transfer.INDFILEStartupTimeout 396
Transfer.INDFILETSOAIllocationUnits 397
Transfer.INDFILETSOAUPrimary 397
Transfer.INDFILETSOAUSecondary 398
Transfer.INDFILET SOAverageBlockSize
398

Transfer.INDFILETSOBIlockSize 398
Transfer 399
Transfer.KermitCheckSumType 399
Transfer.KermitDuplicateFileWarning 399
Transfer.KermitPacketSize 399
Transfer.ProtocolName 400
Transfer.ProtocolName 400
Transfer.ReceiveFile 400
Transfer.ReceiveFileAs 401
Transfer.SendFile 401
Transfer.SendFileAs 402

Transfer.Setup 403

Transfer. XM ODEM CheckSumType 404
Transfer. XM ODEM PacketSize 404
Transfer. XM ODEM Streaming 404
Transfer.Y MODEM CheckSumType 405
Transfer.Y MODEM PacketSize 405
Transfer.Y MODEM Streaming 405

Macro Features Listed by Purpose

Character and String Manipulation

& (concatenation) 81

_ (line continuation) 86

+ (addition/concatenation) 87
Asc, AscB, AscW 100

Chr, Chr$, ChrB, ChrB$, Chrw, Chrw$ 113

CStr (function) 136

Error, Error$ (functions) 182
FileDirs 191

FileParse$ 194

Format, Format$ 199

Hex, Hex$ 217

InStr, InstrB 227

Item$ 235

ItemCount 237

L Case, LCase$ 242

Left, Left$, LeftB, LeftBS 242

Len, LenB 243

Like 245

Line$ 247

LineCount 247

L Set 253

LTrim, LTrim$ 254

Mid, Mid$, MidB, MidB$ (functions) 255
Mid, Mid$, MidB, MidB$ (statements) 256
Oct, Oct$ 269

Option Compare 275

Option CStrings 276

Right, Right$, RightB, RightB$ 305

RSet 307

RTrim, RTrim$ 307

Session.Collect (object) 316
Session.Collect.CollectedCharacters 317
Session.Collect.CollectedString 317
Session.Collect.MaxCharacterCount 317
Session.Collect.Reset 318
Session.Collect.Start 318
Session.Collect. TermString 319
Session.Collect. TermStringExact 319
Session.Collect. Timeout 320
Session.Collect. TimeoutM S 320
Session.Send 341

Session.StringWait (object) 345

Space, Space$ 359

Spc 360

Str, Str$ 372

StrComp 373

StrConv 374

String (data type) 375

String, String$ 376

Trim, Trim$, LTrim, LTrim$, RTrim, RT-
rim$ 406

UCase, UCase$ 412

Unlock 412

Val 415

Word$ 423

WordCount 424

Macro Features Listed by Purpose

Drive, Folder, and File Access

ChDir 111
ChDrive 111
Close 124

CurDir, CurDir$ 136
Dir, Dir$ 166
DiskDrives 167
DiskFree 168
EOF 174

FileAttr 189
FileCopy 190
FileDateTime 190
FileDirs 191
FileExists 192
FileLen 192
FileList 192
FileParse$ 194
FreeFile 205

Get 211

GetAttr 213
Input# 223

Input, Input$, InputB, InputB$ 226

Kill 240
Line Input# 246
Loc 250

Lock, Unlock 250
Lof 252

MKkDir 258

Name 263

Open 272

Print# 288

Put 294

ReadIni$ 300

Readlni Section 301
Reset 303

RmDir 305

Seek (function) 309
Seek (statement) 310
Session.Capture 314
Session.CaptureFileHandling 315
Session.EndCapture 323
Session. TypeFile 354
SetAttr 356

Spc 360

Tab 383

Width# 422

Write#t 424

Writelni 425

Macro Features Listed by Purpose

Keywords, Data Types, Operators, and Expressions

" (single quote) 77

"I (description comment) 77

- (subtraction) 78

& (concatenation) 81

() (precedence) 82

* (multiplication) 83

. (dot) 83

[**[' (C-style comment block) 84
/ (division) 84

\ (integer division) 85

N (exponentiation) 86

_ (line continuation) 86

+ (addition/concatenation) 87
<, <=, <>, =, >, >= (operators) 88
And 92

Any (datatype) 93
ArrayDims 96

ArraySort 99

Boolean (data type) 103
ByVval 104

CBool 108

CCur 109

CDbl 110

Choose 112

Cint 114

ClLng 124

Comparison Operators (topic) 126
Const 128

Constants (topic) 130

CSng 135

CStr 136

Currency (datatype) 137
CVar 137

CVErr 138

Date (datatype) 139

DefType 160

Dim (statement) 163

Double (data type) 170

Eqv 174

Erase 175

Expression Evaluation (topic) 186
Imp 222

Integer (datatype) 229

1s232

IsDate 232

[sEmpty 233

IsError 233

IsNumeric 234

Keywords (topic) 239

Lbound 241

Let 244

Like 245

Literals (topic) 249

Long (datatype) 253

Mod 258

Named Parameters (topic) 264
Not 265

Operator Precedence (topic) 274
Operator Precision (topic) 274
Option Base 275

Or 279

Redim 302

Rem 303

String (data type) 375

Type 407

TypeName 408

TypeOf 409

UBound 411

User-Defined Types (topic) 412
Variant (data type) 416
VaType 419

Xor 425

Macro Features Listed by Purpose

Host Connections
Circuit (object) 115
Circuit.AutoConnect 115
Circuit.Connect 116
Circuit.Connected 116
Circuit.Disconnect 116
Circuit.LATHostName 117
Circuit.LATPassword 117
Circuit.LATSavePassword 117
Circuit.SendRawToHost 118
Circuit.Setup 118
Circuit.SNALocaLUAlias 119
Circuit.SNALogicalUnit 119
Circuit.SNAPassword 120
Circuit.SNAProtocol 120

Circuit. SNARemotelL UAlias 120

Circuit.SNAServerName 121
Circuit.SNAUserID 121

Circuit.SuppressConnectErrorDialog 122
Circuit. TelnetBreakM ode 122

Circuit. TelnetCharacterM ode 123
Circuit. TelnetHostName 123

Circuit. TelnetPortNumber 124
Session.Circuit 315

Session.Connected 321
Session.EventWait (object) 323
Session.EventWait.EventCount 324
Session 324
Session.EventWait.MaxeventCount 325
Session.EventWait.Start 325
Session.EventWait.Status 326
Session.EventWait. Timeout 326
Session.EventWait. TimeoutM S 326
Session.LockStep (object) 335

Numeric, Math, and Accounting Functions

- (subtraction) 78

* (multiplication) 83
/ (division) 84

\ (integer division) 85
N (exponentiation) 86
+ (addition/concatenation) 87
Abs91

Atn 101

Cos 135

DDB 150

Exp 185

Fix 195

Fv 209

Int 229

IPmt 230

IRR 231

ISNumeric 234

Log 252

MIRR 257
Mod 258
Mod 258
NPer 266
Npv 267
Pmt 286
PPmt 287
Pv 296
Random 299
Randomize 299
Rate 300
Rnd 306
Sgn 357

Sin 357

Sin 359

Sgr 372
SYD 380
Tan 384

Macro Features Listed by Purpose

Macro Control and Compilation

" (single quote) 77

"I (description comment) 77
#Const 79

#If...Then.. #Else 79

() (precedence) 82

/* and */ (C-style comment block) 84

= (assignment) 88

ByRef 103

ByVal 104

Declare 151

Do...Loop 168

End 173

Erl 176

Err.Clear 177
Err.Description 177
Err.LastDLLError 178
Err.Number 178

Err 179

Err.Raise 180

Err.Source 180

Error Handling (topic) 181
Error, Error$ (functions) 182
Error (statement) 183

Exit Do 184

Exit For 184

Exit Function 185

Exit Sub 185

For...Each 196

For...Next 197
Function...End Function 206
GoSub 214

Goto 215

If...Then...Else 219

lif 220

IsMissing 234

IsNull 234

Line Numbers (topic) 246
Named Parameters (topic) 264
On Error 270

Option Default 277
Option Explicit 278
Private 290

Public 292

Rem 303

Resume 304

Return 304

Select...Case 311

Sleep 358

Stop 372

Sub...End Sub 377
Switch 380
While...Wend 422

Macro Features Listed by Purpose

Application and Session Features

Application (object) 93
Application.ActiveSession 93
Application.Parent 94
Application.Product 94
Application.UserHotSpotsL ocation 94
Application.UserK eyM apsL ocation 94
Application.UserMacrosL ocation 95
Application.UserSessionslLocation 95

Application.UserButtonPicturesL ocation 95

Application.UserButtonsL ocation 95
Application.UserTransfersLocation 96
Application.Version 96

Session (object) 312
Session.Application 312
Session.AutoWrap 312
Session.Blink 312

Session.Bold 313
Session.BufferFormatted 313
Session.BufferModified 314
Session.Capture 314
Session.CaptureFileHandling 315
Session.Circuit 315

Session.Close 315

Session.Collect (object) 316
Session.Collect.CollectedString 317
Session.Collect.Consume 317
Session.Collect.MaxCharacterCount 317
Session.Collect.Reset 318
Session.Collect.Start 318
Session.Collect.Status 318
Session.Collect. TermString 319
Session.Collect. TermStringExact 319
Session.Collect. Timeout 320
Session.Collect. TimeoutM S 320
Session.Column 320
Session.Configlnfo 320
Session.Connected 321
Session.DialogView 321
Session.Echo 322
Session.Emulationinfo 322

Session.EndCapture 323
Session.EventWait (object) 323
Session.EventWait.EventCount 324
Session.EventWait.EventType 324
Session.EventWait.MaxeventCount 325
Session.EventWait.Reset 325
Session.EventWait.Start 325
Session.EventWait.Status 326
Session.EventWait. Timeout 326
Session.EventWait. TimeoutM S 326
Session.FieldEndCol 326
Session.FieldEndRow 327
Session.FieldModified 328
Session.FieldStartCol 328
Session.FieldStartRow 328
Session.FieldText 329
Session.GetClientValue 330
Session.GetM ostRecent TriggerName 330
Session.GetM ostRecent TriggerPattern 330
Session.HotSpotsActive 331
Session.HotSpotsFileName 331
Session.|nsertM ode 332
Session.InterpretControls 332
Session.Inverse 332
Session.IsFieldMark 333
Session.|sNumeric 333

Session.| sProtected 334

Session.K eyboardL ocked 334
Session.LoadK eyboardM ap 335
Session.LoadButtons 335
Session.LockStep (object) 335
Session.LockStep.Reset 337
Session.LockStep.Start 337
Session.MouseCol 338
Session.MouseRow 338
Session.NativeScreenText 338
Session.Normal 339

Session.Online 339

Session.Page 340
Session.ReplayCaptureFile 340

Macro Features Listed by Purpose

Session.Row 340

Session.ScreenText 341

Session.Send 341

Session.SendKey 341

Session.SendLiteral 343
Session.SetClientDisplayM ode 343
Session.SetClientVaue 344
Session.SetHotSpotsFile 344
Session.StringWait (object) 345
Session.StringWait.MatchString 346
Session.StringWait.MatchStringex 347
Session.StringWait.MatchStringExact 347
Session.StringWait.MaxCharacterCount 348
Session.StringWait.Reset 348
Session.StringWait.Start 348

Operating System Control
DoEvents (function) 170

DoEvents (statement) 170

Environ, Environ$ 173

User Interaction
AskPassword$ 101
CancelButton 107
CheckBox 111
ComboBox 125

Dialog (function) 161
Diaog (statement) 163
DropListBox 171
GroupBox 215
InputBox, InputBox$ 226
ListBox 248

MsgBox (function) 259
MsgBox (statement) 261
OKButton 269
OptionButton 278

Session.StringWait.Status 349
Session.StringWait. Timeout 350
Session.StringWait. TimeoutM S 350
Session.Total Columns 350

Session. Total Pages 350

Session. TotalRows 351

Session. TransferProtocol 351
Session.TranslateBinary 352
Session. TranslateText 352

Session. TransmitFile 352

Session. TransmitFileUntranslated 353
Session.TriggersActive 354
Session.TypeFile 354
Session.Underline 354
Session.UnloadButtons 355

GetSetting 214
IMEStatus 221

OptionGroup 279

Picture 283

PictureButton 284
PopUpMenu 287
PushButton 293
Session.DialogView 321
Session.Echo 322
Session.HotSpotsActive 331
Session.HotSpotsFileName 331
Session.LoadButtons 335
Session. SetHotSpotsFile 344
Session.UnloadButtons 355
Text 384

TextBox 385

Macro Features Listed by Purpose

10

Time and Date Access

CDate, CVDate 110

Date (datatype) 139

Date, Date$ (functions) 143
Date, Date$ (statements) 143
DateAdd 144

DateDiff 145

DatePart 147

DateSerial 149

DateValue 149

Day 149

FileDateTime 190

Hour 218

Objects

. (keyword) 83
Application (object) 93
Application.Parent 94
Circuit (object) 115

Err (object) 176

s 232

IsObject 235

New 264

Session (object) 312
Session.Application 312

SQL Access
SQLBind 360
SQLClose 361
SQLError 362
SQLExecQuery 363
SQL GetSchema 364

DDE Access

IsDate 232

Minute 257

Month 259

Now 265

Second 309

Time, Time$ (functions) 386
Time, Time$ (statements) 386
Timer 387

TimeSerial 387

TimeVaue 388

Weekday 421

Y ear 426

Session.Circuit 315
Session.Collect (object) 316
Session.EventWait (object) 323
Session.LockStep (object) 335
Session. StringWait (object) 345
Session.Transfer 351
Session.TransferProtocol 351
Set 355

Transfer (object) 388

SQL Open 366

SQL Request 368

SQL Retrieve 369

SQL RetrieveToFile 371

Recording and Running Macros

When you start up SmarTerm, select Tools>Macros and click Record, you start amacro recorder that:

* Recordswhat youdoinafile

e Automatically writesit in the SmarTerm macro language

» Documents what it records

Y ou then can replay the macro or edit it using the macro editor.

When you record a macro, you might keep in mind that the Toolbox doesn't record every action you

perform. Instead, it analyzes your actions and records those that can be performed with macro
commands. The recorder also looks for incoming prompts and stores outgoing keystrokes.

For example, SmarTerm provides afull range of filetransfer capabilities. Therefore, when you record
afiletransfer, the entire processis recorded. However, the macro language does not support editing a
macro in the macro editor, so you cannot record that sort of task in a macro.

This chapter describes how to record and use macros. More macro information followsin the next two
chapters, “Creating Macros’ on page 15 and “ Programming Macros’ on page 31.

11

Recording macros

Recording macros

12

To record a macro:

Select Tools>Macros. The Macros dialog appears:

Macros [7]

Macro name: B

Close |

Lreate... |
EditZDebug |

Macros gvailable in

Workgroup Macra File j

File: rarne:

Wikg T Browsze... |

Select the file where the macro isto be stored.
Type aname for your macro. Don't include spaces in the name. To replace an existing macro, select
the name from the list.

Click Record. The Start Recording dialog appears, alowing you to review the macro name you just
typed. If you use an existing macro name, SmarTerm asks whether you want to overwrite that macro.
Agree, or change the name, and then click OK. Your session reappears with the word "Record" in the
status bar and a set of buttons that allow you to control the recording process.

Perform the steps you want to record.

At any time you can click the Pause button to pause the recording or the Abort button to abort the
recording.

| [[

Pause Abort Stop

When you are finished recording the macro, click the Stop button to save the macro. If you entered
passwords while recording the macro, a Password Handling dial og appears. You can choose to store
the password in the macro or to require the macro to prompt for the password each time you runiit.

Running macros

Running macros

To test amacro, select Tools>Macros, select the file and macro you want to run, and click Run. You
can also assign amacro to akeystroke, a SmartMouse action, or a SmarTerm button. Follow these
instructions in the online Help for the tool which you want to use.

What can go wrong?

The Toolbox can't record everything you do in a macro. For example, you might record a macro that
includes aspecific responsefromthe host. If you run the macro again and get adifferent response from
the host, the macro may get out of sync. If this happens, stop the macro and then try running it again
to seeif the same thing happens. If the host consistently produces the same new response, you can
record the macro again to put the new host response into the macro. If the problem is that you cannot
predict the host’s response, you may have to edit macro to allow for multiple responses from the host.
See the chapter on Creating Macros for information on editing macros.

Running PSL Scripts

Before SmarTerm 6.0, the SmarTerm products relied on the Persoft Script Language (PSL). Since
then, the Visual Basic compatible SmarTerm Macro Language hasreplaced PSL. If you are upgrading
old sessions to the current version, SmarTerm automatically converts most of the old PSL scripts,
those associated with:

« Automatic login and logout
* SmartMouse actions
» Keyboard mappings

Only old button palettes and toolbars require you to run a converter. In the online help, under
Tools>Toolbar or Tools>SmarTerm Buttons, you'll find a Toolbar and Button Pal ette Converter book

with conversion instructions.

13

Creating Macros

The SmarTerm macro language is an implementation of VisualBasic for Applications (VBA)
especialy tailored for use with SmarTerm. The previous chapter described how to use the macro
recorder to record and play back simple macros (see “ Recording and Running Macros’ on page 11).
There are times, however, when the tasks that you want to accomplish are too complicated for smple
recording, so SmarTerm comes with an integrated editor and debugger that allow you to write more
complex macros. This and the following chapter explain how to do this.

This chapter briefly describes the features of the SmarTerm macro language and explains how macros
are organized in SmarTerm. The next chapter describes how to program macros for avariety of basic
tasks (see “Programming Macros’ on page 31), and the last chapter explains how to best use macros
when you need the sophistication and flexibility required in alarge organization.

Before getting started, please note that these chapters, although constituting a sort of macro tutorial,
are probably not appropriate if you have never programmed before, or if you are not familiar with
SmarTerm. Thistutorial does not assume complete mastery of either of thesetopics, but it doesrequire
at least some familiarity with topics such as looping constructs, arrays, functions, data typing, and so
forth, as well as a sense of what one does with terminal emulation software.

Features and organization

The SmarTerm Macro Language provides you with customizable control over most aspects of host
communication. Commands in the language let you:

* Make host connections using all of the communi cation methods supported by SmarTerm

* Modify the settings of all of the emulation types supported by SmarTerm

» Transfer filesusing all of the file transfer methods supported by SmarTerm

« Build Windows-style user interfaces for your macros using the integrated visual dialog editor

» Have access to the most important operating system functions such as disk and file access, OLE
(Object Linking and Embedding) automation, and so forth

15

Features and organization

16

Y ou may be familiar with another macro language that organizes macros in a particular way. For
example, many macro languages simply store each macroin afile, and allow you to open and run one
or another macro file. SmarTerm, like other Windows applications that support a VBA-based macro
language (such as Microsoft Word), uses a somewhat more complicated system. In part thisisin
recognition of the greater flexibility required by emulation software (since we can't know what host
applications you may use with SmarTerm). However, it is also in response to the needs of large,
server-oriented sites that need more sophisticated tool sto support the needs of their users. Later inthis
chapter we describe how macros are organized, and provide some tips to help you take advantage of
this organization.

Macro syntax

A singlemacroissimply ablock of text with macro commandsin it stored in some location accessible
to SmarTerm (called a macro modul€e). Macros may be subroutines (which carry out commands but
do not return aresult that can be assigned to a variable) or functions (subroutines which do return a
result that can be assigned to avariabl€). In this chapter, unless specifically stated otherwise, you may
assume that any reference to "subroutine" can be expanded to include functions as well.

The text for amacro must have:

« A firstlinethat is sub for asubroutine or Funct i on for afunction, followed by the name of the
subroutine or function. This name must follow the conventions described in the online help for
subroutines and functions.

» For subroutinesonly: If youwant the macro to be sel ectable from the Tools>Macros dialog when
the module is loaded, the second line must begin ' ! (a single quotation mark followed by an ex-
clamation point). If you want a description of the macro to appear in the Macros dial og, put the
text you want after the’ 1 . Y ou can have up to three lines of 66 characters each for the description,
each beginning with* 1 . SmarTerm puts as much text as possible on each of the three lines, even
if you insert carriage returns.

Functions do not appear in the Tools>Macros dialog, even if they havethe’ ! description line.

* Oneor morelinesof text containing control statementsto carry out the macro’ s purpose. Each line
is considered to end when the compiler encounters acomment or the carriage-return linefeed com-
bination that ends alinein an ASCII text file. If you need to, you can continue aline of code onto
the next line of the macro by preceding the carriage-return with an underscore (_), the line contin-
uation character. Any line or section of alinethat has been commented (see “ Adding commentsto
macros’ on page 35) isignored by the compiler.

e Alastlinemarking the end of the macro that correspondsto the first, either End Sub or End Func-
tion.

For example, a macro containing file transfer commands to fetch aweekly status report might look
something like this in the module:

Sub Get Weekl ySt at usReport
"I Run every Friday after 12:00

Using SmarTerm’s objects

initiate the file transfer on the host
Sessi on. Send " SX Wt at us. TXT"

initiate the reception of the file on the PC
Transfer. Recei veFil e "Wt at us. TXT"
End Sub

|:| White space (extra spaces, carriage returns, and tabs) that makes the macro more readable isignored
by the compiler.

When you open the Tools>Macros dialog and select the macro, the dialog looks like this:

[z

Bun |
Close |
Edit/Debug |
Fecord.. |

Macros gvailable in

Workgroup Macra File j

File: rarne:
Wikg T Browsze... |

Run every Fridap after 12:00

Notice that the instructions that appear in the second line of the macrotext (! Run every Friday
after 12:00) how appear below the name of the module in which the macro is stored.

Using SmarTerm’s objects

An object isa specia kind of programming construct that organizes related settings and tasks into a
single, object-oriented model. This model provides acommon syntax for all related tasks, whether
they involve changing settings, sending commands, or communicating with other applications. A
macro accomplishes al related tasks by accessing the methods (commands) and properties (settings)
of the appropriate object.

The syntax for accessing the methods and properties of an object is quite simple: j ect . Met hod or

Obj ect . Property. Toassign the current setting of an object’s property to avariable, you use vari abl e
= (vj ect . Property. TO use an object’s method, you use Oj ect . Met hod.

17

Using SmarTerm’s objects

18

For example, suppose that you want to create a macro that gets the version number of SmarTerm and
then displaysit in the SmarTerm window. In a procedural language you might need to use two macro
commands that use completely different syntax, such as:

Lat est Versi on$ = Version$()! Get version nunber
Send (LatestVersion$)! Display version nunber

With thiskind of macro language you need to learn a new syntax each time a different programmer
adds anew feature. The macro code is hardly self-explanatory (version of what? Send it where?), and
of course the presence or absence of parentheses, arbitrary as it seems, will make or break the macro.

With the object-orientation of the macro language, the version number and the session window are
considered part of the SmarTerm application object, so you can use one statement for both tasks:

Sessi on. Echo Application. Version
! Display the version nunber in the session w ndow

Y ou will use this object-oriented approach to control SmarTerm from a macro. In addition, if you
create your own data structures, you will accessthe members of those structures using the same object-
oriented syntax.

Understanding the SmarTerm objects

There are SmarTerm objects corresponding to the tasks basic to host connection: Appl i cat i on
(controlling SmarTerm), Sessi on (communicating with the host), G rcui t (connecting to the host),
Transfer (transferring files), and d i pboar d (moving information between SmarTerm and the
Windows Clipboard). There are al so objects that simplify the creation of auser interface (Msg and Dl g)
and the handling of errors (Er r). These are all briefly described in the following sections. All object
properties and methods begin with the object name and are listed in a phabetical order in this manual
and in the online help.

Application

The Appl i cati on object is SmarTerm itself. With the Appl i cat i on object you control or have access
to those properties of SmarTerm that are not session-dependent. Y ou can al so access methods that are
not session-dependent.

The Application object should not be confused with the macro commands that begin App, such as
AppActivate. The App commands provide access to external Windows and DOS applications, not to
SmarTerm.

The Application object includes one sub-object, the Sessions collection. This sub-object gives you
accessto the set of sessions running or available to run at agiven time. Y ou access the properties and
methods of all this Application sub-objects with a syntax very similar to that for the primary objects:
Appl i cation. Sessi ons. Property Of Appl i cati on. Sessi ons. Met hod. For example, you can count
the number of open session files with Appl i cati on. Sessi ons. Count .

Using SmarTerm’s objects

Collect

Eventwait

[]

Session

With the sessi on object you control or have access to those properties of SmarTerm that are session-
dependent. Y ou can also access methods that are session-dependent.

The sessi on object includes five sub-objects that help you handle the flow of eventsthat occurs
between SmarTerm and the host.

Y ou access the properties and methods of all of these Session sub-objects with a syntax very similar
tothat for the primary objects: Sessi on. Obj ect . Property Of Sessi on. Obj ect . Met hod. For example,
you set the keycode that SmarTerm should wait for with the Sessi on. Keywai t . Keycode property.

The primary documentation for the Sessi on subobjectsisin the online help system. The following
sections briefly explain each subobject.

The sessi on. Col | ect object allows you to pause the macro while it collects strings of text from the
host. Y ou can use the text you collect in any fashion you choose (but if you need to collect text and
storeit in afile, the Sessi on. Capt ure Or Sessi on. Scr eent of i | e commands are more efficient). If
you do not need to use thetext sent by the host, but simply need to control the flow of the macro based
on text sent from the host, consider using the Sessi on. Stri ngwai t subobject.

Sincethe Sessi on. Col | ect object collectsonly text, it isnot availableif you are using aform-based
session type, such as IBM 3270 or 5250. For form-based session types, use the Sessi on. Event wai t
object to wait for data from the host.

There are commands that allow you to start collecting text, indicate the signal to end collecting, and

determine whether or not the collected text is passed on to the screen. Thereis one Sessi on. Col | ect

object per session. Y ou can either trust SmarTerm to re-initialize all properties each time the object is
used after the previous collection hasfinished, or you can usethe Sessi on. Col | ect . Reset command
before each use of the Sessi on. Col | ect object to clear al previous values of the object (such asthe
collected string or atimeout value).

The Sessi on. Event wai t object allowsyou to pause the macro whileit checksto seeif SmarTerm has
sent one or more form pages to the host or received one or more form pages from the host. The
Sessi on. Event wai t Object does not store the data on the pages sent to or received from the host.

Sincethe Sessi on. Event wai t object only waits for form pages, it is not available if you are using a
text-based session type, such asDigital VT, ANSI, SCO ANSI, or Wyse. For text-based session types,
usethe Sessi on. Col | ect OF Sessi on. Stringwai t object to wait for data from the host.

There are commands that allow you to start waiting for form events and indicate the signal to end
waiting. Thereisone Sessi on. Event wai t object per session. Y ou can either trust SmarTerm to re-
initialize al properties each time the object is used after a Sessi on. Event wai t Operation, or you can
use the Sessi on. Event wai t . Reset command before each use of the Sessi on. Event wai t Object to

19

Using SmarTerm’s objects

20

Keywait

Stringwait

[]

Lockstep

clear al previous values of the object (such as the number of pages to receive before resuming the
macro).

The Sessi on. Keywai t object allows you to pause the macro while it checks for a keystroke or
mousebutton press. Y ou can have the macro check for any keystroke, for a specific keystroke, for a
certain number of keystrokes of any kind, or for a specific mousebutton. Y ou can also set atimeout
value. Thereisone Sessi on. Keywai t Object per session. Y ou can either trust SmarTerm to re-
initialize al properties each time the object is used after the previous Sessi on. Keywai t operation, or
you can use the Sessi on. Keywai t . Reset command before each use of the Sessi on. Keywai t object
to clear al previous values of the object.

The Sessi on. Stri ngwai t object allowsyou to pause the macro whileit checksfor receipt of astring
of text from the host. This object does not store the text received from the host, so if you need to use
the text received from the host, use the Sessi on. Col | ect object or the Sessi on. Capt ure or

Sessi on. Scr eent of i | e cOmmand.

Sincethe Sessi on. St ri ngwai t object waits only for text, it is not availableif you are using a form-
based session type, such as IBM 3270 or 5250. For form-based session types, use the
Sessi on. Event wai t Object to wait for data from the host.

There are commands that allow you to start waiting for a string, indicate whether to match the string
exactly or not, set a maximum timeout and a maximum number of characters to wait through, and
determine whether or not the string has been matched. There is one Sessi on. Stri ngwai t object per
session. You can either trust SmarTerm to re-initialize all properties each time the object is used after
the previous collection has finished, or you can usethe Sessi on. St ri ngwai t . Reset command before
each use of the Sessi on. St ri ngwai t object to clear all previous values of the object (such asthe
collected string or atimeout value).

The Sessi on. Lockst ep object allows you to ensure that SmarTerm and the host remain in sync with
each other while the macro is monitoring data sent to or received from the host. This prevents your
macro from failingin situationswhere the host sends or receives datafaster than SmarTerm can handle
internally. For example, if you usethe Sessi on. St ri ngwai t object to wait for aprompt from the host,
it is possible that the host may send the string you are waiting for while SmarTerm is setting up the
Sessi on. St ri ngwai t object. The wait will then fail, because the macro never sees the string even
though the host has sent it. On the other hand, if you begin by setting up the Sessi on. Lockst ep object
and then start waiting for the string, SmarTerm handles flow control with the host such that no
characters are dropped.

Sessi on. Lockst ep isasimple enough object that there are only three methodsfor it: st art, St op, and
Reset .

Circuit
Thedircuit object isthe current communication method in use by the active session. With the
Gi rcui t object you control or have accessto those properties of SmarTerm that relate to the details of

Using SmarTerm’s objects

host connection, such as any settings that appear on the Connection>Properties dialog (which vary
depending on the communication method). Y ou can also access methods that rel ate to the detail s of
host connection (which also vary depending on the communication method).

All Circuit methods and properties unique to a given communication method are prefixed with the
name of the communication method, such as Circuit. TelnetHostName. As of this version of
SmarTerm, the supported communication methods are LAT, modem, serial, SNA, and Telnet.

Transfer

The Transf er object isthe current transfer method in use by the active session. With the Tr ansf er
object you control or have access to those properties of SmarTerm that relate to file transfer, such as
generic File menu commands and any settings that appear on the Properties>File Transfer Properties
dialog (which vary depending on the transfer method). Y ou can also access methods that relate to the
details of host connection (which also vary depending on the transfer method).

For macro commands dealing with data capture from the host, see the methods and properties of the
Session object.

All methods and properties unique to a given transfer method are prefixed with the name of the
transfer method, such as Transfer.FTPHostName. As of this version of SmarTerm, the supported file
transfer methods are FTP, IND$FILE, Kermit, XModem, Y Modem, and ZM odem. However, because
ZModem handles so many file transfer issues automatically, there are no unique Transfer properties
or methods for it.

Clipboard

Thed i pboar d object isaspecial object that provides accessto the Windows Clipboard, allowing you
to transfer text between SmarTerm and another Windows application. With thed i pboar d object you
can cut and copy text from the session window to the clipboard, paste text into the session window
from the clipboard, and clear the clipboard. Y ou can also set the format of clipboard text and pipe text
to and from the clipboard directly from a macro.

Msg

The Msg object provides a model ess dialog—that is, a dialog that the user must respond to before
continuing. (The standard Windows File>Open dialog is a good example of amodeless dialog: you
must click either Open or Cancel to dismissthe dialog.) SmarTerm’s Msg object can contain text and
athermometer control in addition to an OK button and a Cancel button. Macro commands allow you
to create, change the contents of, and close the dialog.

Dlg

The Dl g object provides easy access to dynamic dialogs defined in your macros. Each DIg method
works as either a statement or a function, allowing you to check return values or ignore them as you
prefer. The use of the DIl g object and dialog procedures in general are described in more detail in
“Using aDynamic Dialog in aMacro” on page 69.

21

Modules and collectives

Err

TheErr object allowsyou to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. Y ou can a so construct macro code to raise errors as necessary. The
methods and properties of the Er r object provide access to the calling OLE object or external DLL,
and the source if possible.

Modules and collectives

22

The locations where macros are stored (the macro modules) are primarily determined by settings
stored in the session file. The modules available in a session, called the macro collective, do not share
source code, but they can share variables with each other. Moreover, some members of the collective
can act as repositories of shared macros availableto all the other members of the collective. This
allows you to create multiple session files that employ different sets of macros, but which may also
share some macros. For example, you may alwayslog onto one host in the same way, but run different
applications at different times that require special macros. Y ou can set up a session file for each host
application that employs the same login macro, but loads a unique set of macros appropriate to each
application. The session-based macro collective also allows you to share macros among many users
simply by sharing the locations of certain modules (see “ Possible improvements’ on page 73).

A macro collective consists of:

* Macros stored in the User macro file

e Macros stored in the session file, including the Session_Connect macro, which runs when the ses-
sion connectsto the host; the Session_QueryClose macro that runswhen the session is closed; and
any SmartMouse event handlers

» Macroscompiled and saved asfileswith the. pcD extension in the program fol der (see“ Compiling
Macros’ on page 80 for instructions).

» Macros stored in the currently running macro file loaded with the Other Macro file option on the
Tools>Macros dialog

* Macros embedded in the currently loaded keyboard map
* Macros embedded in the currently loaded SmarTerm Buttons palette
* Macros embedded in the currently loaded HotSpotsfile

Glaobal variables can be declared in any member of the collective and then accessed by any member
of the collective. Subroutines and functions stored in the first three locations listed above (the User
macro file, the session file, and any compiled macro files) are always available to each other and to
any loaded tools (such as keyboard maps, Buttons, HotSpots, and the Other macro fil€). Subroutines
and functions stored in loaded tools, however, are not accessible to other members of the collective.

Y ou must use the Declare statement to prototype functions in the User macro file, session file, and
compiled macro files that you want accessible to other members of the collective. This step is not
required for subroutines unless you have also turned on Option Explicit to require prototyping of

Modules and collectives

external routines. For clarity’ s sake, we recommend that you turn on Option Explicit and prototype all
functions and subroutines. See “Declare” on page 199 and “ Option Explicit” on page 355 for more
information.

The user macro fileisintended as alocation where individuals can build up a collection of their own
macros. By default, SmarTerm assumes that you will tend to organize macros based on session type,
so0 the default user macro files assumed for a new session are:

Session Type User Macro file
Digital VT, ANSI, SCO ANS| USERVT.STM
Data General DASHER, Wyse USERDG.STM
IBM 3270, IBM 5250 USERIBM.STM

Y ou can select new user files for a given session with the Tools>Macros dialog or through
Properties>Session Options>Macros tab. Y ou can change the location where SmarTerm looks for
macros through Properties>Options>File Locations tab. If you do so, be aware that you cannot make
this change on a per-session basis; all sessions must store their user macros in common folders.

In a server installation of SmarTerm, the user macros folder can reside on each user's PC or the user
folder on the network.

Thelast entry in the list above, Other Macro File, isa special case. This feature allows you to select
any macro file, select a specific macroin it, and click Run to run the macro.

Predefined login and logout macros

As part of a session's macro collective, SmarTerm provides for two predefined macros:
Session_Connect and Session_QueryClose macro. The Session_Connect macro runs automatically
when the session file is opened, and the Session_QueryClose macro runs automatically when the
session fileis closed. These macros are stored in the session's STW file under the heading [Scri pt] .

Session_Connect macro

There are anumber of ways in which you can create the Session_Connect macro. One way isto use
the Tools>Macros dialog to write it from scratch; another way isto record an actual login when you
create the session (you can always edit the resulting macro to add more commands). If you record a
login, clicking Stop on the macro recorder toolbar after you enter your password, you get a skeletal
login macro that looks something like this:

Sub Sessi on_Connect
! This macro is run autonmatically when the session opens.

Di m nConti nue as | nteger
Di m nTi nreQut as | nteger

' The default tinmeout for each command is 3 mnutes.
Increase this value if your host requires nore tine

23

Modules and collectives

' for each command.
nTi reCut = 180

Di m LockStep As bj ect
Set LockStep = Session. LockStep
LockStep. Start

While (Circuit.Connected = Fal se)
Wend

" Wit for response from host.

Session. StringWit. Ti mreout = nTi neout

Session. StringWit.MatchStringExact "Usernane:

if Session.StringWait.Start = snml WAI TTI MEQUT t hen
nConti nue = QuerySyncError()
i f nContinue <> ebYes then End

end if

Session. Send "nguyenp" + chr(13)

" Wit for response from host.

Session. StringWit. Ti meout = nTi neout

Session. StringWit. MatchStringExact "Password:

if Session.StringWait.Start = sl WAI TTI MEQUT t hen
nConti nue = QuerySyncError()
i f nContinue <> ebYes then End

end if

Sessi on_Connect _Passwor dHandl er 1
Sessi on. Send chr(13)

Set LockStep = Not hing
End Sub

Everything in this sample Session_Connect macro was generated automatically by SmarTerm, with
the exception of the account name (nguyenp), which was entered by the person logging onto the host.
Let'slook briefly at each section of the macro.

The macro begins with a description line explaining when the macro runs, which will appear at the
bottom of the Tools>Macros dial og when the Session_Connect macro is selected. Thisisfollowed by
the definition of several variables and the assignment of values to those variables:

Di m nConti nue as | nteger
Di m nTi mreQut as | nteger

' The default tinmeout for each command is 3 mnutes.
Increase this value if your host requires nore tine

' for each command.

nTi reCut = 180

Di m LockStep As bj ect
Set LockStep = Session. LockStep
LockStep. Start

Di m(short for Dimension) isthe standard BA SIC command to define avariable. Notice that the macro
usestheas <Type> hotation to select adatatypefor each variable (asinDi m nCont i nue as I nt eger).

24

Modules and collectives

Thisisthe clearest way to define a variable's type, but you can also use the type-definition character
at the name to shorten the command (asin Di m nCont i nue%).

Thevariablencont i nue, which isused to determineif there hasbeen an error in thelogin, is assigned
avalue later in the macro.

ThevariablenTi mecqut , whichisused to halt the macroif thereisno response from the host, isassigned
the value 180 using the simple assignment statement nTi mecut = 180, although the macro could have
used thewordier Let nTi mecut = 180 method. Asthe comment preceding the assignment statement
indicates, avalue of 180 equals three minutes, so this macro will wait three minutes for the host to
respond before automatically stopping. (Because this variable is used by the SmarTerm

Sessi on. St ri ngwai t object later in the macro, its value must be specified in seconds). Thisisthe
default setting only. Y ou can always edit the Session_Connect macro to shorten or lengthen the
timeout just by changing the value assigned to nTi necut in this statement.

The next three commands define a variable of type obj ect , assign that variable to the SmarTerm
Sessi on. Lockst ep object, and then send the Start command to that object. (For more about objects,
see “Using SmarTerm’s objects’ on page 17.) The Session_Connect macro sets up a

Sessi on. Lockst ep object to ensure that SmarTerm and the host stay in sync with each other, so that
SmarTerm always waits for compl ete responses from the host before running the next macro
commands. Y ou do not have to use this object to maintain synchrony, but it is by far the easiest way.

Next, the macro sets up a short whi | e loop to wait for the initial host connection:

While (Circuit.Connected = Fal se)
Wend

This command usesthe SmarTerm Gi r cui t object to test whether or not the initial host connection
has been made. (Again, SmarTerm objects are described in detail later in this chapter). Thisis done
by comparing the value of Gi r cui t. Connect ed with the built-in constant Fal se. Aslong as
Circuit.Connected = Fal se, theinitial connection has not been made and SmarTerm will just keep
making the comparison.

As soon as the connection has been made, SmarTerm setsci r cui t . Connect ed t0 True and the wi | e
loop ends. Notice that SmarTerm did not set atimeout for this loop. The initial host connection is
handled by the low-level driversfor the communication method, so the timeout cannot be changed by
the application.

Once the connection has been made, SmarTerm begins the section of the macro that handles the
actual login to the host. First the macro waits to get the User name prompt from the host (which it
simply read off the screen when the macro was recorded):
Wait for response from host.
Session. StringWit. Ti mreout = nTi neout

Sessi on. StringWit. Mat chStringExact "User nane:
if Session.StringWiit.Start = snl WAI TTI MEOUT t hen

25

Modules and collectives

26

nConti nue = QuerySyncError()
i f nContinue <> ebYes then End
end if

Thisblock first sets the length of time SmarTerm will wait for the User name prompt from the host by
setting the Ti meout property of the SmarTerm Sessi on. St ri ngwai t object to the value stored in

nTi meout earlier in the macro (180 seconds). Then it tells SmarTerm what host string to wait for by
sending the Mat chSt ri ngExact " Username: " message to the SmarTerm Sessi on. Stri ngWai t
object.

Finally, the macro setsup an | f loop to determine whether or not the host has sent the User nane
prompt. If SmarTerm receivesthe User nane prompt before the timeout expires, then the macro skips
the If loop and proceeds to the next section of the macro. If the timeout has expired, a messagebox
appears that indicates an out-of-sync error and asksif the user wants to continue (this error handler,
the QuerySyncError function, is defined as a separate subroutine after the end of the Session_Connect
subroutine). If the user clicks No, then the macro ends; if Y es, then the macro continues even though
it probably won't work anymore. This function is self-explanatory, so we will not go into it here.

If SmarTerm has received the User namre prompt, it then sends the username typed in when the macro
was recorded, and then waits for the host to prompt for the password:

Sessi on. Send "nguyenp" + chr(13)

Wait for response from host.
Session. StringWit. Ti meout = nTi neout
Session. StringWit.MatchStringExact "Password:
if Session.StringWait.Start = sl WAI TTI MEQUT t hen
nConti nue = QuerySyncError()
i f nContinue <> ebYes then End
end if

The macro sends the username by sending the Send message to the SmarTerm Sessi on object. The
complete username is constructed as " nguyenp” + chr (13), which isthe text typed by the user
concatenated with a carriage return (character 13 in the standard ASCI| table). Theloop that waitsfor
the password is exactly the same asthe one that waits for the username, except that now the string the
macro waits for is" Passwor d:

When SmarTerm receives the password, it calls the Sessi on_Connect _Passwor dHandl er function,
which is defined at the bottom of the Session_Connect macro module. The call looks like this:

Sessi on_Connect _Passwor dHandl er 1
Sessi on. Send chr(13)

The actual Sessi on_Connect _Passwor dHandl er subroutine differs from macro to macro depending
on whether you chose to save the Session_Connect macro in a secured or unsecured way. If you
chose secured, then the subroutine looks something like this:

Sub Sessi on_Connect _Passwor dHandl er (i as | nteger)
This procedure is called to send a password to the host.

You have chosen not to store passwords in your macro file, so
this_ procedure pronpts for a password.

Modules and collectives

Wait for user to enter the password.
Sessi on. Send AskPasswor d$("Enter password:")
End Sub

This version of the subroutine displays a messagebox asking the user for a password. The user then
typesin the password, which is displayed as aseries of asterisks (*) in the dial og, then clicks OK (this
isthe AskPassword$ function). The macro then uses Sessi on. Send to send the password to the host.
Thereisno error handling at this point, however, so if the user types an incorrect password it’s up to
the host to deal with it.

If you chose to save the macro unsecured, the Sessi on_Connect _Passwor dHandl er subroutine looks
something like this:
Sub Sessi on_Connect _Passwor dHandl er (i as | nteger)

This procedure is called to send a password to the host.

You have chosen to store passwords in your macro file, so this
procedure sinply sends the correct password.

sel ect case
case 1
Sessi on. Send "chaot hay"
end sel ect

End Sub

In this case, as the comment observes, the macro simply sends the text you typed in when recording
the macro.

Thefinal line of the Session_Connect macro deals with the Sessi on. Lockst ep object created at the
very beginning of the macro:

Set LockStep = Not hing

Thisline destroys the Sessi on. Lockst ep object. Thisisimportant because, as the section in this
chapter on SmarTerm objects explains, you can have only one Sessi on. Lockst ep object per session.
Destroying the object as soon as you are finished using it ensures that the next time you need to
maintain synchrony between SmarTerm and the host there will be no residual datathat might confuse
the situation.

Session_QueryClose macro

The Session_QueryClose session macro is alogout macro o a counterpart to Session_Connect. Its
purpose is to make it easy to customize SmarTerm behavior when an attempt is made to close a
session. For example, a system administrator could write a macro that reads the screen and verifies
that the user has just entered alogout command. If the user hasn’t, this macro could emit a warning
message, to remind the user to exit any host applications first, and then logout properly.

This macro can be written to test for certain conditions and affect the session close operation
accordingly, even canceling the close attempt altogether by setting a cancel flag.

27

Modules and collectives

28

Below isan example of this macro as an empty shell, to illustrate its parameters:
Sub Sessi on_Queryd ose(Cancel As Bool ean, Unl oadMbde As | nteger)
[st ét ements go here]
End Sub
Setting the cancel parameter Tr ue aborts the close attempt. Typically, macro statements would be
added to test for certain conditions, only setting cancel = True after detecting the right conditions

and notifying the user asto why the close attempt was denied (for example, through a message box or
through displaying text on the emulation screen with Sessi on. Echo).

The unl oadMbde parameter carriesinformation into this macro indicating the source of the close
action. Its possible values are:

Value Definition
0 The close attempt originates from a host-disconnect.
1 The close attempt originates from a user action, such as File>Close.

Why macros, modules, and collectives

Although the macro-modul e-collective system may seem confusing at first, it can provide major
benefitsin interoperation. That isto say, all of the macrosin all of the modules participating in the
collective can share subroutines and data with each other. This allows you to reuse macros rather than
rewrite them, and lets you create more complex macros that interact with each other to produce more
sophisticated results.

The module called Other Macro Filein the Tools>Macros dialog isaspecial case. This module, while
fully participating in the collective whenever one of its macros is running, withdraws from the
collective when its macros are not running. Macros that must participatein the collective at all times
should be placed in the user macro file.

To get a better idea of how this interoperation works, |et's consider an example. Suppose that you
want these steps to occur:

When you |log onto the host, the Session_Connect macro sends your user name and password to the
host.

The host sends a line of text displaying a “virtual circuit number” corresponding to your connection.

Your login macro records the virtual circuit number (which must be supplied as a parameter to the
print spooler later on in the session) and stores it where a SmarTerm button macro can accessit. This
requires a public or global variable — a variable whose value can be read and written by more than
one macro in the collective.

A SmarTerm-button macro later gets the saved virtual circuit number and usesit in a print spooler
command sent to the host.

Modules and collectives

What followsisasimple example of thisinteroperation that assumesthat you are not taking advantage
of macros. We can expand this example to show the power of shared macrosin the collective (see
“Possible improvements’ on page 73).

This example requires interoperation between two macros in the collective, the Session_Connect
macro and a macro embedded in a SmarTerm button. First let's ook at the Session_Connect macro.
There are anumber of waysin which you can create this macro. One way isto use the Tools>Macros
dialog to write it from scratch; another way isto record an actual login when you create the session
and then modify that recorded Session_Connect macro. If you record alogin, you get the login macro
that we discussed earlier in this chapter.

At the top of the Session_Connect macro module, we define a public variable named
Virtual Grcuit asfollows:

Public VirtualGrcuit as String

Sub Sessi on_Connect
! This macro is run automatically when the session opens.

iEnd Sub

The keyword Publ i ¢ identifies the variable as one available to all modulesin the collective. This
keyword is actually optional; you could use bi minstead, and the macro compiler will assumethat you
wanted the variable to be public. If you need a variable to be shared between macros in one module,
but invisible to macros in other modules in the collective, use the keyword Pri vat e instead.

Having defined vi rt ual Gi rcui t asapublic variable, we then set up the macro commands that read
thevirtual circuit number off the screen. These commands go inside the Session_Connect macro since
right after logon is the only time that the host displays thisinformation. However, the commands
should go before the command that destroysthe Sessi on. Lockst ep object so that we can be sure that
SmarTerm and the host are in sync.

Sub Sessi on_Connect

Sessi on_Connect _Passwor dHandl er 1
Sessi on. Send chr (13)

Wait for response from host.
Session. StringWit. Ti meout = nTi neout
Session. StringWit.MatchStringExact "Circuit Number:
if Session.StringWait.Start = sl WAI TTI MEQUT t hen
nConti nue = QuerySyncError()
i f nContinue <> ebYes then End
end if

Read circuit nunmber from screen. W assune a single digit.

Sessi on. Col | ect. MaxChar acter Count = 1
Session. Col l ect. Start

29

Modules and collectives

30

Now set Virtual Circuit to the nunber collected from host.
Virtual Circuit = Session. Collect. Coll ectedCharacters

Set LockStep = Not hi ng

End Sub

This block of commandsisreally quite simple. First, we wait for the prompt * Gi rcui t Nunber :
exactly as we waited for the username and password prompts. Then we read a single digit from the
host using the SmarTerm object Sessi on. Col | ect .

" Read circuit nunber fromscreen. W assume a single digit.
Sessi on. Col | ect. MaxChar acter Count = 1
Session. Col l ect. Start

The sSessi on. Col | ect object automatically stores a single character in the property
Sessi on. Col | ect . Col | ect ed. Therefore, all we need to do to use the digit obtained is storeit in the
public variableVvirtual Gircuit:

" Now set VirtualCircuit to the nunber collected from host.
Virtual Circuit = Session. Collect.CollectedString

Now whenever you open this session and connect to the host, the Session_Connect macro always
creates apublic variable called vi rt ual G rcui t and stores the virtual circuit number obtained from
thehostinit. That variable and the number stored in it are now availableto all macrosin the collective.
The only catch is that each module that needs to use a public variable declared in a different module
must also declare it as apublic variable. For example, if you create a SmarTerm button that starts a
print spooler, sending the virtual circuit number obtained by the Session_Connect macro, the
following statement must appear at the top of the SmarTerm button macro’s module. Then the print
spooler macro can send the number in the variable to the host print spooler:

Public VirtualGrcuit as Integer

Sub Cal | Print Spool er
! This macro runs the print spooler.

Session. Send Viritual Circuit

iEnd Sub

Programming Macros

This chapter describes how to:

» Usethe Macro Editor

» Create the user interface for amacro
e Use SmarTerm objects

e Communicate with a host via macros

e Create compiled macro files

Using the macro editor

This section explains how to use the macro editor, atool that enablesyou to edit and debug macros. It
beginswith some general information about working with the Macro Editor and then discusses editing
your macros, running your macrosto make sure they work properly, debugging them if necessary, and
exiting from the Macro Editor.

The macro editor window
To edit amacro, select Tools>Macros to see the macros dialog. Then either select an existing macro

fileand macro and click Edit/Debug, or just enter amacro name and click Createto start editing anew
macro. The macro editor window then appears. It contains the following elements:

e Toolbar with buttons for controlling the macro editor

« Edit panethat contains the macro you are editing

e Statusbar that displays the current location of the insertion point

e Watch panethat allows you to monitor the values of variables

31

Using the macro editor

32

Getting help

Y ou can get online help for the macro editor and use of the macro language using the standard
Windows methods. In addition, you can get specific help on akeyword or awatch variable by placing
the insertion point within the text you have a question about and pressing F1.

Using the toolbar

Thefollowing list summarizes the buttons on the macro editor toolbar, which provide quick accessto
the menu commands.

[

B [8

B kI E B E

2

¥

Edit>Cut
Cuts the selected text to the Clipboard.

Edit>Copy
Copies the selected text to the Clipboard.

Edit>Paste
Pastes the contents of the Clipboard into the macro.

Edit>Undo
Undoes the last edit. Click multiple times to undo multiple edits.

Macro>Start
Runs the macro.

Break
Pauses the macro and points to the next line to be executed.

Macro>Stop
Stops running the macro.

Debug>Toggle Breakpoint
Adds or removes a breakpoint.

Debug>Add Watch
Opens the Add watch dialog.

Calls
Lists the procedures called by the macro. Available only when arunning macro is paused.

Using the macro editor

Debug>Single Step

Executes the next line of amacro and then pauses. If the macro calls another macro procedure,

execution continues into each line of the called procedure.

Debug>Procedure Step

Executes the next line of amacro and then pauses. If the macro calls another macro procedure,

the compiler runs the called procedure in its entirety.

Usin g accelerators

The macro editor supports the Microsoft Office standard for common editing functions (such as
Ctrl+C and Ctrl+Insert to copy selected text to the clipboard). In addition, the macro editor provides
the following accelerator keys for commonly used commands.

Key(s) Commands

Ctrl+A Edit>Select All: Selects all text in the module.
Ctrl+Break Break (Pause).

Ctrl+F Edit>Find: Opens the Find diaog.

Ctrl+G (F4) Edit>Goto Line: Opensthe Goto Line dialog.

Ctrl+K Macro>Check syntax.

Ctrl+Y Yank: Deletes the entire line containing the insertion.
Home Moves the insertion point to the beginning of the line.
Ctrl+Home Moves the insertion point to the beginning of the module.
PgDn Moves the insertion point down one windowful.
Ctrl+PgDn Moves the insertion point right one windowful.

PgUp Moves the insertion point up one windowful.
Ctrl+PgUp Moves the insertion point left one windowful.

Ctrl+Left arrow
Ctrl+Right arrow
End

Ctrl+End
Shift+navigation key

Esc
F2

F3

Moves the insertion point one word | eft.

Moves the insertion point one word right.

Moves the insertion point to the end of the line.
Moves the insertion point to the end of the module.

Move the insertion point, selecting the intervening text. For example,
Shift+Ctrl+Left arrow selects the word to the left of the insertion point.

Deactivates the Help pointer if it is active. Otherwise, exits your macro
and returns you to the Tools>Macros dial og.

During debugging, opens the Modify Variable dialog for the selected
watch variable in the watch pane. You can a so double-click the variable.

Edit>Find Next.

33

Using the macro editor

Key(s) Commands

F5 Macro>Run.

F6 Switches between the watch pane and the edit pane.
F8 Debug>Single Step.

Shift+F8 Debug>Procedure Step.

F9 Debug>Toggle breakpoint.

Shift+F9 Debug>Add watch.

Editing macros

In most respects, editing macro code with the macro editor islike editing regular text with aword-
processing program. However, the macro editor also has certain capabilities specifically designed to
help you edit macro code.

In this section you'll learn how to move around within macros, select and edit text, add comments,
break long macro statements across multiple lines, search for and replace text, and check the syntax.

Moving around in a macro

Like all text editors, the macro editor lets you move around in a macro with the cursor keys and the
mouse. However, the macro editor differs from most word-processing programsin that it allows you
to place the insertion point anywhere within your macro, including "empty space," such asatab’s
expanded space or the area beyond the last character on aline. This feature allows you to place
comments anywherein the macro file, so that you can place comments next to the relevant linesin the
macro. A corollary to thisfeature is that there is no automatic wordwrap in the macro editor.

In addition, there are several special movement commands. Y ou can jump to:

» Thestart or end of the line with the Home and End keys.

« Anylineinthe macro file by selecting Edit>Goto line (Ctrl+G or F4) and typing in aline number.
Thisis particularly helpful if you receive aruntime error message that specifies the number of the
line containing the error.

e Up or down by windowfuls with PageUp and PageDown, and | eft or right by windowfuls with
Ctrl+PageUp and Ctrl+PageDown.

» Tothetop or bottom of the file containing the macro with Ctrl+Home and Ctrl+End. (Remember,
multiple macros can be stored in one macro file).

Color coding in macros

When you enter certain types of text in the macro editor, thetext automatically appearsin adistinctive
color. The default colors, which you can change, are:

e Bluefor keywords

Using the macro editor

* Black for normal text
¢ Green for comments
* Red for breakpoints

Adding comments to macros

Comments are lines or portions of lines of macro code that are ignored when a macro runs. Y ou can
add comments to macros to remind yourself or others of how your code works or to temporarily
disable blocks of code.

Comments are indicated with the keyword REM or with a single apostrophe (), which causes the
compiler toignore al following text until the next line. Y ou can thus have a full-line comment by
beginning aline with REM or an apostrophe, or you can follow executable code with a comment on
the sameline just by inserting : REM(the colon is required) or an apostrophe at the point where you
want the comment. Just remember that, although you can place a comment at the end of aline
containing executable code, you cannot place executable code at the end of aline containing a
comment.

Y ou can also use C-style multiline comment blocks/ *...x/ , asfollows:

Sessi on. Echo "Before coment"

/* This stuff is all comented out.

This line, too, will be ignored.

This is the last |line of the coment. */
Sessi on. Echo "After comment”

C-style comments can be nested.

Breaking a macro statement across multiple lines

By default, a single macro statement can extend only as far as the right margin, and each new line
congtitutes a new statement. However, you can break along statement across two or more lines with
the line-continuation character, the underscore (). Any line that ends with a space followed by the
underscore character is combined with the next line and compiled as a unit.

For the most part, long lines stitched together with underscores indicate weak design, and should be
avoided.

Searching and replacing

The macro editor makes it easy to search for specified text in your macro and automatically replace
instances of specified text. The Edit>Find command (Ctrl+F), Edit>Find Next command (F3), and
Edit>Replace command all work as you would expect in atext editor.

35

Using the macro editor

36

Checking the syntax of macros

When you try to run or debug a macro whose syntax hasn't been checked, the Macro Editor first
performsasyntax check automatically. Y ou can a so check the syntax of amacro whenever you please
with the Macro>Check syntax command (Ctrl+K). When you use this command, the macro editor
checks the syntax of the entire macro, stopping the check when it finds the first syntax error (if there
are any) and highlighting the line containing the error. Y ou must correct the syntax error the macro
editor found before continuing to check the syntax or running the macro.

Debugglng macros

This section explains how to use the macro debugger integrated with the macro editor to find and
correct errorsin your macros. While debugging, you are actually executing the code in your macro
line by line. Therefore, to prevent any modificationsto your macro whileit is being run, the edit pane
is read-only during the debugging process. Y ou are free to move the insertion point throughout the
macro, select text and copy it to the Clipboard, set breakpoints, and add and remove watch variables,
but you cannot make any changes to the macro code until you stop running it.

Tolet you follow and control the debugging process, the Macro Editor displays an instruction pointer
on theline of codethat isabout to be executed—that is, the line that will be executed next if you either
proceed with the debugging process or run your macro at full speed. When the instruction pointer is
on aline of code, thetext on that line appearsin black on agray background that spanstheline. Inthe
following illustration, the line beginning with the keyword sub is marked with the instruction pointer.
Asacomparison, the block of text that says. PushBut t on2 is shown with the highlighting used to
indicate selected text.

Mecro Edit Debug Help

B == = T s e I B 5 A =l

't Sample Demonstrates OLE Client capabilities.

‘Declare Section
const crlf = chr$(13) + Chr$(10)

[|
‘Screen 1 - First Dialog screen - Introduction.
Screenl:

Begin Dialog Screenl ,,188,96,"SmarTerm Sample Macro”,
PushButton 96,72,40,14,"&Next >",|
CancelButton 136,72,40,14

T »

| [Line: 285 Col:55

S

Tracing macro execution

The Macro Editor gives you two ways to trace macro execution—single step and procedure step—
both of which involve stepping through your macro code line by line. Single step simply traces
through every line in the macro, going into each subroutine called by the macro in complete detail.
Procedure step traces line by line through the code for the macro itself, but runs all of the subroutines

Using the macro editor

called by the macro without showing the line-by-line detail. Single step is good for debugging
relatively simple macros that do not call very many subroutines. Use procedure step on macros that
call subroutines you have already debugged and do not need to see traced in detail .

Single-step doesn't work when a macro uses the SmarTerm Session.StringWait, Session.Collect, or
Session.EventWait objects to control the timing and flow of the macro. In such macros you must use
breakpoints instead.

To trace a macro:
Click the Single Step or Procedure Step button on the toolbar, or Press F8 (Single Step) or Shift+F8
(Procedure Step). The macro editor places the instruction pointer on the first line of the macro.

When you start atrace, there may be a dight pause before the trace actually begins while the macro
editor compilesyour macro. If it finds errors during compilation, you will have to correct them before
you can continue debugging.

Repeat step 1 to run the marked line and then advance the instruction pointer to the next instruction.
Each time you repeat step 1, the macro editor runsthe line containing the instruction pointer and then
moves to the next line.

When you finish tracing the macro, either select Macro>Start (F5 or the toolbar button) to run the rest
of the macro at full speed, or select Macro>End (or the toolbar button) to stop running the macro.

Whileyou are stepping through a subroutine, you may need to determine the subroutine calls by which
you arrived at that point in the macro. Y ou can do this with the Calls dial og.

To use the Calls dialog:
Click the Calls button on the toolbar. The Calls dialog appears, which lists the subroutine calls made
by your macro in the course of arriving at the current subroutine.

To view one of the subroutines listed in the Calls dialog, highlight it and click Show. The macro
editor then displays that subroutine, highlighting the currently running line. (Note, however, that the
instruction pointer remainsin its original location in the subroutine.)

When you are stepping through a subroutine, you may want to repeat or skip execution of a section of
code. You can use the Set Next Statement command to move the instruction pointer to a specific line
within that subroutine.

Y ou can only use the Set Next Statement command to move the instruction pointer within the same
subroutine.

To move the instruction pointer to another line within a subroutine:
Place the insertion point in the line where you want to resume stepping through the macro.

Select Debug>Set Next Statement. The instruction pointer movesto the line you selected, and you
can resume stepping through your macro from there.

37

Using the macro editor

Setting and removing breakpoints

If you are debugging a long, complicated macro, stepping through it line by line can be quite time-
consuming. An alternate strategy is to set one or more breakpoints at selected linesin your macro.
Then, when you run the macro, it automatically pauses at each breakpoint, allowing you to examine
the code or step through the lines only where necessary

Y ou can set breakpoints anywhere in a macro, but only breakpoints on lines that contain macro
commands, including linesin functions and subroutines are considered valid. (The macro editor beeps
if you set an invalid breakpoint.) When you compile and run the macro, invalid breakpoints are
automatically removed.

Y ou can set breakpoints at any time while editing a macro or when a running macro has been paused.
For example, if you know that there are certain sections you want to debug, you can set all of the
breakpointsin the editor, and then run the macro to check the code at each breakpoint. Or, if the macro
doesn't seem to be working properly, you can use the Break command (Ctrl+Break) to pause the
macro, set a breakpoint, and then resume running the macro to move at full speed to the breakpoint.

To set a breakpoint:
1. Placetheinsertion point in the line where you want to start debugging.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).
|:| Y ou can set up to 255 breakpoints in a macro.

Invalid breakpoints are removed automatically when the macro is compiled and run. When you exit
the macro editor, all other breakpoints are also removed. Y ou can also remove breakpoints manually.

To remove a single breakpoint:
1. Placetheinsertion point on the line containing the breakpoint that you want to remove.

2. Select Debug>Toggle Breakpoint (F9 or the Toggle Breakpoint button).

To remove all breakpoints:
Exit the macro editor or select Debug>Clear All Breakpoints.

Using Watch variables

Asyou debug your macro, you can use the watch pane to monitor selected variables. For each variable
you select, the watch pane displays its context, name, and value. The values of the variables on the
watch list are updated each time you pause the macro with a breakpoint or with the Break command
(Ctrl+Break).

The Macro Editor permitsyou to monitor variables of fundamental datatypes, such asi nt eger, Long,
vari ant , and so on; you cannot watch complex variables, such as user-defined types or arrays, or
expressions using arithmetic operators. Y ou can, however, watch individual elements of user-defined
types or arrays using the following syntax:

Using the macro editor

[variable [(index,_)] [.menber [(index,_)]]_]

wherevar i abl e isthe name of the user-defined type or array variable, i ndex isaliteral number,
and nenber isthe name of a member of the user-defined type.

For example, the following are valid watch expressions:

Watch Variable Description

a(1) Element 1 of array a

per son. age Member age of the user-defined type per son
company(10, 23) . per son. age Member age of user-defined type per son that is

at element 10,23 within the array of user-defined
types called conpany

To add a watch variable:

It is most flexible to add watch variables when running the macro, so begin by select Macro>Start
(F5 or the Start button), then press Ctrl-Break to pause the macro. Or, insert a breakpoint at an
appropriate location in the macro and then run it.

When the macro pauses, select Debug>Add Watch (Shift+F9 or the Add Watch button). The Add
Watch dialog appears.

Yariable: Ii j 0K I
Procedure; I[.t’-'l.ll Procedures) Cancel |
Script: Ia’-‘«ddLineNumbers Help |

In the Procedure box, select the name of the procedure containing the variable you want to watch. If
the variable you want to watch is global to the module, select “ (All Procedures)”.

In the Variable box, select the name of the variable you want to add to the watch variable list.

In the Script box, type or select the name of the macro containing the variable you want to watch. If
you're creating a new name, don't include any spaces. If the variable you want to watch is global to
the collective, select “ (All Scripts)”.

Click OK to add the variable to the watch variable list.

The context, name, and value of the variable appear in athree-column list in the watch pane at the top
of the macro editor window, along with any other variables you may have added during this editing
Session.

39

Using the macro editor

To modify the value of a watch variable:

1. Highlight the variable in the watch pane and select Debug>Modify Watch (F2), or just double-click
the variable in the watch pane. The Modify Variable dialog appears.

Muodify Variable E3
Mame: |difference 0K

Yalug: | Cancel

Help

[l

2. Enter the new value for the variablein the Value field.
3. Click OK. The new value of your variable appears on the watch variable list.

When you change the value of a variable, the macro editor converts the value you enter to match the
type of the variable. For example, if you change the value of an | nt eger variableto 1.7, the macro
editor converts this value from a floating-point number to an | nt eger , assigning the value 2 to the
variable.

When you modify avari ant variable, the macro editor determines both the type and value of your
entry using the following rules (in this order):

If thenew valueis Then

Nul | Thevari ant variableisassigned Nul | (Var Type 1).

Empty The vari ant variableisassigned Enpt y (Var Type 0).

True The vari ant variableisassigned Tr ue (Var Type 11).

Fal se Thevari ant variableis assigned Fal se (Var Type 11).

number The vari ant variableis assigned the value of nunber . The type of the vari-

ant isthe smallest datatype that fully represents that number. You can force
the data type of the variable by using a type-declaration letter following
nunber,suchasv #,&,!,0r @

date Thevari ant variableis assigned the value of the new date (var Type 7).
Anything else Thevari ant variableisassignedastring (Var Type 8).

TheMacro Editor will not assign anew valueif it cannot be converted to the sametype asthe specified
variable.

To delete a watch variable:
1. Highlight the variable on the watch list.

2. Select Debug>Delete Watch or press the Delete key.

Creating Dialogs

Creating Dialogs

Dialogs are created in two steps. First you define a dialog template that contains the definitions of the
types, sizes, placement, and so forth of all the elements of a dial og. Then you use macro commandsto
create an instance of that dialog using the template you defined earlier in the macro.

To insert a new dialog template:

Place the insertion point where you want the new dialog template to appear in your macro. Bear in
mind that the scope rules outlined above for variables and subroutines apply to dialog templates as
well. If you want a dialog template to be available to al subroutinesin a given macro file, define the
template at the top of thefile. If you want the template to be private to a specific subroutine, define it
within that subroutine.

Select Edit>Insert New Dialog. The dialog editor appears, displaying a new dialog in its window.
Use the dialog editor to create the dialog.

Exit from the dialog editor and return to the macro editor.

The Macro Editor automatically places the new dialog template generated by Dialog Editor in your
macro at the location of the insertion point.

To edit an existing dialog template:
Select the lines of code that define the entire dialog templ ate.

Select Edit>Edit Dialog. The dialog editor appears, displaying adialog created from the code you
selected.

Use the dialog editor to modify your dialog.

Exit from the dialog editor and return to the macro editor. The macro editor automatically replaces
the dialog template you originally selected with the revised template generated by Dialog Editor.

To capture a dialog from another application:
Y ou can capture the standard Windows controls from any standard Windows dialog in another

application and insert those controls into the Dialog Editor for editing. Follow these steps:
Display the dialog you want to capture.
Open the Dialog Editor.

Select File>Capture Dialog. The Dialog Editor displays adialog that lists all open dialogsthat itis
ableto capture:

41

Creating Dialogs

42

Select the Dialog Box to Capture I

Dialog Boxes

FFon k.
Open

Cancel

il

Help

4. Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard

[]

Windows controls from the target dialog.

The Dialog Editor only supports standard Windows controls and standard Windows dialogs. Y ou
cannot capture custom dialogs or custom dialog controls.

Using the Dialog Editor

This section presents general information that will help you work most effectively with the Dialog
Editor. It includes an overview of the Dialog Editor aswell asalist of accelerators and information on
using the Help system.

Before you begin creating a new custom dialog, the Dialog Editor looks like this:

Dialog Editor _ O] x]]

File Edit Controls Help
- I R = = S = T o P8 [l el = S I

Dialog: X: 18, Y: 22, Width: 180, Height: 96

Creating Dialogs

The application window contains the following elements:

Toolbar

A collection of buttons that you can use to provide instructions to the Dialog Editor, as discussed in
the following subsection.

Dialog
The visual layout of the dialog that you are currently creating or editing.

Status bar

Provides key information about the operation you are currently performing, including the name of the
currently selected control or dialog, together with its position on the display and its dimensions; the
name of acontrol you are about to add to the dial og with the mouse pointer, together with the pointer's
position on the display; the function of the currently selected menu command; and the activation of
the Dialog Editor’s testing or capturing functions.

Did ogscreated with the Dialog Editor normally appear in an 8 point Helveticafont, bothin the Dialog
Editor’s application window and when the corresponding macro codeis run.

The Dialog Editor

X Test Dialog
Runs the dialog for testing.

Information
Displaysinformation for the selected contral.

[=]

Cut
Removes the selected control from the dialog.

[

Copy
Copies the selected control to the clipboard.

E

Paste
Inserts the clipboard into the active dialog.

2]

Undo
Reverses the effect of the preceding editing change(s).

[5]

Creating Dialogs

Select
Lets you select, move, and resize items and control the insertion point.

=]

OK Button
Adds an OK button to your dialog.

Cancel Button
Adds a Cancel button to your dialog.

&

Help Button

Adds a Help button to your dialog.Push Button
Adds a push button to your dialog.

O E

Option Button
Adds an option button to your dialog.

Check Box
Adds a checkbox to your dialog.

Kl

Group Box
Adds a group box to your dialog.

[E]

Text
Adds atext control to your dialog.

[

Text Box
Adds atext box to your dialog.

Listbox
Adds alistbox to your dialog.

=

Combo Box
Adds a combo box to your dialog.

&

Drop List Box
Adds a drop-down listbox to your dialog.

8]

Creating Dialogs

Picture

— Addsapicture to your dialog.

Picture Button

— Adds a picture button to your dialog.

For more information, select Help.

Accelerators for the Dialog Editor

Key(s) Function

Alt+F4 Closesthe Dialog Editor.

Ctrl+C Copies the selected dialog or control and places it on the Clipboard.
Ctrl+D Creates a duplicate of the selected control.

Ctrl+G Displaysthe Grid diaog.

Ctrl+l Displays the Information dialog for the selected dialog or control.

Ctrl+V Inserts the contents of the Clipboard into the Dialog Editor. If the Clipboard contains
macro statements describing one or more controls, then the Dialog Editor adds those
controls to the current dialog. If the Clipboard contains the template for an entire dia-
log, then the Dialog Editor creates a new dialog from the statements in the template.

Ctrl+X Removes the selected dialog or control and placesit on the Clipboard.
Ctrl+z Undoes the preceding operation.

Del Removes the selected dialog or control.

F1 Displays Help for the active window.

F2 Sizes certain controlsto fit the text they contain.
F5 Runs the dialog for testing.

Shift+F1 Toggles the Help pointer.

Creating a Custom Dialog

This section describes the types of controls that the Dialog Editor supports. It al'so explains how to
create controls and initially position them within your dialog, and offers some pointers on creating
controls efficiently.

In the next section, Editing a Custom Dialog, you'll learn how to make varioustypes of changesto the
controlsthat you've created—moving and resizing them, assigning labels and accelerator keys, and so
forth.

Creating Dialogs

46

Types of Controls

Sample I
Colaors
1+ Red
= Green Cancel |
B |

e Help
Mame I F'ushButtonl
™ Read-only -

“
nel =] [ine1 el = '
line 2 ﬂ I I _I
line 3 -
e 4 =] line2 =

The Dialog Editor supports the following types of standard Windows controls:

Push button
A command button. The OK, Cancel, and Help buttons are special types of push buttons.

Option button

One of agroup of two or more linked buttons that let users select only one from a group of mutually
exclusive choices. A group of option buttonsworksthe sameway asthe buttonson acar radio: because
the buttons operate together as a group, clicking an unselected button in the group selects that button
and automatically deselects the previoudy selected button in that group.

Checkbox

A box that users can check or clear to indicate their preference regarding the alternative specified on
the checkbox |abel.

Group box

A rectangular design element used to enclose a group of related controls. Y ou can use the optional
group box label to display atitle for the controls in the box.

Text

A field containing text that you want to display for the users’ information. Thetext in thisfield wraps,
and the field can contain a maximum of 255 characters. Text controls can either display stand-alone
text or be used as labels for text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and
picture buttons. Y ou can choose the font in which the text appears.

Creating Dialogs

Text box

A field into which users can enter text (potentially, as much as 32K). By default, thisfield holds a
singleline of nonwrapping text. If you choosethe Multiline settingin the Text Box Information dialog,
thisfield will hold multiple lines of wrapping text.

Listbox

A displayed, scrollable list from which users can select one item. The currently selected item is
highlighted on the list.

Combo box

A text field with adisplayed, scrollable list beneath it. Users can either select an item from the list or
enter the name of the desired item in the text field. The currently selected item is displayed in the text
field. If the item was selected from the scrolling list, it is highlighted there as well.

Drop-down listbox

A field that displaysthe currently selecteditem, followed by adownward-pointing arrow, which users
can click to temporarily display ascrolling list of items. Once they select an item from thelist, thelist
disappears and the newly selected item is displayed in the field.

Picture
A field used to display a Windows bitmap or metéfile.

Picture button
A special type of push, or command, button on which a Windows bitmap or metafile appears.

Group boxes, text controls, and pictures are passive elementsin a dialog, inasmuch as they are used
purely for decorative or informative purposes. Users cannot act upon these controls, and when they
tab through the dial og, the focus skips over these controls. Y ou can obtain a Windows bitmap or
metafile from afile or from a specified library.

Adding Controls to a Dialog

This section explains how to create controls and determine approximately where they first appear
within your dialog. The next section explains how to determine the positioning of controls more
precisely. Follow these steps:

From the toolbar, choose the button corresponding to the type of control you want to add.

When you pass the mouse pointer over an area of the display where acontrol can be placed, the pointer
becomes an image of the selected control with crosshairs (for positioning purposes) to its upper left.
The name and position of the selected control appear on the status bar. When you passthe pointer over
an area of the display where a control cannot be placed, the pointer changesinto acircle with asash
through it (the "prohibited" symbol).

47

Creating Dialogs

I:I Y ou can only insert a control within the borders of the dialog you are creating. Y ou cannot insert a
control on the dialog's title bar or outside its borders.

2. Place the pointer where you want the control to be positioned and click the mouse button.

The control you just created appears at the specified location. (To be more specific, the upper left
corner of the control will correspond to the position of the pointer’s crosshairs at the moment you
clicked the mouse button.) The control is surrounded by athick frame, which meansthat it is selected,
and it may also have a default label.

After the new control has appeared, the mouse pointer becomes an arrow, to indicate that the toolbar
Pick button is active and you can once again select any of the controlsin your dialog.

3. To add another control of the same type as the one you just added, press Ctrl+D.
A duplicate copy of the control appears.

4. To add adifferent type of control, repeat steps 1 and 2.

To reactivate the toolbar Pick button, click the toolbar arrow-shaped button.Or, place the mouse
pointer on thetitle bar of the dialog or outside the borders of the dialog (that is, on any areawhere the
mouse pointer turns into the "prohibited" symbol) and click the mouse button.

Asyou plan your dialog, keep in mind that a single dialog can contain no more than 255 controls and
that adialog will not operate properly unlessit contains either an OK button, a Cancel button, a push
button, or a picture button. (When you create a new custom dialog, an OK button and a Cancel button
are provided for you by default.)

Using the Grid to Help You Position Controls within a Dialog

The preceding subsection explained how to determine approximately where a newly created control
will materializein your dialog. Here, you'll learn how to use the Dial og Editor’s grid to help you fine-
tune the initial placement of controls.

The area of your dialog in which controls can be placed (that is, the portion of the dialog below the
title bar) can be thought of asagrid, with the X (horizontal) axisand the Y (vertical) axisintersecting
in the upper left corner (the 0, 0 coordinates). The position of controls can be expressed in terms of X
units with respect to the left border of thisareaand intermsof Y units with respect to the top border.
(In fact, the position of controls is expressed in this manner within the dialog template that you
produce by working with the Dialog Editor.)

Follow these steps:

Creating Dialogs

Press Ctrl+G. The following dialog appears:

Spacing

Horizantal (%] : |4_ Cancel |
_tidb |

Wertical Y] : |4_ Help

To seethe grid in your dialog, select the Show Grid checkbox.
To change the current X and Y settings, enter new valuesin the X and Y fields.

Thevalues of X and Y in the Grid dialog determine the grid’s spacing. Assigning smaller X and Y
values produces amore closely spaced grid, which enables you to move the mouse pointer in smaller
horizontal and vertical increments asyou position controls. Assigning larger X and Y values produces
the opposite effect on both the grid’s spacing and the movement of the mouse pointer. The X and Y
settings entered in the Grid dialog remain in effect regardless of whether you choose to display the
grid.

Click OK or press Enter.

The Dialog Editor displays the grid with the settings you specified. With the grid displayed, you can
line up the crosshairs on the mouse pointer with the dots on the grid to position control s precisely and
align them with respect to other controls.

Asyou move the mouse pointer over the dialog after you have chosen a control button from the
toolbar, the status bar displays the name of the type of control you have selected and continually
updates the position of the mouse pointer in X and Y units. (Thisinformation disappearsif you move
the mouse pointer over an area of the screen where a control cannot be placed.) After you click the
mouse button to add a control, that control remains selected, and the status bar displays the control’s
width and height in dialog units as well asits name and position.

Dialog units represent increments of the font in which the Dialog Editor creates dialogs (namely, 8
point Helvetica). Each X unit represents an increment equal to 1/4 of that font, and each Y unit
represents an increment equal to 1/8 of that font.

Creating Controls Efficiently

Creating dialog controls in random order might seem like the fastest approach. However, the order in
which you create controls has some important implications, so alittle advance planning can save you
alot of work inthe long run.

Here are several points about creating controls that you should keep in mind:

49

Creating Dialogs

Tabbing order

Users can select dialog control s by tabbing from one control to the next. The order in which you create
the controlsis what determines the tabbing order. The closer you can come to creating controlsin the
order in which you want them to receive the tabbing focus, the fewer tabbing-order adjustmentsyou'll
have to make later on.

Option button grouping

If you want a series of option buttonsto work together asamutually exclusive group, you must create
all the buttonsin that group one right after the other, in an unbroken sequence. If you get sidetracked
and create a different type of control before you have finished creating all the option buttonsin your
group, you'll split the buttonsinto two (or more) separate groups.

Accelerator keys

Y ou can provide easy access to atext box, listbox, combo box, or drop-down listbox by assigning an
accelerator key to an associated text control, and you can provide easy accessto the controlsin agroup
box by assigning an accelerator key to the group box label. To do this, you must create the text control
or group box first, followed immediately by the controls that you want to associate with it. If the
controls are not created in the correct order, they will not be associated in your dialog template, and
any accelerator key you assign to the text control or group box label will not work properly.

If you don't create controls in the most efficient order, the resulting problems with tabbing order,
option button grouping, and accel erator keys usually won't become apparent until you test your dial og.
Although you can still fix these problems at that point, it will definitely be more cumbersome. In short,
it's easier to prevent (or at least minimize) problems of this sort than to fix them after the fact.

Editing a Custom Dialog

In the preceding section, you learned how to create controls and determine wherethey initially appear
withinyour dialog. Inthis section, you'll learn how to make changesto both the dialog and the controls
init. The following topics are included:

» Selecting items so that you can work with them

» Using the Information dialog to check and/or change various attributes of items

» Changing the position and size of items

e Changing titlesand labels

» Assigning accelerator keys

e Specifying pictures

« Creating or modifying picture libraries under Windows

e Duplicating and deleting controls

« Undoing editing operations

Creating Dialogs

Selecting Items

In order to edit adialog or a control, you must first select it. When you select an item, it becomes
surrounded by athick frame, as you saw in the preceding section.

To select a control:

* With the toolbar Pick button active, place the mouse pointer on the desired control and click the
mouse button.

Or

« With the Toolbar Pick button active, press the Tab key repeatedly until the focus moves to the de-
sired control.

The control is now surrounded by athick frameto indicate that it is selected and you can edit it.

To select the dialog:

» Withthe Toolbar Pick button active, place the mouse pointer on thetitle bar of the dialog or on an
empty areawithin the borders of the dialog (that is, on an area where there are no controls) and
click the mouse button.

Or
* With the Toolbar Pick button active, pressthe Tab key repeatedly until the focus moves to the di-
alog.
The dialog is now surrounded by athick frame to indicate that it is selected and you can edit it.

Using the Information Dialog

The Information dialog enablesyou to check and adjust various attributes of controlsand dialogs. This
subsection explains how to display the Information dialog and provides an overview of the attributes
with which it lets you work. In the following subsections, you'll learn more about how to use the
Information dialog to make changes to your dialog and its controls.

To see the Information dialog for a dialog:

* With the Toolbar Pick button active, place the mouse pointer on an area of the dialog where there
are no controls and double-click the mouse button.

Or

* Withthe Toolbar Pick button active, select the dialog and either click the toolbar Information but-
ton, press Enter, or press Ctrl+1. The following dialog appears:

51

Creating Dialogs

52

i Dialog Box Information E

Position Si Shyl

|46 Wwidth: IF ¥ Close box ILI
v [32 | Height: [64 | ¥ Title ﬂl
Help |
Teutt: |F|un I “ariable Name

MHame: W

Function: l—
PictweLibra: [[Varisble Name

Browse. .. |

To display the Information dialog for a control:

« With the Toolbar Pick button active, place the mouse pointer on the desired control and double-
click the mouse button.

Or

+ With the Toolbar Pick button active, select the control and either click the toolbar Information but-
ton, press Enter, or press Ctrl+l.

The Information dialog corresponding to the control you selected appears:

i Push Button Information

Puosition Size
-DK
’7>< |WU—‘ ’7W|dth J

Height 1 Cancel |
Help |

[~ Waiiable Name
Tentd: |Browse. .

Identifier:

The following lists show the attributes that you can change with the Dia og Information and
Information dialogs for the various controls. In some cases (specified below), it's mandatory to fill in
the fields in which the attributes are specified—that is, you must either leave the default information
in these fields or replace it with more meaningful information, but you can't leave the fields empty. In
other cases, filling in these fields is optional .

A quick way to determine whether it's mandatory to fill in a particular Information dialog field isto
seewhether the OK button becomes grayed out when you deletetheinformationinthat field. If it does,
then you must fill in that field.

In many cases, you could simply leave the generic-sounding default information in the Information
dialog fieldsand worry about replacing it with more meaningful information after you pastethe dialog
templateinto your macro. However, if you take afew momentsto replace the default information with

Creating Dialogs

something specific when you first create your dialog, not only will you save yourself some work later
on but you may also find that your changes make the code produced by the Dial og Editor morereadily
comprehensible and thus easier to work with.

Dialog Attributes

Mandatory/ Optional Attribute

Optional Position: X and Y coordinates on the display, in dialog units

Mandatory Size: width and height of the dialog, in dialog units

Optional Syle: optionsthat allow you to determine whether the close box and title bar
aredisplayed

Optional Text$: text displayed on thetitle bar of the dialog

Mandatory Name: name by which you refer to this dialog template in your code

Optional .Function: name of afunction in your dialog

Optional Picture Library: picture library from which one or more picturesin the dialog
are obtained

Control Attributes

Mandatory/ Optional Control(s) Affected Attribute
Mandatory All controls Position: X and Y coordinates within the dia-
log, in dialog units
Mandatory All controls Size: width and height of the control, in dialog
units
Optional Push button, option but- Text$: text displayed on a control
ton, checkbox, group
box, and text
Optional Help button FileName$: name of the help file invoked
when the user clicks this button
Optional Text Font: font in which text is displayed
Optional Text box Multiline: option that allows you to determine
whether users can enter asingle line of text or
multiple lines
Optional OK button, Cancel but- .Identifier: name by which you refer to acon-

ton, push button, option trol in your code
button, group box, and
text

53

Creating Dialogs

Mandatory/ Optional Control(s) Affected Attribute

Mandatory Checkbox, text box, list- .Identifier: name by which you refer to acon-
box, combo box, drop- trol inyour code; also contains the result of the
down listbox, and help control after the dialog has been processed

button
Optional Picture, picture button dentifier: name of the file containing a pic-
ture that you want to display or the name of a
picture that you want to display from a speci-
fied picture library
Optional Picture Frame: option that allowsyouto display a3-D
frame
Mandatory Listbox, combo box, and Array$: name of an array variablein your
drop-down listbox code
Mandatory Option button .Option Group: name by which you refer to a

group of option buttons in your code

Position and Size

This section explains how the Dialog Editor helps you keep track of the location and dimensions of
dialogs and controls, and presents several ways to move and resize these items.

Keeping Track of Position and Size

The Dialog Editor’s display can be thought of asagrid, in which the X (horizontal) axis and the Y
(vertical) axisintersect in the upper left corner of the display (the 0, O coordinates). The position of
the dialog you are creating can be expressed in terms of X units with respect to the left border of the
parent window and in terms of Y units with respect to the top border.

When you select adialog or control, the status bar displaysits positionin X and Y unitsaswell asits
width and height in dial og units. Each time you move or resize an item, the corresponding information
on the status bar is updated. Y ou can use this information to position and size items more precisely.

The Dialog Editor provides several ways to reposition dialogs and controls.

To reposition an item with the mouse:

1. With the Toolbar Pick button active, place the mouse pointer on an empty area of the dialog or on a
control.

2. Click the mouse button and drag the dialog or control to the desired location.

I:I Theincrements by which you can move a control with the mouse are governed by the grid setting. For
example, if thegrid’'s X settingis4 anditsY setting is6, you'll be ableto movethe control horizontally
only inincrementsof 4 X unitsand vertically only inincrementsof 6 Y units. Thisfeatureis handy if
you're trying to align controlsin your dialog. If you want to move controlsin smaller or larger
increments, press Ctrl+G to display the Grid dialog and adjust the X and Y settings.

Creating Dialogs

To reposition an item with the arrow keys:
Select the dialog or control that you want to move.

Press an arrow key onceto movetheitemby 1 X or Y unit in the desired direction. Or, click an arrow
key to "nudge" the item steadily along in the desired direction.

When you reposition an item with the arrow keys, afaint, partial afterimage of the item may remain
visiblein theitem’s original position. These afterimages are rare and will disappear once you test your
dialog.

To reposition a dialog with the Information dialog:

Display the Information dial og.

Change the X and Y coordinates in the Position group box. Or, leave the X and/or Y coordinates
blank.

Click OK or press Enter.

If you specified X and Y coordinates, the dialog moves to that position. If you left the X coordinate
blank, the dialog will be centered horizontally relative to the parent window of the dialog when the
dialogisrun. If you left the Y coordinate blank, the dialog will be centered vertically relative to the
parent window of the dialog when the dialog is run.

To reposition a control with the Information dialog:

Display the Information dialog for the control that you want to move.

Change the X and Y coordinates in the Position group box.

Click OK or press Enter.

The control moves to the specified position.

When you move adialog or control with the arrow keys or with the Information dialog, the item’s
movement is not restricted to the increments specified in the grid setting. When you attempt to test a
dialog containing hidden controls(i.e., controls positioned entirely outside the current borders of your
dialog), the Dialog Editor displays a message advising you that there are controls outside the dialog's

borders and asks whether you wish to proceed with the test. If you proceed, the hidden controls will
be disabled for testing purposes. (Testing dialogs is discussed later in the chapter.)

Dialogs and controls can be resized either by directly manipulating them with the mouse or by using
the Information dialog. Certain controls can aso be resized automatically to fit the text displayed on
them.

To resize an item with the mouse:
With the Toolbar Pick button active, select the dialog or control that you want to resize.

Place the mouse pointer over aborder or corner of the item.

Click the mouse button and drag the border or corner until the item reaches the desired size.

55

Creating Dialogs

56

To resize an item with the Information dialog:
Display the Information dialog for the dialog or control that you want to resize.

Change the Width and Height settingsin the Size group box.
Click OK or press Enter.

The dialog or control is resized to the dimensions you specified.

To resize selected controls automatically:

With the Toolbar Pick button active, select the option button, text control, push button, checkbox, or
text box that you want to resize.

Press F2. The borders of the control expand or contract to fit the text displayed onit.

Windows metafiles always expand or contract proportionally to fit within the picture control or picture
button control containing them. In contrast, Windows bitmaps are of afixed size. If you place abitmap
in acontrol that is smaller than the bitmap, the bitmap is clipped off on the right and bottom. If you
place abitmap in a control that is larger than the bitmap, the bitmap is centered within the borders of
the control. Picture controls and picture button controls must be resized manually.

Changing Titles and Labels

By default, when you begin creating adialog, itstitle reads " Untitled,” and when you first create group
boxes, option buttons, push buttons, text controls, and checkboxes, they have generic-sounding default
labels, such as"Group Box" and "Option Button."

To change a dialog title or a control label:

Display the Information dialog for the dialog whose title you want to change or for the control whose
label you want to change.

Enter the new title or label in the Text$ field.
Didlog titles and control labels are optional. Therefore, you can leave the Text$ field blank.

If the information in the Text$ field should be interpreted as a variable name rather than alitera
string, select the Variable Name checkbox.

Click OK or press Enter. The new title or |abel appears on the title bar or on the control.

Although OK and Cancel buttons also have labels, you cannot change them. The remaining controls
(text boxes, listboxes, combo boxes, drop-down listboxes, pictures, and picture buttons) don't have
their own label s, but you can position atext control above or besidethese controlsto serve asadefacto
label for them.

Creating Dialogs

Assigning Accelerator Keys

Accelerator keys enable users to access dial og controls simply by pressing Alt plus a specified letter.
Users can employ accel erator keysto choose a push button or an option button; toggle a checkbox on
or off; and move the insertion point into atext box or group box or to the currently selected itemin a
listbox, combo box, or drop-down listbox.

An accelerator key is essentially asingle letter that you designate for this purpose from a control’s
label. Y ou can assign an accel erator key directly to controlsthat have their own label (option buttons,
push buttons, checkboxes, and group boxes). (Y ou can't assign an accelerator key to OK and Cancel
buttons because, as noted above, their labels can't be edited.) Y ou can create ade facto accelerator key
for certain controls that don't have their own labels (text boxes, listboxes, combo boxes, and drop-
down listboxes) by assigning an accel erator key to an associated text control.

To assign an accelerator key:
Display the Information dialog for the control to which you want to assign an accelerator key.

Inthe Text $ field, type an ampersand (&) before the | etter you want to designate as the accel erator
key.
Click OK or press Enter.

The letter you designated is now underlined on the control’s label, and users will be able to access the
control by pressing Alt plus the underlined letter.

Accelerator key assignments must be unique within a particular dialog. If you attempt to assign the
same accel erator key to more than one control, the Dialog Editor displays areminder that letter has
already been assigned.

If, for example, you have apush button whose label reads Appl y, you can designate A asthe accel erator
key by displaying the Push Button Information dialog and typing &Appl y in the Text $ field. When
you press Enter, the button label says Apply, and users will be able to choose the button by pressing
Alt+A.

In order for such a default accelerator key to work properly, the text control or group box label to
which you assign the accelerator key must be associated with the control (s) to which you want to
provide user access. That is, in the dialog template, the description of the text control or group box
must immediately precede the description of the control(s) that you want associated with it. The
simplest way to establish such an association isto create the text control or group box first, followed
immediately by the associated control(s).

Specifying Pictures

In the preceding section, you learned how to add picture controls and picture button controls to your
dialog. But these control s are nothing more than empty outlines until you specify the picturesthat you
want them to display.

57

Creating Dialogs

A picture control or picture button control can display a Windows bitmap or metafile, which you can
obtain from afile or from a specified library. (Refer to the following subsection for information on
creating or modifying picture libraries under Windows.)

To specify a picture from afile:

1. Display the Information dialog for the picture control or picture button control whose picture you
want to specify.

2. Inthe Picture source option button group, select File.

3. Inthe Name$ field, enter the name of the file containing the picture you want to display in the picture
control or picture button control.

|:| Click Browse to see the Select a Picture File dialog and use it to find the file.

4. Click OK or press Enter. The picture control or picture button control now displays the picture you
specified.
To specify a picture from a picture library:

1. Display the Information dialog.

2. Inthe Picture Library field, specify the name of the picture library that contains the picture(s) you
want to display in your dialog.

|:| Click Browse to see the Select a Picture Library dialog and use it to find the file. If you specify a
picture library in the Information dialog, all the picturesin your dialog must come from thislibrary.

3. Click OK or press Enter.

4. Display the Information dialog for the picture control or picture button control whose picture you
want to specify.

5. Inthe Picture source option button group, select Library.

6. Inthe Name$field, enter the name of the picture you want to display on the picture control or picture
button control. (This picture must be from the library that you specified in step 2.)

7. Click OK button or Enter. The picture control or picture button control now displays the picture you
specified.

Creating or Modifying Picture Libraries under Windows

The Pi ct ur e statement allows images to be specified asindividual picture files or as members of a
picture library, whichisaDLL that contains a collection of pictures. Both Windows bitmaps and
metafiles are supported. Y ou can obtain a picturelibrary either by creating anew one or by modifying
an existing one, as described below.

Creating Dialogs

Each image is placed into the DLL as aresource identified by its unique resource identifier. This
identifier isthe name used in the Pi ct ur e statement to specify the image.

The following resource types are supported in picture libraries:

Resource Type Description

2 Bitmap. Thisis defined in windows.h as RT_BI TMAP.
256 Metafile. Since thereis no resource type for metafiles, 256 is
used.

To create a picture library under Windows:

Create a C file containing the minimal code required to establish a DLL. The following code can be
used:

#i ncl ude <wi ndows. h>
int CALLBACK Li bMai n(
HI NSTANCE hl nst ance,
WORD wDat aSeg,
WORD wHeapSz,
LPSTR | pCndLi ne) {
Unl ockDat a(0);
return 1;

}

Use the following code to create a DEF file for your picture library:

LI BRARY

DESCRI PTION "My Picture Library"
EXETYPE W NDOWS

CODE LOADONCALL MOVABLE DI SCARDABLE
DATA PRELOAD MOVABLE S| NGLE

HEAPSI ZE 1024

Create aresource file containing your images. The following example shows a resource file using a
bitmap called sample.bmp and a metafile called usa.wmf.

#def i ne METAFI LE 256
USA METAFI LE "usa. wnf"
MySanpl e Bl TMAP "sanpl e. bmp"

Create amake file that compiles your C module, creates the resource file, and links everything
together.

To modify an existing picture library:
Make a copy of the picture library you want to modify.

Modify the copy by adding images using aresource editor such as Borland’'s Resource Workshop or
Microsoft's App Studio.

When you use aresource editor, you need to create a new resource type for metafiles (with the value
256).

59

Creating Dialogs

Duplicating Controls
1. Select the control that you want to duplicate.

2. PressCtrl+D. A duplicate copy of the selected control appearsin your dialog.
3. Repeat step 2 as many times as hecessary to create the desired number of duplicate controls.

Duplicating is a particularly efficient approach if you need to create a group of controls, such asa
series of option buttons or checkboxes. Simply create thefirst control in the group and then, whilethe
newly created control remains selected, repeatedly press Ctrl+D until you have created the necessary
number of copies.

The Dialog Editor also enables you to delete single controls or even clear the entire dial og.

Deleting Controls
To delete a single control:
1. Select the control you want to delete.

2. PressDdl.
The selected control is removed from your dialog.

To delete all the controls in a dialog:
1. Select thedialog.

2. PressDel.

3. If thedialog contains more than one control, the Dialog Editor prompts you to confirm that you want
to delete all controls. Click the Yes button or press Enter.

All the controls disappear, but the dialog's title bar and close box (if displayed) remain unchanged.

Undoing Editing Operations

Y ou can undo editing operations that produce a change in your dialog, including:

» Theaddition of a control

» Theinsertion of one or more controls from the Clipboard

» Thedeletion of acontrol

» Changes made to a control or dialog, either with the mouse or with the Information dialog

Y ou cannot undo operations that don't produce any change in your dialog, such as selecting controls

or dialogs and copying material to the Clipboard.

To undo an editing operation:
* PressCtrl+Z.

Creating Dialogs

Your dialog isrestored to the way it was before you performed the editing operation.

Editing an Existing Dialog

There are three ways to edit an existing dialog:
* You can copy the template of the dialog you want to edit from a macro to the Clipboard and paste
it into the Dialog Editor.

* You can use the capture feature to "grab" an existing dialog from another application and insert a
copy of it into the Dialog Editor.

* You can open adialog template file that has been saved on a disk. Once you have the dialog dis-
played in the Dialog Editor's application window, you can edit it using the methods described ear-
lier in the chapter.

Pasting an Existing Dialog into the Dialog Editor

Y ou can use the Dialog Editor to modify the macro statements that correspond to an entire dialog or
to one or more dialog controls.

If you want to modify adial og template contained in your macro, here'show to select the template and
paste it into the Dialog Editor for editing.

To paste an existing dialog into the Dialog Editor:

Copy the entire dialog template (from the Begi n Di al og instruction to the End Di al og instruction)
from your macro to the Clipboard.

Open the Dialog Editor.

Press Ctrl+V.

When the Dialog Editor asks whether you want to replace the existing dialog, click the Yes button.
The Dialog Editor creates a new dialog corresponding to the template contained on the Clipboard.

If you want to modify the macro statementsthat correspond to one or more dialog controls, here'show
to select the statements and paste them into the Dialog Editor for editing.

To paste one or more controls from an existing dialog into the Dialog Editor:
Copy the description of the control(s) from your macro to the Clipboard.

Open the Dialog Editor.
Press Ctrl+V.

The Dialog Editor adds to your current dialog one or more controls corresponding to the description
contained on the Clipboard.

61

Creating Dialogs

62

[]

When you paste a dialog template into the Dialog Editor, the tabbing order of the controlsis
determined by the order in which the controls are described in the template. When you paste one or
more controlsinto the Dialog Editor, they will come last in the tabbing order, following the controls
that are already present in the current dialog.

If there are any errorsin the statements that describe the dialog or controls, the Dialog Translation
Errors dialog will appear when you attempt to paste these statements into the Dialog Editor. This
dialog shows the lines of code containing the errors and provides a brief description of the nature of
each error.

Capturing a Dialog

Here's how to capture the standard Windows controls from any standard Windows dialog in another
application and insert those controls into the Dialog Editor for editing.

To capture an existing standard Windows dialog:
Display the dialog you want to capture.

Open the Dialog Editor.

Select File>Capture Dialog. The Dialog Editor displays adialog that lists all open dialogsthat it is
ableto capture:

Select the Dialog Box to Capture I

Dialog Boxes

o NS
[]

Cancel

Help |

Select the dialog you want to capture, then click OK. The Dialog Editor now displays the standard
Windows controls from the target dialog.

The Dialog Editor only supports standard Windows controls and standard Windows dialogs.
Therefore, if the target dialog contains both standard Windows controls and custom controls, only the
standard Windows controlswill appear in the Dialog Editor’s application window. If thetarget dialog
is not a standard Windows dialog, you will be unable to capture the dialog or any of its controls.

Opening a Dialog Template File

Here's how to open any dialog template file that has been saved on adisk so you can edit the template
in the Dialog Editor.

Creating Dialogs

To open a dialog template file:

Select File>Open. The Open Dialog File dialog appears.

Select the file containing the dialog template that you want to edit and click the OK button.

The Dialog Editor createsadial og from the statementsin thetemplate and displaysit in the application
window.

If there are any errors in the statements that describe the dialog, the Dialog Translation Errors dialog
will appear when you attempt to load the file into the Dialog Editor. This dialog shows the lines of
caode containing the errors and provides a brief description of the nature of each error.

Testing a Dialog

The Dialog Editor letsyou run your edited dial og for testing purposes. When you click the toolbar Test
Dialog button, your dialog comes alive, which gives you an opportunity to make sure it functions
properly and fix any problems before you incorporate the dial og template into your macro.

Before you run your dialog, take a moment to look it over for basic problems such as the following:

« Doesthedialog contain acommand button—that is, adefault OK or Cancel button, a push button,
or a picture button?

« Doesthedialog contain al the necessary push buttons?

» Doesthedialog contain a Help button if one is needed?

» Arethe controls aligned and sized properly?

« If thereisatext control, isits font set properly?

» Aretheclose box and title bar displayed (or hidden) as you intended?

« Arethe control labels and dialog title spelled and capitalized correctly?

« Do all the controls fit within the borders of the dialog?

« Could you improve the design of the dialog by adding one or more group boxes to set off groups
of related controls?

« Could you clarify the purpose of any unlabeled control (such as atext box, listbox, combo box,
drop-down listbox, picture, or picture button) by adding atext control to serve as a de facto label
for it?

« Haveyou made al the necessary accelerator key assignments?
After you've fixed any elementary problems, you're ready to run your dialog so you can check for
problems that don't become apparent until adialog is activated.

Testing your dialog is an iterative process that involves running the dial og to see how well it works,
identifying problems, stopping the test and fixing those problems, then running the dialog again to

63

Creating Dialogs

make sure the problems are fixed and to identify any additional problems, and so forth—until the
dialog functions the way you intend. Here's how to test your dialog and fine-tune its performance.

To test your dialog:

1. Click thetoolbar Test Dialog button or press F5. The dial og becomes operational, and you can check
how it functions.

2. To stop thetest, click the toolbar Test Dialog button, press F5, or double-click the dialog's close box
(if it has one).
Make any necessary adjustments to the dial og.

4. Repeat steps 1-3 as many times as you need in order to get the dialog working properly.

When testing a dialog, you can check for operational problems such as the following:

Tabbing order

When you pressthe Tab key, doesthe focus move through the controlsin alogical order? (Remember,
the focus skips over items that users cannot act upon, including group boxes, text controls, and
pictures.)

When you paste controlsinto your dialog, the Dial og Editor placestheir descriptions at the end of your
dialog template, in the order in which you paste them in. Therefore, you can use asimpl e cut-and-paste
technique to adjust the tabbing order. First, click the toolbar Test Dialog button to end the test and
then, proceeding in the order in which you want the controlsto receive the focus, select each contral,
cut it from the dialog (by pressing Ctrl+X), and immediately paste it back in again (by pressing
Ctrl+V). The controls will how appear in the desired order in your template and will receive the
tabbing focusin that order.

Option button grouping
Are the option buttons grouped correctly? Does selecting an unselected button in a group
automatically deselect the previously selected button in that group?

To merge two groups of option buttonsinto a single group, click thetoolbar Test Dialog button to end
the test and then use the Option Button Information dialog to assign the same .Option Group name for
all the buttons that you want included in that group.

Text box functioning
Can you enter only asingleline of nonwrapping text, or can you enter multiple lines of wrapping text?

If the text box doesn't behave the way you intended, click the toolbar Test Dialog button to end the
test; then display the Text Box Information dialog and select or clear the Multiline checkbox.

Using Dialogs

Accelerator keys

If you have assigned an accelerator key to atext control or group box in order to provide user access
to atext box, listbox, combo box, drop-down listbox, or group box, do the accelerator keys work
properly? That is, if you press Alt + the designated accel erator key, does the insertion point moveinto
the text box or group box or to the currently selected item in the listbox, combo box, or drop-down
listbox?

If the accelerator key doesn't work properly, it meansthat the text box, listbox, combo box, drop-down
listbox, or group box is not associated with the text control or group box to which you assigned the
accelerator key—that is, in your dialog template, the description of the text control or group box does
not immediately precede the description of the control(s) that should be associated with it. Aswith
tabbing-order problems (discussed above), you can fix this problem by using a simple cut-and-paste
technique to adjust the order of the control descriptionsin your template. First, click the toolbar Test
Dialog button to end the test; then cut the text control or group box from the dialog and immediately
pasteit back in again; and finally, do the same with each of the controlsthat should be associated with
the text control or group box. The controlswill now appear in the desired order in your template, and
the accelerator keyswill work properly.

Incorporating a Dialog into a Macro

Once you have created adialog or dialog controls, you can pasteit into your macro viathe Clipboard.
Follow these steps.

To incorporate a dialog or control into your macro:
1. Select thedialog or control that you want to incorporate into your macro.

2. PressCitrl+C.
3. Open your macro and paste in the contents of the Clipboard at the desired point.

Y ou can also select File>Save As on the Dialog Editor and save the dialog to a.DLG file. Later you
can open the macro in the Macro Editor and the saved dialog in the Dial og Editor, and copy the dialog
into the macro.

The dialog template or control is now described in statements in your macro.
Using Dialogs
After using the Dialog Editor to insert a custom dialog template into your macro, you'll need to make

the following modifications to your macro:

1. Createadiaog record with the bi mstatement.
2. Putinformation into the dialog by assigning values to its controls.

3. Display the dialog with either the bi al og() function or the Di al og Statement.

65

Using Dialogs

4.

66

Retrieve values from the dialog after the user closesiit.

Creating a Dialog Record
To store the values retrieved from a custom dial og, create a dialog record with a bi mstatement using
the following syntax:

Di m Di al ogRecord As Di al ogVari abl e

Here are some examples of how to create dialog records:

Dimb As UserDial og "Define a dialog record "b"
Dim Pl ayCD As CDDi al og ' Define dialog record Pl ayCD.

Hereisasample macro that illustrates how to create adialog record named b within adialog template
named User Di al og. Notice that the order of the statements within the macro is: the dialog template
precedes the statement that creates the dialog record, and the bi al og statement follows both of them.

Sub Main
Tl
Di m Li st Box1$() "Initialize |istbox array.
"Define the dialog tenplate.
Begin Di al og UserDialog ,, 163,94,"G ocery Oder"
Text 13,6,32,8,"&uantity:",. Textl
Text Box 48, 4, 28, 12, . Text Box1
Li st Box 12, 28, 68, 32, Li st Box1$, . Li st Box1
CKButton 112, 8, 40, 14
Cancel Button 112, 28, 40, 14

End Di al og
Dimb As UserDi al og "Create the dialog record.
Di al og b 'Display the dial og.

End Sub

Putting Information into the Dialog
When you open and run the sample macro shown in the preceding subsection, you see adialog like
the following:

Gocoy O |
Quantity: I

Using Dialogs

To put information into this dialog, assign values to its controls by modifying the statementsin your
macro that are responsiblefor displaying those controlsto the user. Thefollowing tableliststhe dialog
controls to which you can assign values and the types of information you can control:

Control(s) Types of Information
Listbox, drop-down listbox, combo box Items

Text box Default text
Checkbox Values

The following sections explain how to define and fill an array, set the default text in a text box, and
set the initial focus and tab order for the controlsin a custom dialog.

Defining and Filling an Array

Y ou can storeitemsin thelistbox shown in the exampl e above by creating an array and then assigning
valuesto the elements of the array. For example, you could include the following linesto initialize an
array with three elements and assign the names of three common fruitsto these el ements of your array:

Di m Li st Box1$(3) "Initialize |istbox array
Li st Box1$(0) = "Apples"”

Li st Box1$(1) "Oranges"

Li st Box1$(2) "Pears"

Setting Default Text in a Text Box

Y ou can set the default value of the text box in your macro to 12 with the following assignment
statement. This assignment must follow the definition of the dialog record but precede the statement
or function that displays the custom dialog.

b. Text Box1 = "12"

Setting the Initial Focus and Controlling the Tabbing Order

Y ou can determine which control has the focus when your custom dialog appears as well asthe
tabbing order between controls by understanding two rules. First, the focusin acustom dialog is
always set initially to thefirst control to appear in the dialog template. Second, the order in which
subsequent controls appear within the dial og template determines the tabbing order. That is, pressing
the Tab key will change the focus from the first control to the second one, pressing the Tab key again
will change the focus to the third control, and so on.

Displaying the Custom Dialog

To display acustom dialog, use either the bi al og() function or the Di al og Statement.

67

Using Dialogs

Using the Dialog() Function

Usethebi al og() function to determine how the user closed your custom dialog. For example, the
following statement returns a value when the user clicks an OK button or a Cancel button or takes
another action:

response% = Di al og(b)

Thebi al og() function returns any of the following values:

Value Returned If

-1 The user clicked the OK button.
0 The user clicked the Cancel button.
>0 The user clicked a push button. The returned number represents which button

was clicked based on its order in the dialog template (1 isthefirst push button, 2
is the second push button, and so on).

Using the Dialog Statement

Usethebi al og statement when you don't need to determine how the user closed your dialog. Y ou can
still retrieve other information from the dialog record, such asthe value of alistbox or other dialog
control. The following is an example of the correct use of the bi al og statement:

Dialog b

Retrieving Values from the Custom Dialog

After displaying a custom dialog, the macro must retrieve the values of the dialog controls by
referencing the appropriate identifiersin the dialog record. The following example uses several of the
techniques described earlier to explain this process.

In this macro, the array named Li st Box1 isfilled with three elements ("Appl es", "Or anges”, and
"Pear s"). The default value of Text Box1 isset to 12. A variable named r esponse isused to store
information about how the custom dialog was closed. An identifier named Li st Box1 isused to

determine whether the user chose "Appl es", "Oranges”, or "Pear s" in the listbox named Li st Box$.

Finally, asel ect Case...End Sel ect Statement is used to display a message box appropriate to the
manner in which the user dismissed the dialog.

Sub Main

Tl

Di m Li st Box1$(2) "Initialize |istbox array.

Di m response%

Li st Box1$(0) " Appl es"

Li st Box1$(1) " Oranges"

Li st Box1$(2) = "Pears"

Begin Dial og UserDialog ,, 163,94, "G ocery Oder"
"First control gets focus.
Text 13,6,32,8,"&uantity:",. Text1l

Using Dialogs

Text Box 48, 4, 28, 12, . Text Box1
Li st Box 12, 28, 68, 32, Li st Box1$, . Li st Box1
OKButton 112, 8, 40, 14
Cancel Button 112, 28, 40, 14
End Di al og
Dimb As UserDi al og "Create the dialog record.
"Set default value of the text box to 1 dozen.
b. Text Box1 = "12"
response% = Di al og(b) 'Display the dial og.
Sel ect Case response%
Case -1
Fruit$ = ListBox1$(b. ListBox1l)
MsgBox "Thank you for ordering " +

b. TextBox1l + " " + Fruit$ + "
Case 0
MsgBox "Your order has been cancel ed.”
End Sel ect

End Sub

Using a Dynamic Dialog in a Macro

The preceding section explained how to use a custom dialog in your macro. Asyou learned, you can
retrieve the values from dialog controls after the user dismisses the dialog by referencing the
identifiersin the dialog record.

Y ou can also retrieve values from a custom dialog while the dialog is displayed, using a feature of
called dynamic dialogs.

The following macro illustrates the most important concepts you'll need to understand in order to
create a dynamic dialog in your macro:

"Dim"Fruits" and "Vegetabl es" arrays here to nmake them
"accessible to all procedures.
DimFruits(2) As String
Di m Veget abl es(2) As String
" Di al og procedure--nust precede the procedure that defines
"the custom di al og.
Function Di al ogControl (ctrl$, action% suppvalue¥% As I|nteger
Sel ect Case acti on%
Case 1
"Fill listbox with items before dialog is visible.
Dl gLi st BoxArray "ListBox1", fruits
"Set default value to first itemin |istbox.
Dl gVval ue "ListBox1", 0
Case 2
"Fill the listbox with nanes of fruits or vegetables
"when the user selects an option button.
If ctrl$ = "OptionButtonl" Then
Dl gLi st BoxArray "ListBox1", fruits
Dl gVal ue "ListBox1", 0
El self ctrl$ = "OptionButton2" Then
Dl gLi st BoxArray "ListBox1", vegetables
Dl gVval ue "ListBox1", O
End | f
End Sel ect
End Function

69

Using Dialogs

70

Sub Main
Tl
"Initialize array for use by ListBox statement in tenplate.
Di m Li st Box1$()
Di m Produce$
"Assign values to elenents in the Fruits and Vegetabl es arrays.
Fruits(0) = "Apples"
Fruits(1) " Oranges”
Fruits(2) " Pear s"
Veget abl es(0) “Carrots"
Veget abl es(1) " Peas"
Veget abl es(2) "Lettuce"
"Define the dialog tenplate.
Begin Dial og UserDialog ,,163,94,"Gocery Oder", .DialogControl
Text 13,6,32,8,"&uantity:",.Textl First control
in tenplate gets the focus.
Text Box 48, 4, 28, 12, . Text Box1
Li st Box 12, 28, 68, 32, Li st Box1$, . Li st Box1
Opti onGroup . Opti onG oupl
OptionButton 12,68,48,8,"&Fruit", . OptionButtonl
OptionButton 12, 80, 48, 8, "&Veget abl es", . Opti onButt on2
OKButton 112, 8, 40, 14
Cancel Button 112, 28, 40, 14
End Di al og
Dimb As UserDi al og "Create the dialog record.
"Set the default value of the text box to 1 dozen.
b. Text Box1 = "12"
response% = Di al og(b) "Di splay the dial og.
Sel ect Case response%
Case -1
If b.OptionGoupl = 0 Then
produce$ = fruits(b.ListBoxl)
El se
produce$ = veget abl es(b. Li st Box1)
End | f
MsgBox "Thank you for ordering " & _
b. Text Box1 & " " & produce$ & "."

Case 0
MsgBox "Your order has been canceled."
End Sel ect
End Sub

The remainder of this section explains how to make a dialog dynamic by examining the workings of
this sample macro.

Making a Dialog Dynamic

The first thing to notice about the preceding macro, which is a more complex variation of the macro
described earlier in this chapter, isthat an identifier named . Di al ogCont r ol has been added to the
Begi n Di al og Statement. Asyou will learn in the following subsection, this parameter to the Begi n
Di al og Statement tells the compiler to pass control to afunction procedure named Di al ogContr ol .

Using a Dialog Function

Before the compiler displays a custom dialog by executing abi al og Statement or bi al og() function,
it must first initialize the dialog. During thisinitialization process, the compiler checks to see whether

Using objects in an external OLE application

thereis adialog function defined in the dialog template. If so, it gives control to the dialog function,
allowing the macro to carry out certain actions, such as hiding or disabling dialog contrals.

After completing itsinitialization, the compiler displays the custom dialog. When the user selects an
itemin alistbox, clears acheckbox, or carries out certain other actionswithin the dialog, the compiler
will again call the dialog function.

Infact, the compiler aso callsthe dialog function repeatedly even whilethe user isnot interacting with
the dialog. Y ou can use this fact to update a dialog continuously.

Responding to User Actions
A dialog function can respond to six types of user actions:

Action Description
1 Thisaction is sent immediately before the dialog is shown for the first time.
2 This action is sent when:

* A buttonisclicked, such as OK, Cancel, or a push button.
» A checkbox's state has been modified.

» Anoption button is selected. In this case, Cont r ol Name$ contains the name of the
option button that was clicked, and SuppVal ue containstheindex of the option but-
ton within the option button group (0 is the first option button, 1 isthe second, and so
on).

¢ Thecurrent selection is changed in alistbox, drop-down listbox, or combo box. In
thiscase, Cont r ol Nane$ contains the name of the listbox, combo box, or drop-down
listbox, and SuppVal ue containsthe index of the new item (O isthefirst item, 1isthe
second, and so on).

3 This action is sent when the content of atext box or combo box has been changed and
that control loses focus.

4 Thisaction is sent when a control gains the focus.

5 Thisaction is sent continuously when the dialog isidle.

6 Thisaction is sent when the dialog is moved.

Using objects in an external OLE application

When SmarTerm is operated through an external OLE Automation controller, only those macro
commands relating directly to the SmarTerm objects are avail able. This means that another
application can use commands such asSessi on. Ci rcui t . Connect , but not commandssuchasLTri n$
or open. Thisisnot agreat hardship, however, since programming commands not directly related to
the operation of SmarTerm should be available in the macro language for the controlling application.

71

Communicating with a host

To provide another application with OLE access to SmarTerm objects, you must include some basic
definitions in the controlling application’s code. The following preamble will provide a controlling
application complete access to the SmarTerm objects:

acquire access to SmarTerm for automation control
Di m Application as Object
Set Application = CreateCbject("SmarTerm Application")

initialize a Session object by opening a session file
Di m Sessi on as Obj ect
Set Session = Application. Sessions. Open(" Sessi onl. STW)

initialize a Grcuit object for access to comunications
features

Dim Circuit as Object

Set Circuit = Session.Circuit

initialize a Transfer object for access to file transfer
features

Dim Transfer as bject

Set Transfer = Session. Transfer

Once you have included this preamble, you can then construct the rest of the controlling application’s
macro code to access SmarTerm objects exactly as described in the online help.

Communicating with a host

72

Since the primary purpose of terminal emulation software isto communicate with a host, a high
proportion of the macro commands support host communication tasks, such as connecting to the host,
transferring data, and handling user interaction with the host. These tasks are handled by three
SmarTerm objects: G rcui t, Sessi on, and Tr ansf er . In this section we discuss common host
communication tasks and provide generalized sample macros that should help you design your own
macros specific to the tasks you need to accomplish.

Handling host connections
The macro commands that control host connection are all properties or methods of the SmarTerm
Circui t object. These commandsfall into two groups:

» Connection commands (such asCi rcui t . Connect, Circuit. Connected, and Circuit. Di scon-
nect), which are common to all communication methods

e Setup commands, which are unique to each communication method

For the most part, it is probably easiest to set up SmarTerm session files with the appropriate
connection information rather than use macro commands to do it. For one thing, it's easier to run
SmarTerm and then save the session filethan it isto debug a macro that sets up acomplicated session
type. Also, between the Session_Connect built-in macro (see “ Session_Connect macro” on page 23)
and the fact that you can have the session connect automatically when you open it, you may not need
a special macro to handle your connection at all.

Communicating with a host

However, not everyone's needs are so easily satisfied. For example, suppose that you need to connect
to multiple telnet hoststhat all use the same display and keyboard settings, but you can only make one
connection at atime due to network cost constraints. One way in which you can do thisisto set up a
single session file with the common display and keyboard settings, then provide that session file with
SmarTerm buttons that allow you to connect to several hosts. Follow these steps:

Create a session. When asked for the connection settings, pick one of the hosts you routinely connect
to.

Set up the display, terminal type, keyboard map, and so forth, the way you want them. Then save the
session file.

Now use Tools>SmarTerm buttons to create a set of buttons, one for each host. Attach to each button
amacro like the following:

Sub Connect _Thi sHost
"l Use this macro to connect to Thi sHost.com

If Crcuit.Connected = True Then 'Are we connected?
If Circuit.Tel net Host name = "Thi sHost. com' Then
End ' Already connected to target host--quit!using se

El se
Session. Send "Logout" 'log off other host
Circuit. Di sconnect
End I f
End | f

Circuit. Tel net. Host nane = " Thi sHost. conf
Circuit. Connect
End Sub

For each SmarTerm button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". Y ou may also need to change the logout command.

When you have created all your buttons, save them and save the session. From now on, when you
open the session you will have a set of SmarTerm buttons that allow you to switch from host to host.

Possible improvements

There are several improvements you could make to the host connection macro. First, you can add
error-checking to handle situations in which things do not go as planned. Thisissimplified by the fact
that the i rcui t methodsGircui t. Connect and Gi rcui t. Di sconnect arefunctionsthat return either
Tr ue Of Fal se, depending on whether they succeed or not. If we add a check for successinto the
sample above, we get the following macro.

Sub Connect _Thi sHost
"l Use this macro to connect to Thi sHost.com
I mproved to check for success on connect and di sconnect

If Crcuit.Connected = True Then 'Are we connected?
If Circuit.Tel net Host name = "Thi sHost. com' Then
End ' Already connected to target host--quit!
El se
Sessi on. Send "Logout" 'log off other host

73

Communicating with a host

74

" Unabl e to di sconnect?
If Circuit.Disconnect = Fal se Then
Sessi on. Echo "Unabl e to disconnect from" +_
Circuit.Tel nethostname + ". Please contact IS."
End ' Quit!
End I f
End I f
End I f
Circuit. Tel net. Host nane = "Thi sHost. cont'
If Crcuit.Connect = False Then ' Unable to connect?
Session. Echo "Unable to connect to " +_
Circuit. Tel net host name +_
Pl ease contact IS."
End ' Quit!
End I f
End Sub

Thismacro isnow alittle morerobust, and can at least | et the user know that something iswrong. Y ou
could also take another action, such astrying a different host name, switching to the IP address, and
so forth.

Another improvement might be to observe that al of the host connection macros attached to the
buttons are identical except for the host name and (potentially) the command required to log off. To
streamline the button macros and centralize the connection macro, you can take advantage of the
organization of SmarTerm macrosinto acollective. Y ou can put the host-specific information in each
button macro, and then call asingle host connection macro stored in the user macro file. Try this:

Use Tools>Macrosto create amacro in the user macro file that will do the actual connecting. It might
look like this:

Sub Connect ToHost Host name$
! Use this macro to connect to the host specified with Host nane$
The actual hostnane is passed in fromthe button nacro.

If Crcuit.Connected = True Then 'Are we connected?
If Circuit.Tel net Host nane = Host nane$ Then
End ' Already connected to target host--quit!
El se
Sessi on. Send Logout Conmand$ ' | og of f other host
" Unabl e to di sconnect?
If Crcuit.Di sconnect = Fal se Then
Sessi on. Echo "Unabl e to disconnect from" +_
Circuit.Tel nethostname + . Please contact IS."
End ' Quit!
End I f
End | f
End I f
Circuit. Tel net. Host nane = Host nane$
If Crcuit.Connect = False Then ' Unable to connect?
Sessi on. Echo "Unable to connect to " + Hostname$ +_
". Please contact 1S."
End ’ Quit!
End | f
End Sub

Communicating with a host

At the top of the macro, add a public string variable that will hold the logout command for the
previous host:

Publ i ¢ Logout Command As String

Sub Connect ToHost Host name$

iEnd Sub

Save the macro. Then use Tools>SmarTerm Buttons to create one button for each host. Attach the
following macro to each button:

Publ i ¢ Logout Command As String

Sub Connect _Thi sHost

' This macro sets the public variable Logout Coomand$ to "quit"

" (which is used when the next host is connected to) and

' connects to ThisHost.com using the commpn macro Connect ToHost .

Logout Conmand$ = "quit"
Connect ToHost " Thi sHost . cont'

End Sub

Asbefore, for each button, substitute the name of the new host for the sample text "ThisHost" and
"ThisHost.com". Y ou may also need to change the logout command.

Save the macros and the buttons.

Y ou have now streamlined the macro in each button, which merely supply alittle data to the central
ConnectToHost macro. If you now wanted to further improve the connection macro by adding more
error-checking, starting or stopping alogfile, and so on, you need only change the ConnectToHost
macro in one place, rather than in each button macro.

Sending and receiving data

The SmarTerm macro language handles all transfer of data between the host and SmarTerm, whether
text or files or keystrokes, with the Sessi on object and the Tr ansf er object. Usethe Tr ansf er object
for file transfer using one of thefile transfer protocols SmarTerm supports (such as FTP, INDSFILE,
Kermit, XMODEM, Y MODEM, or ZMODEM). Use the Sessi on object to send and receive
keystrokes, to transfer text, and to read or write data directly to or from the terminal screen.

The Sessi on and Tr ansf er objects are those associated with the active session. If you have multiple
sessions available, you should make sure that the correct oneis active before sending data to the host.

Sending and receiving strings and keystrokes

There are two ways to send strings and keystrokes via a script to the host, one for text-based session
types and one for form-based session types. If you are using atext-based session type such as Digital
VT, Digital VT Graphics, Data General Dasher, ANSI, SCO ANSI, or Wyse, you embed the

75

Communicating with a host

76

keystrokesin astring and usethe Sessi on. Send Or Sessi on. SendLi t eral method. If you are using a
form-based session type such as IBM 3270 or IBM 5250, you use the Sessi on. Sendkey method,
specifying the key with a special mnemonic.

Using Session.Send and Session.SendLiteral

The Sessi on. Send and Sessi on. SendLi t eral commands arereally quite simple. All you need to do
is pass the string that you want sent to the host (or the screen, if the host is currently offline) to the
Sessi on object. For example, to send your username to alogin prompt (asis done by the

Sessi on_Connect macro), you use the following command:

Sessi on. Send "nguyenp" + chr(13)

Thissendsthetext “ ngyuenp" to the host, followed by acarriage return (ASCII character number 13).
Y ou can also specify the carriage-return right in the string with the built-in mnemonic " <Cr>":

Sessi on. Send " nguyenp<CR><LF>"

However, you cannot use built-in mnemonics for macro commands that do not relate to SmarTerm
objects. So, for exampl e, you can assign the string to astring variable or string constant, and then pass
that variable or constant to the session:

Dim StringToSend As String

StringToSend = "nguyenp<CR><LF>"
Session. Send StringToSend

But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such asin adialog definition.

When you use the Sessi on. Send command, SmarTerm takes the string you specify, converts any
control charactersyou may haveincluded to theform appropriateto the host connection (7-bit controls
or 8-hit controls), and performs any character translation that you may have set with the
Properties>Session Options>Character Translation tab. If you want to skip the character trandation
step for some reason, use the Sessi on. SendLi t eral command. This command, which otherwise
works exactly like the Sessi on. Send command, performs any 7-bit to 8-bit conversion but skips the
character tranglation step.

Using Session.Sendkey

The Sessi on. Sendkey command (only supported for form-based session types such asIBM 3270 and
IBM 5250) allows you to send specific host keystrokes using standard mnemonics. These mnemonics
arelisted in the online help for the command. For example, you can send adown arrow keystroke with
the following command:

Sessi on. Sendkey " CURSORDOWN'

Communicating with a host

Note that, even though you use a standard mnemonic, the Sessi on. Sendkey command still requires
you to form the keystroke into a string. This allows you to chain keystrokes together for more
complicated procedures:

Sessi on. Sendkey " CURSORDOWN' + "DELETEWORD' + "ENTER'

And, aswith the Sessi on. Send command, you can build the string elsewhere in the macro, assign it
to avariable or constant, and then pass that variable or constant on to the command:

Di m KeysToSend As String

i(eysToSend = "CURSORDOWN' + "DELETEWORD' + "ENTER'
Sessi on. Sendkey KeysToSend

But you cannot then use that string variable or constant with a macro command that does not relate to
a SmarTerm object, such asin adiaog definition.

Transferring text

The SmarTerm Macro Language provides a number of commands that allow you to move text back
and forth between SmarTerm and atext-based host. With the SmarTerm Sessi on object you can paste
text to the host from afile on SmarTerm and capture text from the host into a file on SmarTerm .

If you routinely transfer large ASCI| text files between SmarTerm and a host and you want to
automate that process, you should consider using one of the file transfer protocols, such as FTP,
Kermit, XMODEM, and so forth. These protocols provide extra security for your data, as they can
detect and correct transmission errors and generally have a much higher throughput than straight
ASCII text transfer. See the next section for information on using macros for protocol-based file
transfer.

Transferring text from the host to SmarTerm
There are three ways to transfer text from the host to SmarTerm:

e Start up atext display command on the host and then use the Session.Capture command to save
everything the host sendsin afileon SmarTerm .

« Iftheinformationisalready onthe screen, usethe Sessi on. Scr eenToFi | e command to put a snap-
shot of the text in the session window in afile on SmarTerm.

« Usethesession. Col | ect object to collect text from the host into an array of strings, and then use
file-handling commands to save the strings in afile. In this section we cover only the first option,
Scr een. Capt ur e. The second option, Sessi on. ScreenToFi | e, isfully documented in the online
help. For the third option, Sessi on. Col | ect , see“Collect” on page 19.

There are three Sessi on. Capt ur e commands:

77

Communicating with a host

78

e Session. Capt ur eFi | eHandl i ng, which lets you set whether the PC file will be replaced, or ap-
pended to

e Session. Capt ur e, Which starts a capture procedure
e Session. Capt ur eEnd, Which ends the procedure

To use these commands properly, you al so need to know the commands your host usesto display text
files. In the following example, we set up the capturefile handling, then capture atext fileon aDigital
VMS host to afile on the PC.

Sub CaptureHostFile
"1l Capture the host file LOGGN.COMto the PC file VMSLOG N. TXT

First, make sure that any new capture will overwite
" the old one

Sessi on. CaptureFil eHandling = 0
" Actually, this is the default

Now set up a LockStep object so everything stays in sync
Di m LockStep As bj ect
Set LockStep = Session. LockStep
LockStep. Start

"Now, start up the capture
Sessi on. Capture("c:\vnsl ogin.txt")

Now, display the host file
Sessi on. Send "TYPE LOG N. COM'

" When the TYPE conmmand is done, end the capture and
close the file
Sessi on. EndCapt ure

' Don't forget to destroy the LockStep object!
Set LockStep = Not hing

End Sub

Transferring text from the SmarTerm server to the host
There are two ways in which to send text to the host:

* Usethe Sessi on. Send command (see“ Session_Connect macro” on page 23) send individual
strings to the host.

* UsethesSession. Transni t Fil e command to send an ASCII text file to the host, displaying it in
the session window asit does so. To use this command properly, you need to know the host com-
mands for creating atext file, or those for starting a host application if you want to paste the text
into afile.

The following sample code provides a simple example using the VM S CREATE command.

Sub Transm t ToHost
! Send the PC file AUTOEXEC. BAT to the host file PCAUTO TXT

" First, set up a LockStep object so everything stays in sync

Communicating with a host

Di m LockStep As bj ect
Set LockStep = Session. LockStep
LockStep. Start

"Now, create the file on the host
Sessi on. Send " CREATE PCAUTO. TXT<CR>"

Wait a nonent for the host to do its work
Sl eep 2000

" Now, display the host file
If Session.Transmi t("c:\autoexec.bat") = True Then

Sessi on. Send " </NZ>" "Al'l done--close the host file
Session. Send "File transmitted. "

El se
Sessi on. Send " <MY>" "Error--Cancel the file creation
Session. Send "Unable to create file."

End I f

Don’t forget to destroy the LockStep object!
Set LockStep = Not hi ng

End Sub

Transferring files

The previous section explained how to use the Sessi on object to move text between SmarTerm and a
host. Y ou can also move other kinds of files with these methods, but it is safer to use the Tr ansf er
object. This section explains how to use the Tr ansf er object to move files between SmarTerm and a
host.

Onedifference between transferring text and transferring filesisthat there are anumber of file transfer
protocols that may or may not be available, depending on what the host supports. Each protocol
provides different features and different interfaces. The session file always has a default transfer
method installed. It is probably best to make sure that the right file transfer protocol is active before
trying to use it. Use ablock of code like the following:

' Check that we are using ZMODEM and change to if we aren't

If Transfer.Protocol Name <> "ZMODEM' Then
| f Session. TransferProtocol "ZMODEM' = Fal se Then
Sessi on. Send "Unable to sel ect ZMODEM *
End
End I f
End I f

Having settled which protocol you are using, you can then useit to transfer files. The details of each
file transfer protocol differ from each other. However, there are two commands that work with all
transfer protocols except FTP: Transf er. SendFi | e and Transf er . Recei veFi | e. You use both
commands in much the same way, the only difference being that Tr ansf er . SendFi | e sends afileto
the host, while Tr ansf er . Recei veFi | e receives afile from the host. The following example uses
Transfer. SendFil e.

79

Compiling Macros

Sub SendFi | eToHost
"1Sends the file AUTOEXEC. BAT to the host using ZMODEM

' Check that we are using ZMODEM and change to if we aren't

If Transfer.Protocol Nanme <> "ZMODEM' Then
| f Session. TransferProtocol "ZMODEM' = Fal se Then
Session. Send "Unable to sel ect ZMODEM *
End
End I f
End I f

" Now set up a LockStep object so everything stays in sync
Di m LockStep As bj ect
Set LockStep = Session. LockStep
LockStep. Start

"Start ZMODEM on the host and wait for it to take effect
Sessi on. Send " znobdenkCR><LF>"
sleep 2

"Now send the file
If Transfer.SendFil e("c:\autoexec.bat") = Fal se Then
Session. Send "Unable to transfer file."
End
El se
Session. Send "File transferred."
End I f

Don’t forget to destroy the LockStep object!
Set LockStep = Not hi ng

End Sub

Compiling Macros
Y ou can compile and save any macro file, which isthen included in the collective. Compiled macros
filesare available to all macro collectivesin agiven installation of SmarTerm, and they load and run

more quickly than uncompiled macros. They cannot be debugged dynamically with the macro editor,
however.

|:| Compiled macro files are available to any collective. If you use more than one session type, or
regularly connect to more than one host, organize your macros carefully so that you don’t accidental ly
call amacro for the wrong session type or host.

Follow these steps to compile a macro file:

1. Make surethat the macro file contains bug-free macros that work properly.

2. Savethe macro file with a unigue name that identifies the contents of the file. For example, save al
of the macros used to work on Host X as HOoSTX. STM

3. Load the new file into the macro editor and select any of the macrosin the file for editing.

Compiling Macros

Save the file as a compiled macro file by typing Ctrl+Shift+D (for safety’s sake, there is no menu
equivalent). The macro editor compiles and saves the contents of the entire macro filein anew file
with the same name but with the file extension . PcD. For example, the filename HosTX. STMbecomes
HOSTX. PCD.

SmarTerm saves the compiled macro file in the same folder as the source macro file, usually the
\ MACROS folder. To use the new file, move (or copy) it to the SmarTerm program folder without
changing the name.

SmarTerm will only find and use compiled macro files if they use the . pcD file extension and reside
in the SmarTerm program folder.

Using compiled macros

When SmarTerm startsup, it looksfor . pcD filesinits program directory, loading any it finds. All the
macrosin the compiled files are then automatically avail able to macro collectivesfor all sessiontypes.
Y ou do not have to call the macrosin a specia way; they are simply available.

81

Compiling Macros

82

Symbols

' (single quote)

Syntax

Description

Example

See Also

"t ext

Causes the compiler to skip all characters between this character and the end of the current line.

Sub Main
"This whole line is treated as a coment.
i$="Strings" ’'This is a valid assignnent with a conment.
This line will cause an error (the apostrophe is m ssing).
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Macro Control and Compilation on
page 7

'l (description comment)

Syntax

Description

[]

Example

"1 text

When used at the very top of a subroutine macro, causes the macro name to appear in the
Tools>Macros dialog. Any text following the’ | appearsin the Description box on the Tools>Macros

dialog. A macro can have up to three lines beginning with ' | aslong asthey are at the very top of the
macro.

Functions never appear in the Tools>Macro dialog, even if they begin with description comments.

Sub Main
"I This line appears in the Tool s>Macro di al og.
'1So does this I|ine.
"I'As does this line.

"I'This line will not appear in the dialog
i $="Thi s descriptive nacro i s now over."
MsgBox i $

End Sub

83

- (subtraction)

See Also Keywords, Data Types, Operators, and Expressions on page 5; Macro Control and Compilation on
page 7

- (subtraction)

Syntax 1 expressionl - expression2
Syntax 2 -expression
Description Returnsthe difference between expr essi on1 and expr essi on2 or, in the second syntax, returns the

negation of expr essi on.

expressi onl - expression2

Thetype of the result isthe same asthat of the most precise expression, with the following exceptions:

Expression One Expression Two Result
Long Single Double
Boolean Boolean Integer

A runtime error is generated if the result overflowsitslegal range.
When either or both expressions are variant, the following additional rules apply:

o If either expressionisnul I, thentheresultisNul I .
* Enpty istreated asan I nt eger of valueO.
« If thetype of theresult isan I nt eger variant that overflows, then the result isaLong variant.

« Ifthetypeof theresultisalong, Si ngl e, Or Dat e vVariant that overflows, then theresultisaboubl e
variant.

-expr essi on

If expr essi on isnumeric, then the type of the result isthe sametype asexpr essi on. If expression is
Bool ean, then theresultis| nt eger .

I:I In 2'scomplement arithmetic, unary minus may result in an overflow with | nt eger and Long variables
when the value of expr essi on isthe largest negative number representable for that data type. For
example, the following generates an overflow error:

Sub Mai n()

Dima As |nteger

a = -32768

a=-a " Generates overfl ow here.
End Sub

#Const

Example

See Also

#Const

Syntax

Description

Example

See Also

When negating variants, overflow will never occur because the result will be automatically promoted:
integers to longs and longs to doubles.

Sub Main

i %= 100

j# = 22.55

k#t = i%- j#

Session. Echo "The difference is: " & k#
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

#Const constnane = expression

Defines apreprocessor constant for useinthe#1 f. .. Then. . . #El se statement. Internally, all
preprocessor constants are of type vari ant . Thus, the expr essi on parameter can be any type.
Variablesdefined using #Const canonly beusedwithinthe#i f. .. Then. . . #El se statement and other
#Const Statements. Use the #Const statement to define constants that can be used within your code.

#Const SUBPLATFORM = " NT"
#Const MANUFACTURER = "W ndows"
#Const TYPE = "Wbrkstation”
#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE
Sub Main

#1 f PLATFORM = "W ndows NT Wér kst ation" Then

Sessi on. Echo "Runni ng under W ndows NT Workstati on"

#End | f

End Sub

Macro Control and Compilation on page 7

#If... Then.. #Else

Syntax

Description

#1f expression Then

[statenents]

[#El sel f expression Then
[statenents]]

[#El se
[statenents]]

#End | f

Causes the compiler to include or exclude sections of code based on conditions. The expr essi on
represents any valid bool ean expression evaluating to Tr ue of Fal se. Theexpr essi on may consist of
literals, operators, constants defined with #Const , and any of the following predefined constants:

85

#If...Then.. #Else

86

Constant Vaue

W n32 True

Enpt y Enpty

Fal se Fal se

Nul | Nul |

Tr ue True

The expression can use any of thefollowing operators: +, -, *, /, \, ~, + (unary), - (unary),
Md, & =, <>, >=, > <= <, And, O, Xor, Inp, Eqv.

If the expression evaluatesto anumeric value, thenit isconsidered Trueif non-zero, Falseif zero.
If the expression evaluates to st ri ng ot convertible to a number or evaluates to null, then a"Type
mismatch" error is generated.

Text comparisons within expr essi on are always case-insensitive, regardless of the Option Compare
Ssetting

Y ou can define your own constants using the #Const directive, and test for these constants within the
expr essi on parameter as shown below:

#Const VERSION = 2
Sub Main
#1f VERSION = 1 Then
directory$ = "\ apps\wi dget"
#El sel f VERSION = 2 Then
directory$ = "\ apps\w dget 32"
#El se
Sessi on. Echo "Unknown version. "
#End | f
End Sub

Any constant not aready defined evaluatesto Enpt y.

A common useof the#l f. .. Then. . . #El se directiveisto optionally include debugging statementsin
your code. The following exampl e shows how debugging code can be conditionally included to check
parameters to a function:

#Const DEBUG = 1
Sub ChangeFor mat (NewFor mat As | nteger, StatusText As String)
#1f DEBUG = 1 Then
If NewFormat <> 1 And NewFormat <> 2 Then
Sessi on. Echo "Paraneter ""NewFormat"" is invalid."
Exit Sub
End | f
If Len(StatusText) > 78 Then
Sessi on. Echo "Paraneter ""StatusText"" is too |ong."
Exit Sub
End | f

& (concatenation)

Example

See Also

#End | f
Rem Change the format here...
End Sub

Excluded section are not compiled, allowing you to exclude sections of code that have errors or don’t
even represent valid syntax. For example, thefollowing codeusesthe#i f . . . Then. . . #El se Statement
to include a multi-line comment:

Sub Main
#f 0O
The followi ng section of code causes the host to display the
first line of a fanmbus poem
#End | f
Session. Echo "Don't |let that horse eat that violin"
End Sub

In the above example, since the expression #I f 0 never evaluates to True, the text between that and
the matching #end 1 f will never be compiled.

#1f Wn32 Then
Decl are Sub Get WndowsDirectory Lib "KERNEL32" Alias _
" Get WndowsDi rectoryA" (ByVal DirName As String, Byval
MaxLen As Long)
#End | f

Sub Main

Dim DirNanme As String * 256

Get WndowsDi rectory DirNane, | en(Di r Nane)

Sessi on. Echo "W ndows directory = " & DirNane
End Sub

Macro Control and Compilation on page 7

& (concatenation)

Syntax

Description

[]

Example

expressi onl & expression2

Returns the concatenation of expr essi onl and expr essi on2. If both expressions are strings, then the
type of theresult is st ri ng. Otherwise, the type of the result isa st ri ng variant. When nonstring
expressions are encountered, each expressionisconvertedtoa st ri ng variant. If both expressions are
Nul I, thenanul | variant isreturned. If only one expressionisNul I, thenit istreated as a zero-length
string. Enpt y variants are also treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of &. The differenceisthat + attempts
addition when used with at least one numeric expression, whereas & always concatenates.

Sub Main
s$ = "This string" & " is concatenated"
s2%$ = " with the & operator."
Sessi on. Echo s$ & s2$

End Sub

87

() (precedence)

See Also Keywords, Data Types, Operators, and Expressions on page 5; Character and String Manipulation on
page 3.

() (precedence)

Syntax1 ... (expression)...
Syntax 2 ..., (paraneter),...Description

Parentheses override the normal precedence order of operators, forcing a subexpression to be
evaluated before other parts of the expression. For example, the use of parentheses in the following
expressions causes different results:

i 1+2*3 " Assigns 7.

i (1 +2) *3 " Assigns 9.

Use parentheses to make your code easier to read, removing any ambiguity in complicated
expressions. You can also use parentheses when passing parameters to functions or subroutines to
force agiven parameter to be passed by value:

ShowFor m i "Pass i by reference.
ShowForm (i) "Pass i by val ue.

Enclosing parameters within parentheses can be misleading. For example, the following statement
appears to be calling afunction called showrFor mwithout assigning the result:

ShowFor m(i)

The above statement actually calls a subroutine called showror m passing it the variablei by value. It
may be clearer to use the Byval keyword in this case, which accomplishes the same thing:

ShowFor m ByVal i

I:I The result of an expression is always passed by value.

Example Sub Min

bill = Fal se
dave = True
jim= True

If (dave And bill) O (jimAnd bill) Then
Session. Echo "The required parties for the neeting are here."
El se
Sessi on. Echo "Someone is | ate again!"
End I f

End Sub

* (multiplication)

See Also

Keywords, Data Types, Operators, and Expressions on page 5; Macro Control and Compilation on
page 7

* (multiplication)

Syntax

Description

Example

See Also

. (dot)

Syntax 1
Syntax 2

Description

Examples

expressi onl * expression2

Returnsthe product of expr essi on1 and expr essi on2. Theresult isthe sametype asthe most precise
expression, with the following exceptions:

Expression One Expression Two Result

Single Long Double
Boolean Boolean Integer
Date Date Double

When the * operator is used with variants, the following additional rules apply:

* Enpty istreated asO.

« If thetypeof theresultisan | nt eger variant that overflows, then the result is automatically pro-
moted to aLong variant.

e If thetype of theresult isasi ngl e, Long, Or Dat e variant that overflows, then the result is auto-
matically promoted to a Doubl e variant.

e |If either expressionisnul I, thentheresultisNul | .

Sub Main
123.55
2.55
SH# * t#
Session.Echo s# & " * " & t# & " =" & u#
End Sub

+H
I n

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6

obj ect. property
structure. nenber

Separates an object from a property or a structure from a structure member.

Use the period to separate an object from a property.

89

/* and */ (C-style comment block)

See Also

Sub Main

Sessi on. Echo C i pboard. Get Text ()

End Sub

Use the period to separate a structure from a member.

Type Rect

left As |nteger
top As Integer
ri ght As |nteger
bottom As | nteger

End Type

Sub Main
Dimr As Rect
r.left =10
r.right = 12

End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Objects on page 10.

[* and */ (C-style comment block)

Syntax /* text
*
Description Causes the compiler to skip all characters between the/* pair and the*/ pair.
Example Sub Min
/* This is the beginning of the comment bl ock.
not hing you read here will have any effect on the macro
And it doesn’t natter where the text appears, until
t he appearance of the second pair: */
i $="The coment block is done" 'This is a valid assignnment.
MsgBox i $
End Sub
See Also Keywords, Data Types, Operators, and Expressions on page 5; Macro Control and Compilation on
page 7
/ (division)
Syntax expressionl / expression2
Description Returnsthe quotient of expr essi on1 and expr essi on2. The type of the result is Doubl e, with the

90

following exceptions:

\ (integer division)

Example

See Also

Expression One Expression Two Result
Integer Integer Single
Single Single Single
Boolean Boolean Single

A runtime error is generated if the result overflowsitslegal range.
When either or both expressions is variant, then the following additional rules apply:

e If either expressionisnul I, then theresultisNul I .
* Enpty istreated asan | nt eger of valueO.

« If both expressions are either | nt eger or Si ngl e variants and the result overflows, then the result
is automatically promoted to a Doubl e variant.

Sub Main

i %= 100

j# = 22.55

k# = i%/ |#

Session. Echo "The quotient of i/ is: " & k#
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6

\ (integer division)

Syntax

Description

Example

See Also

expressionl \ expression2

Returns the integer division of expr essi on1 and expr essi on2. Before the integer divisionis
performed, each expression is converted to the data type of the most precise expression. If the type of
the expressions is either Si ngl e, Doubl e, Dat e, OF Cur r ency, then each isrounded to Long.

If either expressionisavari ant , then the following additional rules apply:

e |If either expressionisnul I, thentheresultisNul | .
* Enpty istreated asan | nt eger of valueO.
Sub Main

s% = 100.99 \ 2.6

Session. Echo "I nteger division of 100.99\2.6 is: " & s%
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6.

91

A (exponentiation)

N (exponentiation)

Syntax

Description

Example

See Also

expressi onl ~ expression2

Returns expr essi on1 raised to the power specified in expr essi on2. The following are special cases:

Case Vaue

"0 1

0™-n Undefined
oOMn O

1™n 1

The type of the result is always double, except with Bool ean expressions, in which casetheresult is
Bool ean. Fractional and negative exponents are allowed.

If either expressionisavari ant containing Nul | , then theresult isNul | .

It isimportant to note that raising a number to a negative exponent produces a fractional result.

Sub Main
s# =275 "Returns 2 to the 5th power.
r# =16 ~ .5 "Returns the square root of 16
Session. Echo "2 to the 5th power is: " & s#
Sessi on. Echo "The square root of 16 is: " & r#

End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6.

_ (line continuation)

Syntax

Description

Example

92

textl _
text2

The line-continuation character, which alows you to split a single statement onto more than one line.
Y ou cannot use the line-continuation character within strings and must precede it with white space
(either a space or atab). Y ou can follow the line-continuation character with a comment:

i =5+6 & _ " Continue on the next line
"Hel | 0"

Const crlf = Chr$(13) + Chr$(10)

Sub Main
"The line-continuation operator is useful when concatenating
"long strings
ng = "This line is a line of text that" + crlf + "extends"
+ "beyond the borders of the editor" + crlf + "so it" _
+ "is split into nultiple Iines"

+ (addition/concatenation)

"It is also useful for separating and continuing |ong
"cal culation lines

b# = .124
a# = .223
s# = ((((Sin(b#) ~ 2) + (Cos(a#) ™ 2)) ~ .5) | _
(((Sin(a#) ~ 2) + (Cos(b#) ~ 2)) ~ .5)) * 2.00
Session. Echo my & crlf & "The value of s# is: " & s#

End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5; Character and String Manipulation on
page 3.

+ (addition/concatenation)

Syntax expressionl + expression2

Description Addsor concatenatestwo expressions. Addition operates differently depending on the type of the two
expressions:

Expression One Expression Two Result

Numeric Numeric Perform a numeric add.

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a string variant.

Variant Numeric Perform avariant add.

Empty variant Empty variant Return an integer variant, value 0.

Empty variant Any datatype Return the non-empty operand unchanged.

Null variant Any datatype Return null.

Variant Variant Add if either is numeric; otherwise, concatenate.

When using + to concatenate two variants, the result depends on the types of each variant at runtime.
Y ou can remove any ambiguity by using the & operator.

Numeric add

A numeric add is performed when both expressions are numeric (i.e., not variant or string). The result
is the same type as the most precise expression, with the following exceptions:

Expression One Expression Two Result
Single Long Double
Boolean Boolean Integer

A runtime error is generated if the result overflowsits legal range.

93

<, <=, <>, =, >, >= (comparison)

Example

See Also

Variant add

If both expressionsare variants, or oneexpressionisNuner i ¢ and the other expressionisvari ant , then
avariant add is performed. The rules for variant add are the same as those for normal numeric add,
with the following exceptions:

« If thetype of theresult isan I nt eger variant that overflows, then the result isaLong variant.

« Ifthetypeof theresultisalong, Si ngl e, Or Dat e vVariant that overflows, thentheresultisaboubl e
variant.

Sub Main
i$ = "Concatenation" + " is fun!"
j% =120 + 5 "Addition of nuneric literals
k## = j%+ 2.7 "Addition of numeric variable
Sessi on. Echo "Thi s concatenati on beconmes: '" i$ + _
Str(j9 + Str(k#) & "'"
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6; Character and String Manipulation on page 3.

<, <=, <>, =, >, >=(comparison)

See Comparison Operators (topic); Keywords, Data Types, Operators, and Expressions on page 5.

= (assignment)

Syntax

Description

94

[]

Example

variabl e = expression

Assigns the result of an expression to a variable. When assigning expressions to variables, internal
type conversions are performed automatically between any two numeric quantities. Thus, you can
freely assign numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting fromlarger to smaller types. Thisoccurswhen thelarger type
contains anumeric quantity that cannot be represented by the smaller type. For example, thefollowing
code will produce aruntime error:

Di m anount As Long

Dimquantity As |nteger

anmount = 400123 "Assign a value out of range for int.
guantity = anpunt "Attenpt to assign to |nteger.

When performing an automatic data conversion, underflow is not an error.

The assignment operator (=) cannot be used to assign objects. Use the set statement instead.

Sub Main
a$ = "This is a string"
b% = 100

= (assignment)

See Also

c# = 1213. 3443
Session.Echo a%$ & "," & b% & "," & c#
End Sub

Macro Control and Compilation on page 7

95

A

ADbs

Syntax

Description

Example

See Also

Abs(expressi on)

Returns the absolute value of expr essi on. If expressi onisNul |, then Nul | isreturned. Enpty is
treated as 0. The type of the result is the same as that of expr essi on, with the following exceptions:

e |Ifexpressionisaninteger that overflowsitslegal range, then the result is returned asaLong.
This only occurs with the largest negative | nt eger :

Dima As Vari ant
Dimi As I|nteger

i = -32768
a = Abs(i) "Result is a Long.
i = Abs(i) "Overflow!

« If expressionisaLong that overflowsitslegal range, then theresult isreturned asaboubl e. This
only occurs with the largest negative Long:

Dima As Variant

Dim| As Long

| = -2147483648

a = Abs(l) "Result is a Double.
I = Abs(l) "Overfl ow

» If expressionisacurrency valuethat overflowsitslega range, an overflow error is generated.

Sub Main

s1% = Abs(-10. 55)

s2& = Abs(-10.55)

s3! = Abs(-10.55)

s4# = Abs(-10.55)

Session. Echo "The absolute values are: " & s1% & "," & s2& & "," & s3! &","_
& sa#
End Sub

Numeric, Math, and Accounting Functions on page 6

97

And

And

Syntax result = expressionl And expression2

Description Performsalogical or binary conjunction on two expressions. If both expressions are either Bool ean,
Bool ean variants, or Nul | variants, then alogical conjunction is performed as follows:

ExpressionOne Expression Two Result
True True True
True False False
True Null Null
False True False
False False False
False Null Null
Null True Null
Null False False
Null Null Null

Binary conjunction

If the two expressions are | nt eger , then abinary conjunction is performed, returning an | nt eger
result. All other numeric types (including Enpt y variants) are converted to Long, and a binary
conjunction is then performed, returning aLong result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions according to the following table:

Bit in Expression One Bit in Expression Two Result

1 1 1

0 1 0

1 0 0

0 0 0
Examples Sub Min

nl = 1001

n2 = 1000

bl = True

b2 = Fal se

"Performa nuneric bitwise And and store the result in N3.
n3 = nl And n2

"Perforns a |logical And on Bl and B2

I1f bl And b2 Then
Session. Echo "bl and b2 are True; n3 is: " & n3

98

AnswerBox

See Also

El se

Session. Echo "bl and b2 are False; n3 is: " & n3
End | f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

AnswerBox
Syntax AnswerBox(pronpt [,[buttonl] [,[button2] [,[button3] [,[title]
[,helpfile,context]]11111)
Description Displaysadialog prompting the user for aresponse and returnsan Integer indicating which button was

clicked (1 for thefirst button, 2 for the second, and so on).AnswerBox takes the foll owing parameters:

Parameter Description

pronpt Text to be displayed above the text box. The prompt parameter can be any
expression convertible to a string. The compiler resizes the dialog to hold the
entire contents of prompt, up to a maximum width of 5/8 of the width of the
screen and a maximum height of 5/8 of the height of the screen. The compiler
word-wraps any linestoo long to fit within the dialog and truncates all lines
beyond the maximum number of linesthat fit in the dialog. You can insert a car-
riage-return/line-feed character in astring to cause aline break in your message.
A runtime error is generated if this parameter is null.

buttonl Thetext for the first button. If omitted, then "OK and "Cancel" are used. A runt-
ime error is generated if this parameter is null.

butt on2 Thetext for the second button. A runtime error is generated if this parameter is
null.

button3 Thetext for the third button. A runtime error is generated if this parameter is
null.

title String specifying thetitle of the dialog. If missing, then the default title is used.

hel pfile Name of the file containing context-sensitive help for this dialog. If this param-
eter is specified, then cont ext must also be specified.

cont ext Number specifying the ID of the topic within hel pfi I e for thisdialog's help. If

this parameter is specified, then hel pfi | e must also be specified.

The width of each button is determined by the width of the widest button.
The Answer Box function returns O if the user selects Cancel.

If boththehel pfil e andcont ext parametersare specified, then context-sensitive help can beinvoked
using the help key F1. Invoking help does not remove the dialog.

99

Any (data type)

Example Display adialog containing three buttons. Display an additional message based on which of the three
buttons is sel ected.

Sub Main
r% = Answer Box("Copy files?", "Save", "Restore", "Cancel")
Sel ect Case r%
Case 1
Session. Echo "Files will be saved."
Case 2
Session. Echo "Files will be restored."
Case El se
Sessi on. Echo "Qperation cancel ed.”
End Sel ect
End Sub

See Also User Interaction on page 9

Any (data type)

Description Use with the Decl ar e statement to indicate that type checking is not to be performed with agiven
argument. For example, given the following declaration:

Decl are Sub Foo Lib "FOO. DLL" (a As Any)

the following calls are valid:

Foo 10
Foo "Hello, world."

Example Call Fi ndw ndowto determine whether Program Manager is running. This example uses the Any
keyword to pass aNULL pointer, which isaccepted by the Fi ndw ndow function.

Decl are Function Fi ndW ndow32 Lib "user32" Alias "Fi ndW ndowA" _
(Byval C ass As Any,ByVal Title As Any) As Long

Sub Main
Di m hwid As Vari ant
hwhd = Fi ndW ndow32(" PROGVAN', 0&)
If hwd <> 0 Then
Sessi on. Echo "Program manager is running, wi ndow handle is " & hwd
End | f
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

AppActivate

Syntax AppActivate title | tasklD [wait]

Description Activates an application given its name or task ID. The AppActi vat e Statement takes the following
named parameters:

100

AppActivate

Examples

Parameter Description
title A string containing the name of the application to be activated.

taskl D A number specifying the task ID of the application to be activated. Acceptable
task IDs are returned by the Shell function.
wai t An optional boolean value indicating whether the compiler will wait for calling

application to be activated before activating the specified application. If False (the
default), then the compiler will activate the specified application immediately.

When activating applications using the task ID, it isimportant to declare the variable used to hold the
task ID asavari ant .

Applicationsdon’t alwaysactivateimmediately. To compensate, the AppAct i vat e Statement will wait
amaximum of 10 seconds before failing, giving the activated application plenty of time to become
activated.

Thetitl e parameter isthe exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matchesti t1 e, then asecond search is
performed for applications whosetitle string beginswithti t 1 e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight itsicon.

A runtime error results if the window being activated is not enabled, as isthe caseif that application
iscurrently displaying amodal dialog.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the caption is"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Activate the Calculator.

Sub Main
AppActivate "Cal cul ator™
End Sub

Run another application, then activateit.

Sub Main
Dimid as variant
id = Shell ("Notepad", 7) "Run Notepad mini m zed.
AppActivate "Cal cul ator™ "Activate Cal cul ator.
AppActivate id "Now activate Notepad.

End Sub

101

AppClose

See Also

Operating System Control on page 9

AppClose

Syntax

Description

102

Example

See Also

AppCl ose [title | tasklD

Closes the named application.

Thetitle parameter isast ri ng containing the name of the application. If theti t1 e parameter is
absent, then the Appd ose statement closes the active application. Or, you can specify the ID of the
task as returned by the shel I function.

A runtime error results if the application being closed is not enabled, asisthe caseif that application
iscurrently displaying amodal dialog.

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t1 e, then asecond search is
performed for applications whosetitle string beginswithti t 1 e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the caption is"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Sub Main
I'f AppFind$("M crosoft Excel") = "" Then
Sessi on. Echo "Excel is not running."
Exit Sub
End | f

AppActivate "M crosoft Excel"
AppCl ose "M crosoft Excel"
End Sub

Operating System Control on page 9

AppFind, AppFind$

AppFind, AppFind$

Syntax

Description

Example

See Also

AppFind[$] (title | tasklD)

Returnsast ri ng containing the full name of the application matching eithertitl e ort askl D.

Thetitl e parameter specifiesthe title of the application to find. If there is no exact match, the
compiler will find an application whosetitle beginswithti t I e. Or, you can specify the ID of the task
asreturned by the shel I function.

The AppFi nd$ functions returns a st ri ng, whereas the AppFi nd function returnsa st ri ng variant. If
the specified application cannot be found, then AppFi nd$ returns a zero-length string and AppFi nd
returns Enpt y. Using AppFi nd allows you detect failure when attempting to find an application with
no caption (i.e., Enpt y isreturned instead of a zero-length stri ng).

AppFi nd$ is generally used to determine whether a given application is running. The following
expression returns True if Microsoft Word is running:

AppFi nd$(" M crosoft Word")

Sub Main
If AppFind$("M crosoft Excel") <> "" Then
AppActivate "M crosoft Excel"
El se
Sessi on. Echo "Excel is not running."
End I f
End Sub

Operating System Control on page 9

AppGetActive$

Syntax

Description

Example

See Also

AppGet Acti ve$()

Returnsast ri ng containing the name of the application. If no application is active, the
AppGet Act i ve$ function returns a zero-length string.

Y ou can use AppGet Act i ve$ to retrieve the name of the active application. Y ou can then use thisname
in calls to routines that require an application name.

Sub Main
n$ = AppGet Active$()
AppM ni ni ze n$

End Sub

Operating System Control on page 9

103

AppGetPosition

AppGetPosition

Syntax

Description

Example

See Also

AppGet Position x,y,w dth,height [,title | tasklD]

Retrieves the position of the named application. The AppGet Posi ti on statement takes the following
parameters:

Parameter Description

X, y Names of integer variables to receive the position of the application’s win-
dow.

width, height Names of integer variables to receive the size of the application’s window.

title A string containing the name of the application. If theti t | e parameter is
omitted, then the active application is used.

taskl D A number specifying the task 1D of the application to be activated. Accept-

able task IDs are returned by the Shell function.

Thex, y, wi dt h, and hei ght variablesarefilled with the position and size of the application’swindow.
If an argument isnot avariable, then the argument isignored, asin thefollowing example, which only
retrievesthe x and y parameters and ignoresthe wi dt h and hei ght parameters:

Dimx as integer, y as integer
AppGet Posi tion x,y, 0,0, "Program Manager"

The position and size of the window are returned in twips (1440th parts of an inch).

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t 1 e, then asecond search is
performed for applications whosetitle string beginswith ti t | e. If more than one application isfound
that matchesti t 1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Sub Main

Dimx As Integer, y As |nteger

Dimcx As Integer, cy As Integer

AppGet Posi tion x,y, cx, cy, "Program Manager "
End Sub

Operating System Control on page 9

AppGetState

Syntax

104

AppGet State[([title | tasklD])]

AppHide

Description

Example

See Also

Returnsan | nt eger specifying the state of the specified top-level window. The AppGet St at e function
returns any of the following values:

If Window Is AppGetState Returns Value
Maximized ebM ni i zed 1
Minimized ebMaxi m zed 2
Restored ebRest or ed 3

The titl e parameter isast ri ng containing the name of the desired application. If it isomitted, then
the AppGet St at e function returns the name of the active application.

Or, you can specify the ID of the task as returned by the shel | function.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Sub Main

I'f AppFind$("Untitled - Notepad") = "" Then
Session. Echo "Can’t find Untitled - Notepad."
Exit Sub

End | f

AppActivate "Untitled - Notepad" 'Activate Proghan

state = AppCet State "Save its state.

AppM ni mi ze "Mninmze it.

Sessi on. Echo "Notepad is now mninmzed. Select OK to restore it."
AppActivate "Untitled - Notepad"
AppSet State state "Restore it.

End Sub

Operating System Control on page 9

AppHide

Syntax

Description

AppHide [title | tasklD]

Hides the named application. If the named application is already hidden, the AppHi de statement will
have no effect.

Thetitl e parameter isast ri ng containing the name of the desired application. If it is omitted, then
the AppHi de statement hides the active application. Or, you can specify the ID of the task as returned
by the shel I function.

AppHi de generates aruntime error if the named application is not enabled, asisthe caseif that
application is displaying a modal dialog.

105

Application (object)

Example

See Also

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Sub Main
" See whether Untitled - Notepad is running.
I'f AppFind$("Untitled - Notepad") = "" Then Exit Sub

AppHi de "Untitled - Notepad"
Session. Echo "Untitled - Notepad is now hidden. Press OK to show it once again."
AppShow "Untitled - Notepad"

End Sub

Operating System Control on page 9

Application (object)

Syntax

Description

Example

Syntax

Description

Example

See Also

Syntax

Description

Example

106

The Application object provides access to aspects of SmarTerm that are global to all session types,
such asthe exact product name and version, the locations of the user files, and so forth.

Application.ActiveSession

Appl i cation. Acti veSession

Returns an object representing SmarTerm’s current session.

Dim Active as Object
Set Active = Application.ActiveSession

Application.Application

Appl i cation. Application

Returns SmarTerm’s application object.

Di m App as Obj ect
Set App = Application. Application

Application and Session Features on page 8

Application.Caption

Appl i cation. Caption

Returns or sets SmarTerm'’s application window caption (string).
Return SmarTerm's main window caption and set it to "SmarTerm"

Sub Main
Di m Current Caption as String
Current Caption = Application. Caption

Application (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Sessi on. Echo "Current w ndow caption is "
Appl i cation. Caption = "Smar Terni
End Sub

& Current Caption

Session.Caption; Application and Session Features on page 8

Application.CommandLine
Appl i cati on. ConmandLi ne

Returns the command line from when the application was started (string). The command line switch
"-¢" or"/$" causes SmarTerm toignore al command line arguments that follow it. Additional
characters can be appended to the switch (e.g., " - shel | 0*) and still be recognized. This can be useful
for placing parameters on the command line that are intended for access by a macro.

Sub Main
Di m St CndLi ne as String
St CndLi ne = Application. CommandLi ne
Sessi on. Echo "Current command line is "
End Sub

& St CndLi ne

Session.Caption; Application and Session Features on page 8

Application.DoMenuFunction
Appl i cati on. DoMenuFuncti on menuit ent

where nenui t enss iSthe menu item to trigger (string).

Triggers an application-based menu action in SmarTerm.Possible values:

Fil eExit Properti esOptions
Fi | eNew Tool sRest oreAl |
Fi | eOpen Tool sUndoRest ore

Fi | ePageSet up Vi ewul | Scr een

Fi | eSaveWr kspace

Hel pAbout Srmar Ter nf f i ce
Hel pMacr oGui de

Hel pSmar Ter mHel pTopi cs
Hel pTechni cal Support

Hel pUser Hel p

Properti esLanguage

Sub Main

Vi ewenuBar

Vi ewSt at usBar

Vi ewTool bar

Vi ewMbr kbook

W ndowAr r angel cons
W ndowCascade

W ndowTi | e

Appl i cati on. DoMenuFuncti on " Vi ewrul | Scr een”

End Sub

Session.DoM enuFunction; Application and Session Features on page 8

107

Syntax

Description

Example

See Also

Syntax

Description

Application.Flashlicon

Appl i cation. Fl ashl con

Returnsor setswhether SmarTerm'’ s session icon should blink when new information isreceived from
ahost (boolean).

Sub Main
Di m Fl ashSt ate as Bool ean
Fl ashState = Application. Fl ashl con
If FlashState = FALSE then
Session. Echo "Setting SnarTerm session icon to flash"
Appl i cation. Fl ashl con = TRUE
End I f
End Sub

Session.DoMenuFunction; Application and Session Features on page 8

Application.InstalledLanguages

Appl i cation. I nstall edLanguages(i ndex)

wherei ndex istheindex of the language value to retrieve (integer).

Returns a value representing the installed language corresponding to the index value provided
(integer). This function should be called initially with the index set to 1. Thiswill return anon-zero
valueif alanguage has been retrieved. While the value returned is non-zero, increment the index by
one and continue calling. Thiswill retrieve as many languages as have been installed.

Possible values are:

Value Constant Meaning

1031 sm GERVAN German.
1033 sm ENGLI SH English.
1036 sm FRENCH French.

1034 sm SPANI SH Spanish.

Example Sub Min

Di m LanguageChoi ces() as |nteger
Di m Conti nue as Bool ean
Dimi, Value as |nteger
Continue = True
i =1
Do
Val ue = Application.InstalledLanguages (1)
If Value <> 0 Then
Redi m Preserve LanguageChoi ces(i)
LanguageChoi ces(i-1) = Val ue
=i+ 1
El se
Continue = Fal se

Application (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

End I f
Loop Wil e Continue
End Sub

= True

Application.StartupL anguage; Session.Language; Application and Session Features

Application.Parent
Appl i cati on. Par ent

Returns the SmarTerm application’s parent object (which is always Not hi ng).

Di m Parent as Object
Parent = Application. Parent

Application and Session Features on page 8

Application.Product

Appl i cati on. Product

Returns a string identifying the SmarTerm product in use.

Sub Main

Di m ProdName as String

ProdNane = Application. Product

Sessi on. Echo "The Smar Term product nane is "
End Sub

& ProdNare

Application.Version; Application and Session Features on page 8

Application.Quit
Application. Quit

Terminates the SmarTerm application, including all open sessions.

Sub Main
Di m nMsg as i nteger
nMsg = Session. Echo ("This script will
if nMsg = ebYes then
Application. Quit
End | f
End Sub

stop SmarTerm OK?", ebYesNo)

Circuit.Disconnect; Application and Session Features on page 8

Application.Sessions (collection)
See specific uses of this collection.

Returns an object representing the collection of sessions within SmarTerm (object). The Sessions
collection object supports access to all sessions running within the SmarTerm application. This

109

Application (object)

110

Example

object’ smethods and propertieswill be of primary use when accessing SmarTerm through an external
OLE Automation controller.

This code is meant to be run from an external OLE Automation controller in which the Application,
Session, Circuit, and Transfer objects are not predefined.

Di m Appl i cation As Object

Di m Sessi on As Obj ect

DimCircuit As Object

Di m Transfer As bject

Di m Sessi onFi |l eSpec As String

Set Application = CreateCbject("SmarTerm Application")

Sessi onFi | eSpec = Application. User Sessi onsLocati on & "\sessionl.stw'
Set Session = Application. Sessions. Open(Sessi onFi | eSpec)

Set Circuit = Session.Circuit

Set Transfer = Session. Transfer

This codeis meant to be run from an external controller to attach to an existing SmarTerm processand
locate a session captioned "MyHost".

Di m Tot al Sessions, | as Integer

Di m Test Sessi on as Obj ect

Di m Sessi on As Obj ect

DimCircuit As Object

Di m Transfer As bject

Di m FoundMat ch as Bool ean

Set Application = Getbject(, "SmarTerm Application")
Tot al Sessi ons = Application. Sessi ons. Count

FoundMat ch = Fal se

If Total Sessions > 0 Then

For | = 0 to (Total Sessions - 1)
Set Test Session = Application. Sessions.|ten(l)
I f Test Session.Caption = "Sessionl" Then
FoundMat ch = True
Exit For
End | f
Next |
End | f

I f FoundMat ch Then
Set Session = Test Sessi on
Set Circuit = Session.Circuit
Set Transfer = Session. Transfer
End I f

Similar to above, but for the case in which the automation controller supports a'For Each' statement
that iterates through a collection.

Di m Test Sessi on as Obj ect

Di m Sessi on As Obj ect

DimCircuit As Object

Di m Transfer As bj ect

Di m FoundMat ch as Bool ean

Set Application = Get Qbject(, "SmarTerm Application")
Tot al Sessi ons = Application. Sessi ons. Count

FoundMat ch = Fal se

For Each Test Session In Application. Sessions

Application (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description
Example

See Also

Syntax

Description
Example

See Also

Syntax

I f Test Session. Caption = "Sessionl" Then
FoundMat ch = True
Exit For

End |f

Next
I f FoundMat ch Then
Set Session = Test Sessi on

Set Circuit = Session.Circuit
Set Transfer = Session. Transfer
End I f

Application and Session Features on page 8; Objects on page 10

Application.Sessions.Application

Appl i cation. Sessi ons. Application

Returns the SmarTerm application object.

Di m App as Obj ect
Set App = Application. Sessions. Application

Application and Session Features on page 8; Objects on page 10

Application.Sessions.Count

Appl i cati on. Sessi ons. Count

Returns an integer containing the number of sessions maintained by the Sessions collection.
See the examples for Appl i cati on. Sessi ons.

Application and Session Features on page 8

Application.Sessions.ltem

Appl i cation. Sessi ons. | ten(sessi oni ndex%

where sessi oni ndex%is an integer, index of the session to access.
Returns a session object of the specified session ID.
See the examples for Appl i cati on. Sessi ons.

Application and Session Features on page 8

Application.Sessions.Open

Appl i cation. Sessi ons. Open sessionfil e$

wheresessi onfil e$ isthe name of the session file to open.

111

Application (object)

Description Returns a session object after opening the specified session. Returns Not hi ng if the method fails.
Example Seethe examplesfor Appli cati on. Sessi ons.

See Also Application and Session Features on page 8; Objects on page 10

Application.Sessions.Parent

Syntax Application. Sessions. Parent

Description Returns SmarTerm’s parent object.

Example Dim Parent as Cbject
Parent = Application. Sessi ons. Par ent

See Also Application and Session Features on page 8; Objects on page 10

Application.StartupLanguage

Syntax Application. StartupLanguage

Description Returns the startup language that was selected during Setup (integer). Possible values are:

Value Constant Meaning
1031 sm GERVAN German.
1033 sm ENGLISH English.
1036 s FRENCH French.

1034 sm SPANI SH Spanish.

Example Report an error in the language chosen as the startup language

Sub Main
Di m St artupLanguage as | nteger
St art upLanguage = Application. StartupLanugage
Sel ect Case StartuplLanguage

Case 1031 ' CGernman
Session. Echo "Ein Fehler ist aufgetreten.”
Case 1033 " English
Sessi on. Echo "An error has occurred.”
Case 1036 " French
Sessi on. Echo "Une erreur est survenue."
Case 1034 ' Spani sh
Sessi on. Echo "Qcurri 6 un error."
End Sel ect
End Sub

See Also Application.InstalledL anguages; Session.Language; Application and Session Features on page 8

112

Application (object)

Syntax

Description

[]

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Application.SuppressRefocus

Appl i cati on. SuppressRef ocus= true|fal se

Returns or sets the state of the focus when control returnsto SmarTerm (Boolean). If false (the
default), amacro that launches another application (such as Notepad) returns the focus to SmarTerm
as soon as the macro ends. This means that, if the other application typically displays a window
reguiring user input, that window may be covered by SmarTerm’s session window. If
Application.SuppressRefocusis true, then the focus returnsto SmarTerm at the end of the macro only
if no other applications have been launched. This allows the other application’s window to remainin
the foreground until dismissed by the user.

Application.SuppressRefocus is always reset to FAL SE when the macro ends. Y ou must reset it to
TRUE every time you wish to supress automatic refocus.

Sub Main

"1 Launches NOTEPAD. EXE and lets it keep focus.
Di m Taskl D As Vari ant

Taskl D = Shel | ("not epad", ebNor mal Focus)

Appl i cati on. Suppr essReFocus TRUE

End Sub

Application and Session Features on page 8; User Interaction on page 9

Application.UserHelpFile

Application. UserHel pFil e

Returns or sets the name of the SmarTerm user help file (string).

Sub Main
Dim Hel pFile as String
Hel pFile = Application. UserHel pFile
Session. Echo "Current help file was " & Hel pFile
Sessi on. Echo "Changing help file to VAXMAIL"
Application. UserHel pFile = "VAXMAI L. HLP"

End Sub

Application.UserHelpMenu; Application.ViewUserHelp; Application and Session Features on page
8; User Interaction on page 9

Application.UserHelpMenu

Appl i cation. User Hel pMenu

Returns or sets the menu choice for SmarTerm’s user help.

Sub Main
Di m Hel pMenu as String
Hel pMenu = Appl i cation. User Hel pMenu
Session. Echo "Current help file was " & Hel pMenu

113

Application (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

114

Sessi on. Echo "Changi ng hel p menu for VAX Mail"
Appl i cation. User Hel pMenu = "How to use VAX Mail"
End Sub

Application.SuppressRefocus; Application.ViewUserHelp; Application and Session Features on page
8; User Interaction on page 9

Application.UserHotSpotsLocation
Appl i cati on. User Hot Spot sLocat i on

Returns or setsthe file location for SmarTerm’s user HotSpots (string).

Sub Main

Dim Location as String

Location = Application. User Hot Spot sLocat i on

Appl i cati on. User Hot Spot sLocation = "c:\hotspots”
End Sub

Application and Session Features on page 8

Application.UserKeyMapsLocation
Appl i cati on. User KeyMapsLocati on

Returns or setsthe file location for SmarTerm’s user keyboard maps (string).

Sub Main
Dim Location as String
Location = Application. User KeyMapsLocati on
Appl i cation. User KeyMapsLocation = "c:\keymaps"
End Sub

Application and Session Features on page 8

Application (object)

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Application.UserMacrosLocation

Appl i cation. User Macr osLocati on

Returns or sets thefile location for SmarTerm’s user macros (string).

Sub Main
Dim Location as String
Location = Application. User MacrosLocation
Appl i cation. User MacrosLocation = "c:\nmacros"
End Sub

Application and Session Features on page 8

Application.UserPhoneBookLocation

Appl i cati on. User PhoneBookLocat i on

Returns or sets thefile location for SmarTerm’s user phonebook (string).

Sub Main
Dim Location as String
Location = Application. User PhoneBookLocat i on
Appl i cati on. User PhoneBookLocati on = "c:\ phonebk"
End Sub

Application and Session Features on page 8; Host Connections on page 6

Application.UserSessionsLocation

Appl i cation. User Sessi onsLocat i on

Returns or setsthefile location for SmarTerm’s user session files (string).

Sub Main

Dim Location as String

Location = Application. User Sessi onsLocati on

Appl i cation. User Sessi onsLocation = "c:\sessions"
End Sub

Application and Session Features on page 8

Application.UserButtonPicturesLocation

Appl i cation. User ButtonPi cturesLocation

Returns or sets thefile location for SmarTerm’s user Buttons graphic files (string).

Sub Main
Dim Location as String
Location = Application. UserButtonPi cturesLocation
Appl i cation. User ButtonPi cturesLocation = "c:\butnpix"
End Sub

115

Application (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

116

Application and Session Features on page 8

Application.UserSmarTermButtonsLocation

Appl i cati on. User Smar Ter nBut t onsLocat i on

Returns or sets the file location for user SmarTerm Buttons files (string).

Sub Main
Dim Location as String
Location = Application. User Smar Ter nBut t onsLocat i on
Appl i cation. User Smar Ter nBut t onsLocation = "c:\buttons"
End Sub

Application and Session Features on page 8

Application.UserTransfersLocation

Appl i cation. User Tr ansf er sLocat i on

Returns or setsthe file location for SmarTerm file transfers.

Sub Main

Dim Location as String

Location = Application. UserTransfersLocation

Appl i cation. User TransfersLocation = “c:\transfer"
End Sub

Application and Session Features on page 8

Application.Version

Appl i cati on. Versi on

Returns a string identifying the version number of SmarTerm’s macro engine.

Sub Main

Di m MacroVersion as String

MacroVer si on = Application. Version

Sessi on. Echo "Smar Ternmi's macro version nunber is "
End Sub

& MacroVer si on

Application.Product; Application and Session Features on page 8

Application.ViewUserHelp

Appl i cation. Vi ewUser Hel p

Launches the user defined help file in the help viewer.

Sub Main
Appl i cation. Vi ewdser Hel p
End Sub

ApplList

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Application.SuppressRefocus; Application.UserHelpMenu; Application and Session Features on
page 8; User Interaction on page 9

Application.Visible

Application. Visible

Returns or setsthe visible state of the SmarTerm application (boolean). This property can be used to
make SmarTerm invisible.

Sub Main
Di m Vi si bl e as Bool ean
Visible = Application.Visible
If Visible = True Then
Sessi on. Echo "Hi di ng Smar Ter ni'
Application. Visible = Fal se
End I f
End Sub

Session.Visible

Application.WindowState

Appl i cati on. WndowSt at e

Returns or sets the state of the SmarTerm application window (integer). Possible values are:

Value Constant Meaning

0 s MNMZE Thewindow is minimized.
1 sm RESTORE Thewindow is restored.

2 sm MAXIM ZE Thewindow is maximized.
Sub Main

Dim WnState as |nteger
W nState = Application. WndowSt ate
If WnState = sm M N M ZE Then
Appl i cation. WndowSt ate = sml MAXI M ZE
End I f
End Sub

Session.WindowState; Application and Session Features on page 8

AppList

Syntax

Description

AppLi st AppNames$()

Fillsan array with the names of all open applications. The AppNanes$ parameter must specify either a
zero- or one-dimensional dynamic st ri ng array or aone-dimensional fixed st ri ng array. If the array
isdynamic, then it will be redimensioned to match the number of open applications. For fixed arrays,
AppLi st first erases each array element, then begins assigning application names to the elementsin

117

AppMaximize

Example

See Also

thearray. If there are fewer elementsthan will fit inthe array, then the remaining elements are unused.
The compiler returns aruntime error if the array istoo small to hold the new elements.

After calling this function, you can use LBound and UBound to determine the new size of the array.

Sub Main
ApplLi st apps
" Check to see whether any applications were found.
If ArrayDins(apps) = 0 Then Exit Sub

For i = LBound(apps) To UBound(apps)
AppM ni mi ze apps(i)
Next i
End Sub

Operating System Control on page 9

AppMaximize

Syntax

Description

Example

118

AppMaxi m ze [title | tasklD]

M aximizes the named application.

Thetitl e parameter isast ri ng containing the name of the desired application. If it is omitted, then
the AppMaxi ni ze function maximizes the active application. Or, you can specify the ID of thetask as
returned by the shel I function.

If the named application is maximized or hidden, the AppMaxi ni ze statement will have no effect.

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t 1 e, then asecond search is
performed for applications whosetitle string beginswith ti t | e. If more than one application isfound
that matchesti t 1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

AppMaxi m ze generates aruntime error if the named application is not enabled, asisthe caseif that
application is displaying a modal dialog.

Sub Main
AppMaxi mize "Untitled - Notepad"
"Maxim ze Untitled - Notepad.
I f AppFind$("NotePad") <> "" Then
AppActi vat e " Not ePad"
"Set the focus to NotePad.

AppMinimize

See Also

AppMaxi m ze "Maximze it.
End | f
End Sub

Operating System Control on page 9

AppMinimize

Syntax

Description

Example

See Also

AppM nim ze [title | tasklD]

Minimizes the named application.

Thetitl e parameter isast ri ng containing the name of the desired application. If it is omitted, then
the AppM ni ni ze function minimizes the active application. Or, you can specify the ID of the task as
returned by the shel I function.

If the named application is minimized or hidden, the AppM ni ni ze statement will have no effect.

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t1 e, then asecond search is
performed for applications whosetitle string beginswith ti t 1 e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the caption is"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

AppM ni i ze generates aruntime error if the named application is not enabled, asisthe caseif that
application is displaying a modal dialog.

Sub Main
AppM nimize "Untitled - Notepad"
"Maxim ze Untitled - Notepad.
If AppFind$("NotePad") <> "" Then
AppActi vat e " Not ePad"
"Set the focus to NotePad.
AppM ni m ze "Maximze it.
End I f
End Sub

Operating System Control on page 9

AppMove

Syntax

Description

AppMove x,y [,title | tasklD]

Sets the upper left corner of the named application to a given location. The AppMove statement takes
the following parameters:

119

AppRestore

Example

See Also

Parameter Description

X, Yy Integer coordinates specifying the upper left corner of the new location of the
application, relative to the upper left corner of the display.

title String containing the name of the application to move. If this parameter is omit-
ted, then the active application is moved.

taskl D A number specifying the task ID of the application to be activated. Acceptable

task IDs are returned by the Shell function.

If the named application is maximized or hidden, the AppMve statement will have no effect.
The x andy parameters are specified in twips.
AppMove Will accept x andy parameters that are off the screen.

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t1 e, then asecond search is
performed for applications whosetitle string beginswithti t 1 e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the caption is"Untitled - Notepad”. Y ou must keep thisin
mind when specifying theti t | e parameter.

AppMove generates a runtime error if the named application is not enabled, asisthe caseif that
application is currently displaying a modal dialog.

Sub Main
Di m x% y%
AppActivate "Untitled - Notepad" "Activate Program Myr.
AppGet Position x%y%O0,0 "Retrieve its position.
X% = x% + Screen. Twi psPerPi xel X * 10 ’'Add 10 pi xel s.
AppMove x% + 10, y% "Nudge it 10 pixels
End Sub

Operating System Control on page 9

AppRestore

Syntax

Description

120

AppRestore [title | tasklD]
Restores the named application.
Thetitl e parameter isa st ri ng containing the name of the application to restore. If this parameter

isomitted, then the active application is restored. Or, you can specify the ID of thetask asreturned by
the shel | function.

AppSetState

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

AppRest or e Will have an effect only if the main window of the named application is either maximized
or minimized.

AppRest or e Will have no effect if the named window is hidden.

AppRest or e generates aruntime error if the named application is not enabled, asisthe caseif that
application is currently displaying amodal dialog.

Example Sub Min
I f AppFind$("Untitled - Notepad") = "" Then Exit Sub
AppActivate "Untitled - Notepad"
AppM nim ze "Untitled - Notepad"
Session. Echo "Untitled - Notepad is now mininmzed. Press OKto restore it."
AppRestore "Untitled - Notepad"
End Sub

See Also Operating System Control on page 9

AppSetState

Syntax AppSetState newstate [,title | tasklD]

Description Maximizes, minimizes, or restores the named application, depending on the value of newst at e. The
AppSet St at e Statement takes the following parameters:

Parameter Description

newst at e Aninteger specifying the new state of the window.

title A string containing the name of the application to change. If omitted, then the
active application is used.

taskl D A number specifying thetask ID of the application to be activated. Acceptable

task IDs are returned by the Shell function.

The newst at e parameter can be any of the following values:

Value Constant Description

1 ebM nini zed The named application is minimized.
2 ebMaxini zed The named application is maximized.
3 ebRestored The named application is restored.

121

AppShow

Example

See Also

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

See AppGetState (function).

Operating System Control on page 9

AppShow

Syntax

Description

Example

See Also

AppShow [title | tasklD

M akes the named application visible.

Thetitl e parameter isastri ng containing the name of the application to show. If this parameter is
omitted, then the active application is shown. Or, you can specify the ID of the task asreturned by the
shel I function.

If the named application is already visible, Appshow will have no effect.

Thetitl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t | e, then asecond search is
performed for applications whosetitle string beginswith ti t | e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

AppShow generates a runtime error if the named application is not enabled, asisthe caseif that
application is displaying a modal dialog.

See AppHide (statement).

Operating System Control on page 9

AppSize

Syntax

Description

122

AppSi ze width, height [,title | tasklD]

Sets the width and height of the named application. The AppSi ze statement takes the following
parameters:

AppType

Parameter Description

width, height Integer coordinates specifying the new size of the application.

title String containing the name of the application to resize. If this parameter is
omitted, then the active application is use.

taskl D A number specifying the task 1D of the application to be activated. Accept-

able task IDs are returned by the Shell function.

Thewi dt h and hei ght parameters are specified in twips.
This statement will only work if the named application isrestored (i.e., not minimized or maximized).

The titl e parameter isthe exact string appearing in the title bar of the named application’s main
window. If no application is found whose title exactly matchesti t1 e, then asecond search is
performed for applications whosetitle string beginswith ti t 1 e. If more than one application isfound
that matchesti t1 e, then the first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the caption is"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog when an AppSi ze statement is executed.

Example Sub Min
Di m wg h%
AppGet Posi tion 0,0, Wq h% "Get current w dth/height.
X% = X% + Screen. Twi psPerPi xel X * 10 ' Add 10 pixels.
y% = y% + Screen. Twi psPerPi xel Y * 10 ’'Add 10 pixels.
AppSi ze w¥% h% ' Change to new si ze.
End Sub

See Also Operating System Control on page 9

AppType

Syntax AppType [(title | tasklD)]

Description Returnsan | nt eger indicating the executable file type of the named application:

Returns If thefiletypeis
ebDos DOS executable
ebW ndows Windows executable

123

ArrayDims

Thetitl e parameter isast ri ng containing the name of the application. If this parameter is omitted,
then the active application is used. Or, you can specify the ID of the task as returned by the shel |
function.

Under Windows 95, applications adhere to a convention where the caption contains the name of the
file before the name of the application. For example, under NT, the caption for Notepad is "Notepad
- (Untitled)", whereas under Windows 95, the captionis"Untitled - Notepad". Y ou must keep thisin
mind when specifying theti t | e parameter.

Example Thisexamplecreatesan array of stringscontaining the namesof all the running Windows applications.
It uses the AppType command to determine whether an application isaWindows app or a DOS app.
Sub Main
Di m apps$(), wapps$()
ApplLi st apps "Retrieve a list of all Wndows and DOS apps.
If ArrayDinms(apps) = 0 Then
Sessi on. Echo "There are no running applications.”
Exit Sub
End | f
"Create an array to hold only the Wndows apps.
ReDi m wapps$(UBound(apps))
n =0 ’'Copy the Wndows apps fromone array to the target array.
For i = LBound(apps) to UBound(apps)
I f AppType(apps(i)) = ebW ndows Then
wapps(n) = apps(i)
n=n=+1
End | f
Next i
If n =0 Then 'Make sure at |east one Wndows app was found.
Sessi on. Echo "There are no running Wndows applications."
Exit Sub
End I f
ReDi m Preserve wapps(n - 1) "Resize to hold the exact nunber.
"Let the user pick one.
i ndex% = Sel ect Box("W ndows Applications","Sel ect a Wndows application:", wapps)
End Sub
See Also Operating System Control on page 9
ArrayDims
Syntax ArrayDins(arrayvari abl e)

Description Returnsan | nt eger indicating the number of dimensionsin the array. A return value of O indicates
that the array has not yet been dimensioned. This function can be used to determine whether a given
array contains any elements or if the array isinitially created with no dimensions and then
redimensioned by another function, such astheFi | eLi st function, as shown in the following
example.

Example Thisexample allocates an empty (null-dimensioned) array, fills the array with alist of filenames,

124

which resizes the array, then tests the array dimension.

Arrays (topic)

See Also

Sub di mensi ons

Dim f$()

Di m nessage$

Di ms% = Arraydi ms(f$)

Message$ = "The array size is "

If Dine% = 0 Then
Session. Echo "The array is enmpty"
El se
For i% =1 To Di ms%
If i < Dins Then

Message$ = Message$ & (Ubound(f$,i) -

El se
Message$ = Message$ & (Ubound(f$,i) -
End | f
Next i %
Sessi on. Echo Message$
End I f
End Sub

Lbound(f$,i)+1) & " X "

Lbound(f$,i)+1)

Keywords, Data Types, Operators, and Expressions on page 5

Arrays (topic)

Declaring array variables

Arrays are declared using any of the following statements:

Di m
Public
Private

For example:

Di m a(10) As Integer

Public LastNanes(1 to 5,-2 to 7) As Variant

Private

Arrays of any datatype can be created, including I nt eger, Long, Si ngl e, Doubl e, Bool ean, Dat e,
Vari ant , bj ect , user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

125

Arrays (topic)

126

Fixed arrays

Thedimensions of fixed arrays cannot be adjusted at execution time. Once declared, afixed array will
always require the same amount of storage. Fixed arrays can be declared with the bi m Pri vat e, Or
Publ i ¢ statement by supplying explicit dimensions. The following example declares a fixed array of
ten strings:

Dima(10) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a
structure containing fixed-length arrays:

Type Foo
rect(4) As Integer
col ors(10) As Integer
End Type

Only fixed arrays can appear within structures.

Dynamic arrays
Dynamic arrays are declared without explicit dimensions, as shown below:
Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redi mstatement:

Redi m Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times.
When redimensioning an array, the old array isfirst erased unless you use the Pr eser ve keyword, as
shown below:

Redi m Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing arrays

Arrays are aways passed by reference. When you pass an array, you can specify the array name by
itself, or with parentheses as shown below:

Dima(10) As String
FileList a "Both of these are OK
FileList a()

Querying arrays
Use these functions to retrieve information about arrays:

ArraySort

Use this function

To

LBound

UBound

ArrayDi ns

Retrieve the lower bound of an array. A runtime error is generated if
the array has no dimensions.

Retrieve the upper bound of an array. A runtime error is generated if
the array has no dimensions.

Retrieve the number of dimensions of an array. Thisfunction returns 0
if the array has no dimensions.

Operations on arrays
The following table indicates the functions that operate on arrays:

Command Action

ArraySort Sort an array of integers, longs, singles, doubles, currency, bool eans,
dates, or variants.

Filelist Fill an array with alist of filesin agiven directory.

Di skDrives Fill an array with alist of valid drive letters.

AppLi st Fill an array with alist of running applications.

W nLi st Fill an array with alist of top-level windows.

Sel ect Box Display the contents of an array in alistbox.

PopupMenu Display the contents of an array in a popup menu.

Readl ni Secti on
FileDirs

Er ase

ReDi m

Dim

Fill an array with the item names from a section in an INI file.
Fill an array with alist of folders.

Erase all the elements of an array.

Establish the bounds and dimensions of an array.

Declare an array.

ArraySort

Syntax ArraySort array()

Description

Sortsasingle-dimensioned array in ascending order. If astring array is specified, then the routine sorts
alphabetically in ascending order using case-sensitive string comparisons. If anumeric array is
specified, the ArraySor t statement sorts smaller numbersto the lowest array index locations. Thereis
aruntime error if you specify an array with more than one dimension.

When sorting an array of variants, the following rules apply:

e A runtime error is generated if any element of the array is an object.

e String isgreater than any numeric type.

127

Asc, AscB, AscW

Example

See Also

e Null islessthan string and all numeric types.
* Enpty istreated as a number with the value 0.

e String comparison is case-sensitive (this function is not affected by the opt i on Conpar e setting).

Sub Main
Dimf$()
FileList f$,"c:*. ="
ArraySort f$
Session. Echo "Files: <CR><LF>"
For i= 0 to UBound(f$)
Session. Echo f$(i) & "<CR><LF>"
Next i
End Sub

Keywords, Data Types, Operators, and Expressions on page 5.

Asc, AscB, AscW

Syntax

Description

128

Asc(string)
AscB(string)
AscW(string)

Returnsan I nt eger containing the numeric code for the first character of st ri ng. On single-byte
systems, this function returns a number between 0 and 255, whereas on MBCS systems, this function
returns a number between -32768 and 32767. On wide platforms, this function returns the MBCS
character code after converting the wide character to MBCS.

To return the value of the first byte of a string, use the AscB function. This function is used when you
need the value of the first byte of a string known to contain byte data rather than character data. On
single-byte systems, the AscB function isidentical to the Asc function.

The Ascwfunction returns the character value native to that platform. For example, on Win32
platforms, this function returns the UNICODE character code.

The following table summarizes the values returned by these functions:

Function String Format Return Value

Asc SBCS First byte of string (between 0 and 255)
MBCS First character of string (between -32769 and 32767)
Wide First character of string after conversion to MBCS.
AscB SBCS First byte of string.
MBCS First byte of string.
Wide First byte of string.

Asc, AscB, AscW

Example

See Also

Function String Format Return Vaue

AscW SBCS Same as Asc.
MBCS Same as Asc.
Wide Wide character native to operating system.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
s$ = I nputBox("Please enter a string.","Enter String")
If s$ ="" Then End "Exit if no string entered.
For i =1 To Len(s$)

nesg = nesg & Asc(M d$(s$,i, 1)) &ecrlf
Next i
Sessi on. Echo "The Asc values of the string are:" & nesg
End Sub

Chr, Chr$, ChrB, ChrB$, ChrW, Chrw$; Character and String Manipulation on page 3

129

AskBox, AskBox$

AskBox, AskBox$

AskBox[$] (pronmpt$ [,[defaul t$] [,[title$][, helpfile, context]]])

Syntax

Description

Example

See Also

Displays adialog requesting input from the user and returns that input asa st ri ng. The AskBox/
AskBox$ functions take the following parameters:

Parameter Description

pronpt $ String containing the text to be displayed above the text box. The dialog is
sized to the appropriate width depending on the width of pronpt $. A runtime
error is generated if pronpt $ isnull.

defaul t $ String containing theinitial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if
defaul t$ isnull.

title$ String specifying the title of the dialog. If missing, then the default titleis
used.

hel pfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then cont ext must also be specified.

Cont ext Number specifying the ID of the topic within hel pfi | e for this dialog’s help.

If this parameter is specified, then hel pfi | e must also be specified.

The AskBox$ function returnsast ri ng containing the input typed by the user in the text box. A zero-
length string is returned if the user selects Cancel.

The AskBox function returnsa st ri ng variant containing the input typed by the user in the text box.
An Enpt y variant is returned if the user selects Cancel.

When the dialog is displayed, the text box has the focus.

The user can type a maximum of 255 charactersinto the text box displayed by AskBox$.

If boththehel pfil e and cont ext parameters are specified, then aHelp button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Sub Main
s$ = AskBox$("Type in the filename:")
Sessi on. Echo "The filenane was: " & s$
End Sub

User Interaction on page 9

AskPassword, AskPassword$

Syntax

130

AskPassword[$] (pronmpt$ [,[title] [,helpfile,context]])

Atn

Description

Example

See Also

Atn

Syntax

Description

Returnsa st ri ng containing the text that the user typed. Unlike the AskBox/ AskBox$ functions, the
user sees asterisks in place of the charactersthat are actually typed. This allows the hidden input of
passwords. The AskPasswor d/ AskPasswor d$ functions take the following parameters:

Parameter Description

pronpt $ String containing the text to be displayed above the text box. The dialog is
sized to the appropriate width depending on the width of pronpt $. A runtime
error is generated if pronpt $ isnull.

titles String specifying the title of the dialog. If missing, then the default titleis
used.

hel pfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then cont ext must also be specified.

Cont ext Number specifying the ID of the topic within hel pfi | e for this dialog's help.

If this parameter is specified, then hel pfi | e must also be specified.

When the dialog is first displayed, the text box has the focus.
A maximum of 255 characters can be typed into the text box.

The AskPasswor d$ function returns the text typed into the text box, up to a maximum of 255
characters. A zero-length string is returned if the user selects Cancel.

The AskPasswor d function returns a st ri ng variant. An Enpt y variant isreturned if the user selects
Cancel.

If both thehel pfil e and cont ext parameters are specified, then aHelp button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

Sub Main
s$ = AskPassword$("Type in the password:")
Sessi on. Echo "The password entered is: " & s$
End Sub

User Interaction on page 9

At n(nurber)

Returns the angle (in radians) whose tangent is nunber . Some helpful conversions:

» Pi (3.1415926536) radians = 180 degrees.
e lradian=57.2957795131 degrees.

131

Atn

e 1 degree=.0174532925 radians.
Example Sub Min
a# = Atn(1l.00)
Session. Echo "1.00 is the tangent of " & a# & " radians (45 degrees)."
End Sub

See Also Numeric, Math, and Accounting Functions on page 6

132

Beep

Syntax

Description

Example

See Also

Beep

Makes a single system beep.

Sub Main
For i =1 To 5
Beep
Sl eep(200)
Next i

Sessi on. Echo "You have an upcomi ng appoi ntment!"

End Sub

Operating System Control on page 9

Begin Dialog

Syntax

Description

[]

Begin Di al og Di al ogNane [x],[y],wi dth, height,title$ [,[.D gProc]

[.style]]]
Di al og Statenents
End Di al og

Defines adialog template for use with the bi al og statement and function. A dialog templateis

[, [Pi cName$]

constructed by placing any of the following statements between the Begi n Di al og and End Di al og

statements (no other statements besides comments can appear within a dialog template).

Itiseasiest to construct a dialog using the dialog editor.

133

Begin Dialog

Picture Pi ctureButton Opti onButton
Opt i onGr oup Cancel Button Text

Text Box G oupBox Dr opLi st Box
Li st Box ComboBox CheckBox
PushBut t on OKBut t on

The Begi n D al og statement requires the following parameters:

Parameter Description

X,y Integer coordinates specifying the position of the upper left corner of the
dialog relative to the parent window. These coordinates are in dialog units.
If either coordinate is unspecified, then the dialog will be centered in that
direction on the parent window.

wi dt h, hei ght Integer coordinates specifying the width and height of the dialog (in dialog

units).

Di al ogNane Name of the dialog template. Once a dialog template has been created, a
variable can be dimensioned using this name.

titles String containing the name to appear in the title bar of the dialog.

. DigProc Name of the dialog function. The routine specified by . DI gPr oc will be

called when certain actions occur during processing of the dialog. (See

Dl gProc [prototype] for additional information about dialog functions.)If
this parameter is omitted, then the compiler processes the dialog using the
default dialog processing behavior.

Pi cName$ String specifying the name of aDLL containing pictures. ThisDLL isused
asthe origin for pictures when the picture type is 10. If this parameter is
omitted, then no picture library will be used.

style Specifies extra styles for the dialog. It can be any of the following values:
0 Dialog does not contain atitle or close box.
1 Dialog contains atitle and no close box.
2 (or omitted) Dialog contains both the title and close box.

Thereisan error if the dialog template contains no controls.

A dialog template must have at |east one PushBut t on, OKBut t on, Of Cancel But t on Statement.
Otherwise, there will be no way to close the dialog.

Dialog units are defined as 1/4 the width of the font in the horizontal direction and 1/8 the height of
thefont in the vertical direction.

Any number of user dialoges can be created, but each one must be created using a different name as
the Di al ogNane. Only one user dialog may be invoked at any time.

134

Boolean (data type)

Example

See Also

Expression Evaluation within the dialog Template

TheBegi n Di al og Statement createsthe template for the dialog. Any expression or variable name that
appears within any of the statements in the dialog template is not evaluated until avariableis
dimensioned of type bi al ogNane. The following example shows this behavior:

WTitle$ = "Hello, World"

Begin Di al og MyTenpl ate 16,32, 116, 64, WTitle$
OKButton 12, 40, 40, 14

End Di al og

MTitle$ = "Sanpl e Dial og"

Di m Dumy As MyTenpl at e

rc% = Di al og(Dunmy)

The above example creates a dialog with the title " Sample Dialog”.
Expressions within dialog templates cannot reference external subroutines or functions.

All controls within adial og use the same font. The fonts used for the text and text box controls can be
changed explicitly by setting the font parametersin the Text and Text Box statements. A maximum of
128 fonts can be used within a single dialog, although the practical limitation may be less.

Sub Main
Begi n Di al og QuitDi al ogTenpl ate 16, 32,116, 64,"Quit"
Text 4,8,108,8,"Are you sure you want to exit?"
CheckBox 32, 24, 63, 8, "Save Changes", . SaveChanges
OKBut ton 12, 40, 40, 14
Cancel Button 60, 40, 40, 14
End Di al og
Dim QuitDi al og As QuitDial ogTenpl at e
rc% = Di al og(Qui t Di al og)
End Sub

User Interaction on page 9

Boolean (data type)

Syntax

Description

Bool ean

A datatype capable of representing the logical values Tr ue and Fal se. Bool ean variables are used to
hold a binary value—either Tr ue or Fal se. There is no type-declaration character for Bool ean
variables. Variables can be declared as Bool ean using the bi m Publ i ¢, Or Pri vat e Statement.
Internally, aBool ean variableisa?2-bytevalueholding—1 (for Tr ue) or O (for Fal se). When appearing
as a structure member, Bool ean members require 2 bytes of storage; When used within binary or
random files, 2 bytes of storage are required.

Any type of data can be assighed to Bool ean variables. Bool ean variablesthat have not yet been
assigned are given an initial value of Fal se.When assigning, non-0 values are converted to Tr ue, and
0 values are converted to Fal se. Variants can hold Bool ean values when assigned the results of
comparisons or the constants Tr ue or Fal se. When passed to external routines, Bool ean values are

135

See Also

ByRef

Syntax

Description

[]

Example

See Also

ByVal

Syntax

Description

sign-extended to the size of an integer on that platform (either 16 or 32 hits) before pushing onto the
stack.

Keywords, Data Types, Operators, and Expressions on page 5

..., ByRef paraneter,...

Used within the Sub...End Sub, Funct i on...End Functi on, Or Decl ar e Statement to specify that agiven
parameter can be modified by the called routine.

Passing a parameter by reference means that the caller can modify that variable’s value.

UnliketheByval keyword, theByRef keyword cannot be used when passing aparameter. The absence
of theByval keyword is sufficient to force a parameter to be passed by reference:

MySub ByVal i "Pass i by val ue.
MySub ByRef i "lIllegal (will not compile).
MySub i "Pass i by reference.
Sub Test(ByRef a As Variant)
a = 14
End Sub
Sub Main
b = 12
Test b
Session. Echo "The ByRef value is: " &b ' Di spl ays 14.
End Sub

() (precedence), ByVal; Keywords, Data Types, Operators, and Expressionson page 5; Macro Control
and Compilation on page 7

...ByVal paraneter...

Forces a parameter to be passed by value rather than by reference. The Byval keyword can appear
before any parameter passed to any function, statement, or method to force that parameter to be passed
by value. Passing a parameter by value means that the caller cannot modify that variable's value.
Enclosing a variable within parentheses has the same effect asthe Byval keyword:

Foo ByVal i "Forces i to be passed by val ue.
Foo(i) "Forces i to be passed by val ue.

When calling external statements and functions (i.e., routines defined using the Decl ar e statement),
the Byval keyword forces the parameter to be passed by value regardless of the declaration of that

ByVal

Example

See Also

parameter in the Decl ar e statement. The following example shows the effect of the Byval keyword
used to passed an | nt eger to an external routine;

Decl are Sub Foo Lib "MLib" (ByRef i As Integer)

i%=26
Foo ByVval i% "Pass a 2-byte |nteger.
Foo i % "Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an | nt eger , thefirst call to Foo will have
unpredictable results.

Sub Foo(a As I nteger)
a=-a+1
End Sub

Sub Main

Dimi As I|nteger

i =10

Foo i

Sessi on. Echo "The ByVal value is: " &i "Displays 11

' (Foo changed the val ue).

Foo ByVval i

Session. Echo "The ByVal value is still: " & i 'Displays 11 Foo did not _
change the val ue).
End Sub

() (precedence), ByRef; Keywords, Data Types, Operators, and Expressionson page 5; Macro Control
and Compilation on page 7

137

ByVal

138

C

Call

Syntax

Description

Examples

See Also

Cal | subroutine_nane [(argunents)]

Transfers control to the given subroutine, optionally passing the specified arguments. Using this
statement is equivalent to:

subroutine_nane [argunents]

Useof thecal I statement isoptional. The cal | statement can only be used to execute subroutines,
functions cannot be executed with this statement. The subroutineto which control istransferred by the
cal | statement must be declared outside of the calling procedure, as shown in the following example.

This example uses the Call statement to pass control to another function.

Sub Exanple_Call (s$)
"This subroutine is declared externally to Main and displ ays
"the text passed in the paraneter s$.
Session. Echo "Call: " & s$

End Sub

Sub Main

" This exanple assigns a string variable to display, then calls
"subroutine Exanple_Call, passing paraneter s$ to be displayed within
"the subroutine

s$ = "DAVE"

Exanpl e_Cal | s$

Cal | Exanpl e_Cal | (" SUSAN")
End Sub

Macro Control and Compilation on page 7

CancelButton

Syntax

Cancel Button x, y, width, height [,.ldentifier]

139

CBool

Description

Example

See Also

CBool

Syntax

Description

140

Defines a Cancel button that appears within a dial og template. This statement can only appear within
adialog template (i.e., between the Begi n Di al og and End Di al og Statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog, causing the bi al og function
toreturn 0. (Note: A dialog function can redefine this behavior.) Pressing the Esc key or double-
clicking the close box will have no effect if a dialog does not contain a Cancel But t on Statement.

The Cancel But t on Statement requires the following parameters:

Parameter Description

X, ¥y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

wi dt h, hei ght Integer coordinates specifying the dimensions of the control in dialog units.

ldentifier Optional parameter specifying the name by which this control can be refer-

enced by statementsin adialog function (such asDl gFocus and Dl gEnabl e).
If this parameter is omitted, then the word " cancel " isused.

A dialog must contain at least one okBut t on, Cancel But t on, Of PushBut t on Statement; otherwise, the
dialog cannot be dismissed.

Sub Main
Begi n Di al og Sanpl eDi al ogTenpl ate 37, 32, 48, 52, " Sanpl e"
OKButton 4,12, 40, 14, . &K
Cancel Button 4, 32, 40, 14, . Cancel
End Di al og
Di m Sanpl eDi al og As Sanpl eDi al ogTenpl ate
r% = Di al og(Sanpl eDi al og)
If r%= 0 Then Session. Echo "Cancel was pressed!"
End Sub

User Interaction on page 9

CBool (expressi on)

Convertsexpr essi on t0 Tr ue Or Fal se, returning aBool ean value. The expr essi on parameter is any
expression that can be converted to aBool ean. A runtime error is generated if expressi onisNul I .

All numeric data types are convertible to Bool ean. If expr essi on is zero, then the CBool returns
Fal se; otherwise, CBool returns True. Enpty iStreated asFal se.

If expressionisastring, then CBool first attemptsto convert it to a number, then converts the
number to aBool ean. A runtime error is generated if expr essi on cannot be converted to a number.

A runtime error is generated if expr essi on cannot be converted to aBool ean.

CCur

Example

See Also

CCur

Syntax

Description

Example

See Also

Sub Main
Di m | sNumericOrDate As Bool ean
s$ = "34224.54"
I sNunericOrDate = CBool (I sNuneric(s$) O |IsDate(s$))
If IsNunmeri cOrDate = True Then

Session. Echo s$ & " is either a valid date or nunber!"
El se
Session. Echo s$ & " is not a valid date or nunber!"
End | f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

CCur (expr essi on)

Converts any expression to a cur r ency. This function accepts any expression convertibleto a
Currency, including strings. A runtime error is generated if expr essi on iSNul | or aStri ng not
convertibleto anumber. Enpt y istreated as 0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to acurrency.

When used with variants, this function guarantees that the variant will be assigned a curr ency
(var Type 6).

Sub Main

i$ = "100. 44"

Sessi on. Echo "The currency value is: " & CCur(i$)
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

141

CDate, CVDate

CDate, CVDate

Syntax

Description

[]

Example

See Also

CDbl

Syntax

Description

142

Example

See Also

CDat e(expr essi on)
CVDat e(expr essi on)

Convertsexpr essi on to adate, returning abat e value. The expr essi on parameter is any expression
that can be converted to abat e. A runtime error is generated if expr essi on isNul | .

If expressi onisastring, an attempt ismadeto convert it to abat e using the current country settings.
If expr essi on does not represent avalid date, then an attempt is made to convert expr essi on to a
number. A runtime error is generated if expr essi on cannot be represented as a date.

These functions are sensitive to the date and time formats of your computer.

The cbat e and cvbat e functions are identical.

Sub Mai n

Di m datel As Date

Di m date2 As Date

Dimdiff As Date

datel = CDat e(#1/ 1/ 1994#)

dat e2 CDat e("February 1, 1994")

diff = DateDiff("d", datel, date2)

Sessi on. Echo "The date difference is " & CInt(diff) & " days."
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Time and Date Access on page 10

CDbl (expressi on)

Converts any expression to a Doubl e. This function accepts any expression convertibleto aDoubl e,
including strings. A runtime error is generated if expr essi on iSNul | . Enpt y iStreated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression number to a Doubl e.

When used with variants, thisfunction guarantees that the variant will be assigned aboubl e (Var Type
5).

Sub Main

i % = 100

jl = 123.44

Sessi on. Echo "The double value is: " & CDbl (i%* j!)
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

ChDir

ChDir

Syntax

Description

Example

See Also

ChDir path

Changes the current directory of the specified drive to pat h. This routine will not change the current
drive. (SeechDri ve [st at ement |.)

Const crlf = $(13) + Chr$(10)

Sub Main
save$ = CurDir$
ChDir ("C\")

Session. Echo "Od: " & save$ & crlf & "New " & CurDir$
ChDir (save$)
Session. Echo "Directory restored to: " & CurDir$

End Sub

Drive, Folder, and File Access on page 4

ChDrive

Syntax

Description

Example

See Also

ChDrive drive

Changes the default drive to the specified drive. Only thefirst character of dri ve isused. Also, dri ve
isnot case-sensitive. If dri ve is empty, then the current drive is not changed.

Const crlf$ = Chr$(13) + Chr$(10)

Sub Main
cd$ = CurDir$
save$ = Md$(CurDir$, 1,1)
If save$ = "D' Then
ChDrive("C")
El se
ChDrive("D")
End | f
Session. Echo "Od: " & save$ & crlf & "New " & CurDir$
ChDrive (save$)
Session. Echo "Directory restored to: " & CurDir$
End Sub

Drive, Folder, and File Access on page 4

CheckBox

Syntax

Description

CheckBox x, y, width, height, title$, .ldentifier

Defines acheckbox within adialog template. Checkbox controls are either on or off, depending on the
valueof . I denti fi er. This statement can only appear within a dialog template (i.e., between the
Begi n Di al og and End Di al og Statements). The CheckBox statement requiresthefollowing parameters:

143

Choose

Example

See Also

Parameter

Description

XY y

wi dt h, hei ght

title$

.ldentifier

Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog.

Integer coordinates specifying the dimensions of the control (in dialog
units).

String containing the text that appears within the checkbox. This text may
contain an ampersand character to denote an accelerator |etter, such as

"& Font" for Font (indicating that the Font control may be selected by press-
ing the F accelerator key).

Name by which this control can be referenced by statementsin adialog
function (such as Dl gFocus and Di gEnabl e). This parameter also creates an
integer variable whose val ue corresponds to the state of the checkbox (1 =
checked; 0 = unchecked). This variable can be accessed using the syntax:

Di al ogVari abl e. | dentifier.

When the dialog isfirst created, thevaluereferenced by . 1 denti fi er isused to set theinitial state of
the checkbox. When the dial og i s dismissed, thefinal state of the checkbox isplaced into thisvariable.

By default, the . 1 denti fi er variable contains 0, meaning that the checkbox is unchecked.

Accelerators are underlined, and the accelerator combination Alt+l et t er isused.

Sub Main

Begi n Di al og SaveOptionsTenpl ate 36, 32, 151, 52, " Save"
G oupBox 4, 4, 84, 40, " G oupBox"
CheckBox 12, 16, 67, 8, "I ncl ude headi ng", . | ncl udeHeadi ng
CheckBox 12, 28, 73, 8, "Expand keywords", . ExpandKeywor ds
OKButt on 104, 8, 40, 14, . K
Cancel Button 104, 28, 40, 14, . Cancel

End Di al og

Di m SaveOpti ons As SaveQpti onsTenpl ate

SaveOpti ons. | ncl udeHeadi ng
SaveOpt i ons. ExpandKeywor ds

1 ' Checkbox initially on.
0 " Checkbox initially off.

r% = Di al og(SaveOpti ons)
If r%= -1 Then
Session. Echo "OK was pressed."

End I f
End Sub

User Interaction on page 9

Choose

Syntax

Description

144

Choose(i ndex, expressi onl, expression2, ..., expr essi onl3)

Returns the expression at the specified index position. Thei ndex parameter specifies which
expression isto bereturned. If i ndex is 1, then expr essi on1 isreturned; if i ndex is 2, then
expr essi on2 isreturned, and so on. If i ndex islessthan 1 or greater than the number of supplied
expressions, then Nul | is returned.

Chr, Chr$, ChrB, ChrB$, ChrW, Chrw$

Example

See Also

Thei ndex parameter is rounded down to the nearest whole number.

The choose function returns the expression without converting its type. Each expression is evaluated
before returning the selected one.

Sub Main
Dima As Variant
Dimc As |nteger
c%= 2
a = Choose(c% "Hello, world", #1/ 1/ 94#, 5. 5, Fal se)
"Di splay the date passed as a paraneter:
Session. Echo "Item" & c% & " is '" &a & """
End Sub
Keywords, Data Types, Operators, and Expressions on page 5

Chr, Chr$, ChrB, ChrB$, ChrwW, Chrw$

Syntax

Description

Chr [$] (char code)
Chr B[$] (char code)
Chr W $] (char code)

Returnsthe character the value of whichischar coode. The chr $, chr B$, and chr Ws functionsreturn a
st ri ng, whereas the ¢chr, chr B, and chr wfunctionsreturn a st ri ng variant. These functions behave
differently depending on the string format:

Function String Format Value between Returns
Chr[$] SBCS 0 and 255 1-byte character string.
MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on char code.
Wide -32768 and 32767 2-byte character string.
chrB[$] SBCS 0 and 255 1-byte character string.
MBCS 0 and 255 1-byte character string.
Wide 0 and 255 2-byte character string.
ChrWs] SBCS 0 and 255 1-byte character string (same as chr and chr $
functions)
MBCS -32768 and 32767 1-byte or 2-byte MBCS character string
depending on char code.
Wide -32768 and 32767 2-byte character string.

The chr $ function can be used within constant declarations, asin the following example:

Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are;

145

Cint

Examples

See Also

Cint

Syntax

Description

146

Example

Function Use

chr$(9) Tab

Chr $(13) + Chr$(10) End-of-line (carriage return, linefeed)
Chr $(26) End-of-file

Chr $(0) Null

Concatenates carriage return (13) and line feed (10) incr | $, then displays a multiple-line message
using cr | f $ to separate lines.

Sub Main
crif$ = Chr$(13) + Chr$(10)
Session. Echo "First line." & crlf$ & "Second line."
"Fills an array with the ASCII characters for ABC and
" di splays their correspondi ng characters.
Di m a% 2)
For i =0 To 2
a%i) = (65 + i)
Next |
Session. Echo "The first three elenents of the array are: " & Chr$(a%0)) &
Chr$(a% 1)) & Chr$(a%2))
End Sub

Character and String Manipulation on page 3

Cl nt (expressi on)

Convertsexpr essi on to an | nt eger . Thisfunction accepts any expression convertibletoan | nt eger,
including strings. A runtimeerror isgenerated if expr essi oniSNul | . Enpt y istreated as 0. The passed
numeric expression must be within the valid range for integers:

- 32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a numeric
expression to an | nt eger . Note that integer variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to an I nt eger
variant (Var Type 2).

Sub Main
"(1) Assigns i# to 100.55 and displays its integer representation (101).
i # = 100. 55
Session. Echo "The value of Cint(i) =" & CInt(i#)
"(2) Sets j# to 100.22 and displays the CInt
"representation (100).
j# = 100.22

Circuit (object)

See Also

Session. Echo "The value of Cint(j) =" & CInt(j#)

"(3) Assigns k% (integer) to the CInt sumof j# and k% and
" di spl ays k% (201).

ko= Cint(i# + j#)

Sessi on. Echo "The integer sum of 100.55 and 100.22 is: " & k%
"(4) Reassigns i# to 50.35 and recal cul ates k% then
"displays the result (note rounding).

i# = 50.35

k%o= Cint(i# + j#)

Sessi on. Echo "The integer sumof 50.35 and 100.22 is: " & k%
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

Circuit (object)

Syntax

Description

Example

See Also

Syntax

Description

Example

Circuit methods and properties indicate the scope of their action by their name by incorporating the
appropriate communication method in the name (such as Circuit.LATHostName). Properties and
methods common to all communication methods do not incorporate a communication method name
(suchasCircuit.AssertBreak). Asof thisversion of SmarTerm, the supported communication methods
are LAT, modem, serial, SNA, and Telnet.

Circuit.AssertBreak

Circuit. AssertBreak

Asserts acommunications break and returns a bool ean representing the compl etion status. This
method asserts acommunications Br eak condition appropriate for the communications method being
used.

Sub Main
Di m BreakSt at us as Bool ean
BreakStatus = Circuit. AssertBreak()
I f BreakStatus = FALSE Then
Sessi on. Echo "An error occurred"
End I f
End Sub

Host Connections on page 6; Objects on page 10

Circuit.AutoConnect

Circuit. Aut oConnect

Returns or sets the communication method’s autoconnect state (boolean).

Sub Main
Di m St Aut o as Bool ean
St Auto = Circuit. Aut oConnect
If StAuto = Fal se Then
Sessi on. Echo "Turni ng aut oconnect on"

147

Circuit (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

148

Circuit.Aut oConnect = True
End I f
End Sub

Host Connections on page 6

Circuit.Connect
Circuit. Connect

Establishes a connection to a host and always returns a value of True. Use Circuit.Connected if you
want to check connection status.

Sub Mai n
If Circuit.Connected Then
If Circuit.Di sconnect = FALSE Then
Sessi on. Echo "Di sconnect error"
End I f
End I f
Circuit. Tel net Port Number = 21
Circuit. Tel net Host Name = " SoneHost . cont
If Circuit.Connect = FALSE Then
Sessi on. Echo "Connect error"
End | f
End Sub

Host Connections on page 6

Circuit.Connected

Circuit. Connected

Returns a bool ean representing the session’s connection state.

Sub Main
If Circuit.Connected Then
Circuit.Di sconnect
End I f
End Sub

Host Connections on page 6

Circuit.Disconnect

Circuit.Di sconnect

Disconnects from the host and returns a boolean representing the completion status.

Sub Main
If Circuit.Connected Then
Circuit.Di sconnect
End I f
End Sub

Circuit (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Host Connections on page 6

Circuit.LATHostName

Circuit.LATHost Nane

Returns or sets the host name for the LAT communications driver (string).

Sub Main
Di m Host Name as String
Host Nane = Circuit.LATHost Nanme
| f Host Nane <> "LATHost 1" Then
Session. Echo "Setting the host to LATHost1l to read your enmmil"
Circuit.LATHost Nane = "LATHost 1"
End I f
End Sub

Host Connections on page 6

Circuit.LATPassword

Circuit.LATPassword

Returns or sets the password for the LAT communications driver (string).

Sub Main
Di m Password, NewPass as String
Password = Circuit.LATPassword
If Password = "" Then
NewPass = AskPassword$(" Type in your
Circuit.LATPassword = NewPass
End Sub

LAT password.")

Host Connections on page 6

Circuit.LATSavePassword
Circuit.LATSavePassword

Returns or setsif a password will be saved for the LAT communications driver.

Sub Mai n
Di m SavePassSt ate as Bool ean
SavePassState = Circuit.LATSavePassword
I f SavePassState = True Then
Session. Echo "For security reasons,
Circuit.LATSavePassword = Fal se
End | f
End Sub

you cannot save your password"

Host Connections on page 6

149

Circuit (object)

Circuit.ModemAIltI1Number

Syntax Circuit. MdemAl t INunber

Description Returnsor setsthefirst alternate phone number to be used when making amodem connection (string).

Example Sub Min
Di m PhoneNunber Alt1 as String
PhoneNunber Alt1 = Circuit. ModemAl t INurmber

If PhoneNurmberAltl = "" Then
Circuit. MdenAl t INunber = "555-1234"
End I f
End Sub

See Also Host Connections on page 6

Circuit.ModemAIlt2Number

Syntax Circuit. MdemAl t 2Nunber

Description Returns or sets the second alternate phone number to be used when making a modem connection
(string).

Example Sub Min
Di m PhoneNunber Alt2 as String
PhoneNunber Alt2 = Circuit. ModemAl t 2Nurmber

If PhoneNurmberAlt2 = "" Then
Circuit. MdenAl t 2Nunber = "555-1212"
End I f
End Sub

See Also Host Connections on page 6

150

Circuit (object)

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description
Example

See Also

Syntax

Description

Example

Circuit.ModemAIlt3Number

Circuit.MdenmAl t 3Nunber

Returnsor setsthethird alternate phone number to be used when making amodem connection (string).

Sub Main
Di m PhoneNunber Alt3 as String
PhoneNunber Alt3 = Circuit. ModemAl t 3Nunmber

I f PhoneNurmberAlt3 = "" Then
Circuit. MdenAl t 3Nunber = "555-1212"
End I f
End Sub

Host Connections on page 6

Circuit.ModemAreaCode
Circuit. ModemAr eaCode

Returns or sets the area code to be used when making a modem connection (string).

Sub Mai n
Di m AreaCode as String
AreaCode = Circuit.MdemAreaCode

If AreaCode = "" Then
Circuit. ModemAr eaCode = "800"
End I f
End Sub

Host Connections on page 6

Circuit.ModemCountryCode

Circuit. MdenCount ryCode

Returns or sets the current country code.
See example for Circuit.M odemGetCountryCodeString.

Host Connections on page 6

Circuit.ModemGetCountryCodeString

Circuit.MdenGet Count ryCodeString i ndex

wherei ndex isa 1-based index into the set of country code strings.
Returns a string representing the indexed country code.

Option base 1
Sub Main
Dim Total Strings as |nteger

151

Circuit (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

152

Di m Count ryCodes(Total Strings) as String
Dimi as |nteger
"Fill the CountryCodes array
Total Strings = Gircuit.Mdenmlotal CountryCodes
For i =1 to Total Strings
CountryCodes(i) = Gircuit.MdenGet CountryCodeString(i)
Next i
Sessi on. Echo "Current country code:
' Choose a new country code
Circuit. MdenCountryCode =
Sessi on. Echo "New country code:
End Sub

" & Circuit.MdenCountryCode

Count ryCodes(4)
" & Circuit.MdenCountryCode

Host Connections on page 6

Circuit.ModemPhoneNumber
Ci rcui t. ModenPhoneNunber

Returns or sets the primary phone number to be used when making a modem connection (string).

Sub Main
Di m PhoneNunber as String
PhoneNunber = Circuit. MdenPhoneNunber
Sessi on. Echo "The current phone nunber is "
Circuit. ModenPhoneNunber = "555-1212"

End Sub

& PhoneNunber

Host Connections on page 6

Circuit.ModemTotalCountryCodes

Circuit. Modenilot al Count r yCodes

Returns an integer representing the total number of country code strings available through the
Ci rcuit. MbdenmGet Count r yCodeSt ri ng method.

See example for Circuit.M odemGetCountryCodeString.

Host Connections on page 6

Circuit.ModemUseCodes
Circuit. ModemJseCodes

Returns or sets whether or not the country code and area code val ues should be used when dialing
(boolean).

Sub Main
Di m Current UseCodes as Bool ean
Current UseCodes = Circuit.MdenmJseCodes
If CurrentUseCodes = FALSE Then

Sessi on. Echo "The country code and area code will be used"

Circuit (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Circuit. MdenseCodes = True
End I f
End Sub

Host Connections on page 6

Circuit.SendRawToHost

Circuit.SendRawlToHost (data, datal ength)

Sends datato host without character translation and without 8 bit to 7 bit control mapping. Returnsthe

operation’s compl etion status (boolean). Parameters are;

Parameter Description
dat a Variant, the data to send.
Dat al engt h Integer, size of the data (in bytes)

Sub Main
Di m f Success as Bool ean
f Success = Circuit.SendRawToHost ("12345", 5)
If fSuccess = FALSE Then
Sessi on. Echo "An error occurred."”
End I f
End Sub

Host Connections on page 6

Circuit.SerialBaudRate
Circuit. Serial BaudRat e

Returns or sets the seria driver's current baud rate (long integer)

Circuit. Seri al BaudRat e accepts or returnsone of thefollowing values: 1200, 2400, 4800, 9600,

14400, 19200, 38400, 57600, Or 115200.

Sub Main
Di m BaudRat e as Long
BaudRate = G rcuit. Serial BaudRat e
I f BaudRate < 9600 Then
Sessi on. Echo "This connection needs a baud rate of at
Circuit. Serial BaudRate = 9600
End I f
End Sub

Host Connections on page 6

Circuit.SerialBreakDuration

Circuit. Serial BreakDuration

| east 9600 baud"

153

Circuit (object)

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

154

Returns or sets an integer containing the serial driver's current break duration value (integer).
Circuit. Serial BreakDur at i on accepts or returns one of the following values:

Value Definition
375 Break duration of 375ms
2000 Break duration of 2000ms

Sub Main
Di m BreakTi me as | nteger
BreakTinme = G rcuit. Serial BreakDuration
Circuit. Serial BreakDuration = 375
End Sub

Host Connections on page 6

Circuit.SerialDataBits
Circuit.SerialDataBits

Returns or sets the seria driver's current data bits value (integer). Gi rcui t. Seri al Dat aBi t s accepts
or returns one of the following val ues:

Vaue Definition

7 Configure for 7 data bits.
8 Configure for 8 data bits.
Sub Main

Dim DataBits as |nteger
DataBits = Circuit.Serial DataBits
If DataBits = 7 Then
Sessi on. Echo "This connection requires an 8-bit connection"
Circuit.SerialDataBits = 8
End | f
End Sub

Host Connections on page 6

Circuit.SerialFlowControl
Circuit. Serial Fl owContr ol

Returns or setsthe serial driver’s current flow control setting (integer). Possible values are:

Value Constant Meaning

0 sm NOFLOACONTROL ~ No flow control.

Circuit (object)

Value Constant Meaning

1 sm XONXOFF XON/XOFF flow contral.
2 sm RTSCTS RTS/CTSflow control.

3 sm DTRDSR DTR/DSR flow contral.

Example Sub Min
Di m Fl owControl as I nteger
Fl owControl = Circuit. Serial Fl owContr ol
If FlowControl = sm RTSCTS Then
Circuit. Serial FlowControl = sm XONXOFF
End | f
End Sub

See Also Host Connections on page 6

Circuit.SerialParity

Syntax Circuit.SerialParity

Description Returnsor setsthe serial driver's current parity setting (integer). Possible values are:

Value Constant Meaning

sm NOPARI TY No parity.
1 sm ODDPARI TY Odd parity.
2 sm EVENPARI TY Even parity.
3 sl MARKPARI TY Mark parity.
4 sl SPACEPARI TY Space parity.

Example Sub Min
DimParity as |nteger
Parity = Circuit.Serial Parity
Circuit.SerialParity = sm ODDPARI TY
End Sub

See Also Host Connections on page 6

Circuit.SerialPort
Syntax Circuit. Serial Port

Description Returns or setsthe serial driver's current port number (integer). Gircui t. Seri al Port accepts or
returns a value within the range: 1 - 255.

Example Sub Min
Di m ConPort as | nteger
ConmPort = Circuit. Serial Port
If ConPort > 2 Then
Session. Echo "Setting communi cations port to COML"

155

Circuit (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

156

Circuit.SerialPort =1
End I f
End Sub

Host Connections on page 6

Circuit.SerialReceiveBufferSize

Circuit. Serial Recei veBuf ferSi ze

Returns or setsthe serial driver’s current receive buffer size (integer). Accepts or returns one of the
following values: 512, 1024, 2048, 4096, Of 8192.

Sub Mai n
Di m Recei veBuf fer Si ze as | nteger
Recei veBufferSize = Circuit. Serial Recei veBufferSize
If ReceiveBufferSize < 8192 Then
Sessi on. Echo "Changi ng your Buffer size to 8192"
Circuit. Serial Recei veBuf ferSi ze = 8192
End I f
End Sub

Circuit. Connect (method)

Circuit.SerialStopBits

Circuit.Serial StopBits

Returnsor setsthe serial driver’s current stop bitsvalue (integer). This property accepts or returns one
of the following values:

Value Definition

1 1 stop bit
2 2 stop bits
Sub Main

Dim StopBits as |nteger
StopBits = Circuit.Serial StopBits
If StopBits <> 1 Then
Session. Echo "This connection requires 1 stop bit"
Circuit.Serial StopBits = 1
End I f
End Sub

Host Connections on page 6

Circuit.SerialTransmitBufferSize

Circuit.Serial Transm t Buf ferSi ze

Circuit (object)

Description

Example

See Also

Syntax

Description

Returns or sets the serial driver’s current transmit buffer size (integer).
Circuit. Serial Transmi t Buf f er Si ze accepts or returns one of the following values: 512, 1024,
2048, 4096, Or 8192.

Sub Main
Di m Transmi t Buffer Si ze as | nteger
TransmtBufferSize = Circuit. Serial Transm t Buf ferSi ze
If Transm tBufferSize < 8192 Then
Sessi on. Echo "Changi ng your Buffer size to 8192"
Circuit.Serial Transni tBufferSize = 8192
End I f
End Sub

Host Connections on page 6

Circuit.Setup

Circuit.Setup setupstring$

where set upst ri ng$ isthe string containing the setup specifications (string).

Sets SmarTerm communications parameters. Thismethod is provided primarily for the support of PSL
scripts.

The syntax of the string expression isidentical between communication methods, although meaning
varies somewhat. Specify setup options one at a time with their own Ci r cui t . Set up Statements, or
morethan one at atime, if you keep all options and settings within the quotation marks, separating the
setup statements with commas:

Circuit.Setup "baudrate = 2400, parity = NONE, stopbits = 1"

Serial COM1-COM4

Serial Port

portnane= COML | COMR2 | COMB | COwA

Circuit.Setup "portname = COM"

Baud Rate

baudrate= 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600
Circuit.Setup "baudrate = 2400"

Data Bits

bytesize= 7| 8
Circuit.Setup "bytesize
Stop Bits

stopbits= 1| 2
Circuit.Setup "stopbits = 1"

Parity

parity= NONE | ODD | EVEN | MARK | SPACE
Circuit.Setup "parity = even"

Break Duration

breakti me= 375 | 2000

Circuit.Setup "breaktime = 2000"

I
~

Fl ow Control
f1 owcontrol = XON/ XOFF | RTS/CTS | DTR/DSR | NONE
Circuit.Setup "flowcontrol = dtr/dsr"

157

Circuit (object)

Recei ve Buffer Size

recei vequeuesi ze= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "recei vequeuesi ze = 512"

Transmt Buffer Size

transm t queuesi ze= 512 | 1024 | 2048 | 4096 | 8196
Circuit.Setup "transm t queuesi ze = 512"

Aut oconnect on configuration open

aut oconnect = TRUE | FALSE

Circuit.Setup "autoconnect = true"

Telnet

Host nane or | P Address

host nane= ASCI| string of no nore than 60 characters
Circuit.Setup "hostname = uni xbox"

Port Nunber

por t nunber = Deci mal nunber between 1 and 32767 i ncl usive
Circuit.Setup "portnunber = 391"

Break Mode

br eaknbde= | NTERRUPT | BREAK

Circuit.Setup "breakmbde = interrupt”

Character Mode

charnode= ASCI| | BI NARY

Circuit.Setup "charnbde = ascii"

Aut o- connect on configurati on open

aut oconnect = TRUE | FALSE

Circuit.Setup "autoconnect = true"

See Also Host Connections on page 6

Circuit.SNALogicalUnit

3270 sessions only
Syntax Circuit. SNALogi cal Unit
Description Returnsor setsthe LU (logical unit) to which the SmarTerm session connects. Triggers an application-
based menu action in SmarTerm. The LU is the access point into the SNA network, allowing
SmarTerm to reach a particular host service (for example, a mainframe application LU). The pool

nameisanameyou assign to a set of LUswith the same capabilities. When the session connects, itis
automatically given the first available LU in the pool.

Example Sub Min
Circuit.SNALogical Unit "LU2"
End Sub

See Also Host Connections on page 6

Circuit.SNAProtocol

3270 sessions only
Syntax GCircuit. SNAProt ocol

158

Circuit (object)

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Returns or sets the transfer protocol for the SmarTerm session. Possible values are:

Value Description

I PX/ SPX Internetwork Packet Exchange/Sequenced Packet Exchange. Novell’s protocol used by
Novell NetWare. A router with IPX routing can interconnect local area networks so that
Novell NetWare clients and servers can communicate.

TCP/ 1P Transmission Control Protocol over Internet Protocol. The most common transport layer
protocol used on Ethernet and the Internet. This property is supported in NetWare for
SAA connections only.

" This exanpl e
Sub Main

Circuit.SNAProtocol "TCP/IP"
End Sub

Host Connections on page 6

Circuit.SNAServerName

3270 and 5250 sessions only
Circuit. SNASer ver Name

NetWare for SAA connections only.
Returns or sets the name of the server to which the session connects.

" This exanpl e
Sub Main

Circuit.SNAServer Name " "
End Sub

Host Connections on page 6

Circuit.SuppressConnectErrorDialog

Circuit. SuppressConnect Error Di al og

Returns or sets the display of connection error dialogs (boolean). If TRUE (the default), then no
connection error dialogs are displayed. If FALSE, then al connection error dialogs are displayed.

Common to all communications methods.

"This exanple attenpts to connect to one of two hosts.
"using Telnet. If the macro cannot connect to one host,
it attenpts toconnect to the other without informng

"the user of the error

Sub Mai n

159

Circuit (object)

Di m f Connect ed As Bool ean
f Connected = FALSE

"First, turn off connection error dialogs.
Circuit. SuppressConnect ErrorDi al og = TRUE

"Now, try to connect to the first host
Circuit. Tel net Host Name = " MyHost 1"
Circuit. Connect

"G ve the host 5 seconds to connect. If it connects,
"then go to the next bl ock.
For Seconds = 1 to 5
Sl eep (1000)
If Circuit.Connected = TRUE t hen
f Connected = TRUE
Exit For
End I f
Next Seconds

"Now, turn connection error dialogs back on
Circuit. SuppressConnect ErrorDi al og = FALSE

"Now determine if we connected to the first host.
"If not, try connecting to the second.
If fConnected = FALSE Then
Circuit. Tel net Host Name = " MyHost 2"
Circuit. Connect
End I f
End Sub

See Also Host Connections on page 6

Circuit.TelnetBreakMode

Syntax Circuit. Tel net BreakMode

Description Returns or sets the Telnet driver’s current break mode setting (integer). Possible values are:

Value Constant Meaning
0 sm BREAK Set the break mode to break.
1 sm | NTERRUPT Set the break mode to interrupt.

Example Sub Min

Di m BrkMbde as | nteger

BrkMbde = Circuit. Tel net BreakMbde

I f BrkMbde = snml BREAK Then
Sessi on. Echo "Using Interrupt break nmode for this connection”
Circuit. Tel net BreakMbde = sm | NTERRUPT

End | f

End Sub

See Also Host Connections on page 6

160

Circuit (object)

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Circuit.TelnetCharacterMode
Circuit. Tel net Char act er Mode

Returns or sets the Telnet driver’s current character mode setting (integer). Possible values are:

Value Constant Meaning

0 sm ASCI | Set the character mode to ASCI|I.
1 sm BINARY Set the character mode to binary.
Sub Main

Di m Char Mode as | nteger
Char Mode = Circuit. Tel net Charact er Mode
I f Char Mbde = sml ASCI | Then
Sessi on. Echo "Changi ng character npbde setting to Binary"
Circuit. Tel net Character Mbde = snl Bi nary
End | f
End Sub

Host Connections on page 6

Circuit.TelnetHostName
Circuit. Tel net Host Nane

Returns or setsthe Telnet driver’s current host name (string).

Sub Main

Di m Host Name as String

Host Nane = Circuit. Tel net Host Name

I f Host Nane = "BrokenHost.cont Then

Sessi on. Echo "BrokenHost is currently down.

Circuit. Tel net Host Name = "Wor ki ngHost . cont'

End I f
End Sub

Try Worki ngHost . cont

Host Connections on page 6

Circuit.TelnetPortNumber
Circuit. Tel net Port Nunber

Returns or sets the Telnet driver’s current port number (string).

Sub Main
DimPort as String
Port = Circuit. Tel net Port Nunber
If Port <> 23 Then
Session. Echo "Setting the port to 23 for a Tel net connection"
Circuit. Tel net Port Number = 23
End I f
End Sub

161

Clipboard (object)

See Also

Host Connections on page 6

Clipboard (object)

Syntax

Description

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

162

Clipboard$ (function)

Cli pboard$[()]

Returnsast ri ng containing the contents of the Clipboard. If the Clipboard doesn’t contain text or the
Clipboard is empty, then a zero-length string is returned.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Sessi on. Echo "The text in the Cipboard is:" & crlf & Clipboard$
Cl i pboard. d ear
Sessi on. Echo "The text in the Cipboard is:" & crlf & Clipboard$
End Sub

Clipboard$ (statement); Operating System Control on page 9

Clipboard$ (statement)

Cl i pboard$ NewCont ent $

Copies NewCont ent $ into the Clipboard.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Clipboard$ "Hello out there!"
Session. Echo "The text in the Cipboard is:" & crlf & Cipboard$
Cl i pboard. d ear
Session. Echo "The text in the dipboard is:" & crlf & Cipboard$
End Sub

Clipboard$ (function); Operating System Control on page 9

Clipboard.Clear

Cl i pboard. d ear

Clears the Clipboard by removing any content.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Clipboard$ "Hello out there!"
Session. Echo "The text in the Cdipboard is:" & crlf & Cipboard$
Cl i pboard. d ear
Session. Echo "The text in the Cdipboard is:" & crlf & Cipboard$
End Sub

Clipboard (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Clipboard$ (function); Operating System Control on page 9

Clipboard.GetFormat

Whi chFormat = d i pboard. Get For mat (f or mat)

ReturnsTr ue if dataof the specified format isavailablein the Clipboard; returnsFal se otherwise. This
method is used to determine whether the datain the Clipboard is of a particular format. The format
parameter isan | nt eger representing the format to be queried:

Format Value Description

ebCFText 1 Text

ebCFBi t map 2 Bitmap

ebCFMet afi | e 3 Metafile

ebCFDI B 8 Device-independent bitmap (DIB)
ebCFPal et t e 9 Color palette

ebCFUni codeText 13 Unicode text

Sub Main

Cl i pboard$ "Hello out there!"
If Cipboard. Get For nat (ebCFText) Then
Sessi on. Echo Cl i pboar d$
El se
Session. Echo "There is no text in the Cipboard."
End I f
End Sub

Clipboard$ (function); Operating System Control on page 9

Clipboard.GetText

text$ = Cipboard. Get Text ([format])

Returnsthetext contained in the Clipboard. Theformat parameter, if specified, must beebCFText (1).
Thef ormat parameter must be either ebCFText Or ebCFUni codeText . If thef or mat parameter is
omitted, then the compiler first looks for text of the specified type depending on the platform:

Platform Clipboard Format
Windows NT UNICODE
Windows 95 MBCS

Option Conpare Text
Sub Main
If Cdipboard. Get Fornat (1) Then
If Instr(dipboard. Get Text(1),"total",1) = 0 Then
Session. Echo "The dipboard doesn’'t contain the word ""total."""
El se

163

CLng

See Also

Syntax

Description

Example

See Also

CLng

Syntax

Description

Example

164

Sessi on. Echo "The Cipboard contains the word ""total""."
End | f
El se
Sessi on. Echo "The Cipboard does not contain text."
End I f
End Sub

Clipboard$ (function); Operating System Control on page 9

Clipboard.SetText

Cli pboard. Set Text data$ [, format]

Copiesthe specified text string to the Clipboard. The dat a$ parameter specifies the text to be copied
to the Clipboard. Thef or mat parameter, if specified, must be ebCFText (1). Theformt parameter
must be either ebCFText Or ebCFUni codeText . If thef or mat parameter is omitted, then the compiler
places the text into the clipboard in the following format depending on the platform:

Platform Clipboard Format
Windows NT UNICODE
Windows 95 MBCS

Sub Main

If Not Cipboard. Get Format (1) Then Exit Sub
Cl i pboard. Set Text UCase$(Cl i pboard. Get Text (1)), 1
End Sub

Clipboard$ (function); Operating System Control on page 9

CLng(expressi on)

Convertsexpr essi on to aLong. Thisfunction acceptsany expression convertibleto aLong, including
strings. A runtime error is generated if expr essi on iSNul | . Enpt y istreated as 0. The passed
expression must be within the following range:

- 2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to aLong. Note that long variables are rounded before conversion.

When used with variants, this function guarantees that the expression is converted to along variant
(var Type 3).

This example displays the results for various conversions of i andj (note rounding).

Close

Sub Main
i %= 100
j& = 123. 666

Session. Echo "The result is: " & CLng(i%* j& ' Displays 12367.
Session. Echo "The variant type is: " & Vartype(CLng(i%)

End Sub
See Also Keywords, Data Types, Operators, and Expressions on page 5
Close
Syntax Close [[#] filenunber [,[#] filenunber]...]
Description Closes the specified files. If no arguments are specified, then al files are closed.
Example Sub Min
Open "testl1" For CQutput As #1
Open "test2" For CQutput As #2
Open "test3" For Random As #3
Open "test4" For Binary As #4
Sessi on. Echo "The next available file nunber is :" & FreeFile()
Cl ose #1 "Closes file 1 only.
Cl ose #2, #3 "Closes files 2 and 3.
Cl ose "Closes all remaining files(4).
Sessi on. Echo "The next available file nunber is :" & FreeFile()
End Sub
See Also Drive, Folder, and File Access on page 4
ComboBox
Syntax ComboBox X, y,w dth, hei ght, ArrayVari abl e, .l dentifier
Description Defines acombo box within a dialog template. When the dialog is invoked, the combo box will be

filled with the elements from the specified array variable. This statement can only appear within a
dialog template (i.e., between the Begi n Di al og and End Di al og statements). The ConboBox Statement
requires the following parameters:

Parameter Description

X,y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dial og.

165

Comments (topic)

Parameter Description
wi dt h, hei ght Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the combo box.
If this array has no dimensions, then the combo box will be initialized with
no elements. A runtime error results if the specified array contains more
than one dimension. Arr ayVari abl e can specify an array of any fundamen-
tal datatype (structures are not allowed). Null and empty values are treated
as zero-length strings.

ldentifier Name by which this control can be referenced by statementsin adialog
function (such as Dl gFocus and Di gEnabl e). This parameter also creates a
string variable whose value corresponds to the content of the edit field of the

combo box. This variable can be accessed using the syntax: bi al ogVari -
able.ldentifier.

When the dialog is invoked, the elementsfrom Arrayvari abl e are placed into the combo box. The
.Identifier variable definestheinitial content of the edit field of the combo box. When the dialog
isdismissed, the. | denti fi er variable is updated to contain the current value of the edit field.

Example Sub Min
Di m days$(6)
days$(0) = "Monday"

days$(1) = "Tuesday"
days$(2) = "Wednesday"
days$(3) = "Thursday"
days$(4) = "Friday"
days$(5) = "Saturday"
days$(6) = "Sunday"

Begi n Di al og DaysDi al ogTenpl ate 16, 32, 124, 96, " Days"
OKButton 76, 8, 40, 14, . &K
Text 8,10, 39, 8, "&Weekdays: "
ConboBox 8, 20, 60, 72, days$, . Days

End Di al og

Di m DaysDi al og As DaysDi al ogTenpl at e

DaysDi al og. Days = "Tuesday"

r% = Di al og(DaysDi al og)

Sessi on. Echo "You sel ected: " & DaysDi al og. Days

End Sub

See Also User Interaction on page 9

Comments (topic)

Comments can be added to macro code in the following manner:

< All text between a single quotation mark and the end of the lineisignored:

Sessi on. Echo "Hel | 0" 'Di spl ays a nessage box.

e TheREMStatement causes the compiler to ignore the entire line:

166

Comparison Operators (topic)

REM This is a conment.

e You can aso use C-style multiline comment blocks /*...*/, as follows:

Sessi on. Echo "Before coment"”

/* This stuff is all conmented out.

This line, too, will be ignored.

This is the last line of the coment. */
Sessi on. Echo "After conment"

I:I C-style comments can be nested.

See Also Keywords, Data Types, Operators, and Expressions on page 5; Macro Control and Compilation on
page 7

Comparison Operators (topic)

Syntax expressionl [<| > | <=]| >=| <> | =] expression2

Description ReturnsTr ue or Fal se depending on the operator. The comparison operatorsarelistedinthefollowing
table:

Operator Returns True If

> expr essi onl isgreater than expr essi on2

< expr essi onl islessthan expressi on2

<= expr essi onl islessthan or equal to expr essi on2
>= expr essi onl isgreater than or equal to expr essi on2
<> expr essi onl isnot equal to expr essi on2

= expr essi onl isequal to expr essi on2

Thisoperator behaves differently depending on the types of the expressions, as shown inthefollowing

table:
Expression One Expression Two Result
Numeric Numeric Numeric comparison (see below).
String String String comparison (see below).
Numeric String Compile error.
Variant String String comparison (see below).
Variant Numeric Variant comparison (see below).
Null variant Any datatype Null.
Variant Variant Variant comparison (see below).

167

Comparison Operators (topic)

Examples

168

String comparisons

If the two expressions are strings, then the operator performs atext compari son between the two string
expressions, returning Tr ue if expr essi onl islessthan expr essi on2. Thetext comparison is case-
sensitive if opti on Conpar e iSBi nary; otherwise, the comparison is case-insensitive.

When comparing letters with regard to case, lowercase charactersin a string sort greater than
uppercase characters, so acomparison of "a" and "A" would indicate that "a" is greater than "A".

Numeric comparisons

When comparing two numeric expressions, theless precise expressionis converted to bethe sametype
as the more precise expression.

Dates are compared as doubles. Thismay produce unexpected results asit ispossibleto havetwo dates
that, when viewed astext, display as the same date when, in fact, they are different. This can be seen
in the following example:

Sub Main
Di m datel As Date
Dim date2 As Date

datel = Now

date2 = datel + 0.000001 "Adds a fraction of a second

Session. Echo date2 = datel 'Prints False (the dates are different).

Session. Echo datel & "," & date2 'Prints two dates that arethe sane.
End Sub

Variant comparisons

When comparing variants, the actual operation performed is determined at execution time according
to the following table:

Variant One Variant Two Result

Numeric Numeric Numeric comparison.

String String String comparison.

Numeric String Number less than string.

Null Any other data type Null.

Numeric Empty Compares number to 0.

String Empty Compares string to a zero-length string.
Sub Main

"Tests two literals and displays the result.
If 5 < 2 Then

Session. Echo "5 is less than 2."
El se

Session. Echo "5 is not less than 2."
End | f
"Tests two strings and displays the result.
If "This" < "That" Then

Const

Session. Echo "' This' is less than 'That’'."
El se
Session. Echo "' That’ is less than 'This'."
End I f
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

Const

Syntax Const nanme [As type] = expression [,nane [As type] = expression]...
Description Declaresaconstant for use within the current macro. The nare is only valid within the current macro.
Constant names must follow these rules:
e Must begin with aletter.
* May contain only letters, digits, and the underscore character.
* Must not exceed 80 charactersin length.
e Cannot be areserved word.

Constant names are not case-sensitive. The expr essi on must be assembled from literals or other
constants. Callsto functions are not allowed except calls to the chr $ function, as shown bel ow:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the narme with atype-declaration character, as

shown below:

Const a% =5 " Constant |Integer whose value is 5
Const b# =5 ' Const ant Doubl e whose value is 5.0
Const c¢$ = "5" "Constant String whose value is "5"
Const d! =5 " Constant Single whose value is 5.0
Const e& = 5 " Constant Long whose value is 5

The type can also be given by specifying the As type clause:

Const a As Integer = 5 ’'Constant |nteger whose value is 5
Const b As Double = 5 'Constant Double whose value is 5.0
Const ¢ As String = "5" ’'Constant String whose value is "5"
Const d As Single = 5 ’'Constant Single whose value is 5.0
Const e As Long = 5 'Constant Long whose value is 5

Y ou cannot specify both atype-declaration character and thet ype:

Const a% As Integer =5 'THI S IS | LLEGAL.

If an explicit typeis not given, then the compiler chooses the most imprecise type that completely
represents the data, as shown below:

169

Constants (topic)

Example

See Also

Const a =5 "I nteger constant
Const b = 5.5 ' Si ngl e constant
Const ¢ = 5.5E200 ' Doubl e const ant

Constants defined within asub or Funct i on arelocal to that subroutine or function. Constants defined
outside of all subroutines and functions can be used anywhere within that macro. The following
example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1l

Const DefFile = "foobar.txt"

Sessi on. Echo DefFile "Di splays "foobar.txt".
End Sub

Sub Test2
Session. Echo DefFile "Displays "default.txt".
End Sub

Const crlf = Chr$(13) + Chr$(10)
Const s$ As String = "This is a constant."
Sub Main
Session. Echo s$ & crlf & "The constants are shown above."
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

Constants (topic)

170

Constants are variables that cannot change value during macro execution. Y ou can define your own
constantsusing the const statement; preprocessor constants are defined using #Const . Thefollowing
constants are predefined by the compiler.

Application State Constants

Constant Value Description

ebMninized 1 The application is minimized.
ebMaxim zed 2 The application is maximized.
ebRest or ed 3 The application is restored.

Application.WindowState, Session.WindowState

Constant Value Description

smMN M ZE 0 The window is minimized.
sm RESTORE 1 The window is restored.
sm MAXI M ZE 2 The window is maximized.

Constants (topic)

Character Constants

Constant Value Description

ebBack Chr $(8) String containing a backspace.

ebCr Chr$(13) String containing a carriage return.

ebCr Lf Chr$(13) & Chr$(10) String containing a carriage-return linefeed pair.

ebFor nFeed Chr $(11) String containing aform feed.

ebLf Chr $(10) String containing aline feed.

ebNul | Char Chr $(0) String containing asingle null character.

ebNul I String 0 Special string value used to pass null pointersto
external routines.

ebTab Chr $(9) String containing atab.

ebVertical Tab Chr$(12) String containing a vertical tab.

Circuit.SerialFlowControl

Constant

Value

Description

sm NOFLOACONTROL 0

sm XONXOFF
sm RTSCTS
sm DTRDSR

No flow control.

1 XON/XOFF flow control.
2 RTS/CTS flow control.
3 DTR/DSR flow control.

Circuit.SerialParity

Constant Value Description
sm NOPARI TY 0 No parity.
sm ODDPARI TY 1 Odd parity.
snl EVENPARI TY 2 Even parity.
sl MARKPARI TY 3 Mark parity.
sm SPACEPARI TY 4 Space parity.

Circuit.TelnetBreakMode

Constant Value Description
sm BREAK 0 Set the breakmode to break.
Sm | NTERRUPT 1 Set the breakmode to interrupt.

171

Constants (topic)

Circuit.TelnetCharacterMode

Constant Value Description
sm ASCl | 0 Set the character mode to ASCII.
sm BINARY 1 Set the character mode to binary.

Clipboard Constants

Constant Value Description

ebCFText 1 Text.

ebCFBi t map 2 Bitmap.

ebCFMet afi | e 3 Metdfile.

ebCFDI B 8 Device-independent bitmap.
ebCFPal ette 9 Palette.

ebCFUni code 13 Unicode text.

Compiler Constants
Constant Value

W n32 True
Empty Empty
Fal se False
Nul | Null
True True

Date Constants

Constant Value Description

ebUseSunday 0 Use the date setting as specified by the current locale.
ebSunday 1 Sunday.

ebMonday 2 Monday.

ebTuesday 3 Tuesday.

ebWednesday 4 Wednesday.

ebThur sday 5 Thursday.

ebFri day 6 Friday.

ebSat ur day 7 Saturday.

172

Constants (topic)

Constant Value Description

ebFirstJanl 1 Start with week in which January 1 occurs.

ebFi r st Four Days 2 Start with first week with at least four daysin the new year.
ebFi r st Ful | eek 3 Start with first full week of the year.

File Constants

Constant Value Description

ebNor nal 0 Read-only, archive, subdir, and none.
ebReadOnl y 1 Read-only files.

ebHi dden 2 Hidden files.

ebSystem 4 System files.

ebVol une 8 Volume labels.

ebbDirectory 16 Subdirectory.

ebAr chive 32 Files that have changed since the last backup.
ebNone 64 Files with no attributes.

File Type Constants

Constant Value Description
ebDOS 1 A DOS executablefile.
ebW ndows 2 A Windows executable file.

Font Constants

Constant Value Description

ebRegul ar 1 Normal font (i.e., neither bold nor italic).
ebltalic 2 Italic font.

ebBol d 4 Bold font.

ebBol ditalic 6 Bold-italic font.

IMEStat Constants

Constant Value Description

ebl MENoOp 0 IME not installed.
ebl MEOn 1 IME on.

ebl VECE f 2 IME off.

ebl MEDI sabl ed 3 IME disabled.

173

Constants (topic)

174

Constant Value Description

ebl MEHi r agana 4 Hiragana double-byte character.

ebl MEKat akanaDbl 5 Katakana double-byte characters.

ebl MEKat akanaSng 6 Katakana single-byte characters.

ebl MEAI phaDbl 7 Alphanumeric double-byte characters.
ebl MEAl phaSng 8 Alphanumeric single-byte characters.

Math Constants

Constant Value

Description

PI 3.1415...

Vaue of PI.

Session.EventWait

Constant Value Description

sm WAl TSUCCESS 1 Successful match.

sml WAl TTI MEOUT -1 Timeout.

sl WAI TMAXEVENTS -2 Maximum events seen.
sm WAl TERROR -15 Miscellaneous error.

MsgBox Constants

Constant Value Description

ebOKOnl y 0 Displays only the OK button.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbor t Retryl gnore 2 Displays Abort, Retry, and Ignore buttons.
ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.
ebYesNo 4 Displays Yes and No buttons.

ebRet ryCancel 5 Displays Cancel and Retry buttons.
ebCritical 16 Displays the stop icon.

EbQuesti on 32 Displays the question icon.

EbExcl amat i on 48 Displays the exclamation icon.

Ebl nf or mat i on 64 Displays the information icon.

EbAppl i cati onhbdal 0 The current application is suspended until the dialog is closed.
EbDef aul t But t onl 0 First button is the default button.

EbDef aul t But t on2 256 Second button is the default button.

EbDef aul t But t on3 512 Third button is the default button.

Constants (topic)

Constant Value Description

EbSyst embdal 4096 All applications are suspended until the dialog is closed.
EbOK 1 Returned from MsgBox indicating that OK was pressed.
EbCancel 2 Returned from MsgBox indicating that Cancel was pressed.
EbAbor t 3 Returned from MsgBox indicating that Abort was pressed.
EbRetry 4 Returned from MsgBox indicating that Retry was pressed.
Ebl gnore 5 Returned from MsgBox indicating that Ignore was pressed.
ebYes 6 Returned from MsgBox indicating that Yes was pressed.
ebNo 7 Returned from MsgBox indicating that No was pressed.

Session.Capture File Handling

Constant Value Description

sm OVERWRI TE 0 Overwrite an existing file.

sl APPEND 1 Append to an existing file.

sn PROVPTOVAPP 2 Prompt whether to overwrite or append.

Session.KeyWait, Session.Collect

Constant Value Description

sm WAl TSUCCESS 1 Successful match.

s WAl TTI MEQUT -1 Timeout.

sm WAl TMAXCHARS -2 Maximum chars seen.
snl WAl TERROR -15 Miscellaneous error.

Session.StringWait

Constant Value Description

sm WAl TSUCCESS >=1 Successful match.

sml WAl TTI MEOUT -1 Timeout.

sml WAl TMAXCHARS -2 Maximum chars seen.
sm WAl TERROR -15 Miscellaneous error.

Session.Configinfo

Constant Value Description
s SESSI ONPATH - 0 Full path of the SmarTerm session (STW) file.
sm I NSTALLPATH 2 Full path to where SmarTerm isinstalled.

175

Constants (topic)

176

Session.Emulationinfo

Constant Vaue

Description

sm EMUFAM LY 0
sm EMULEVEL 1

The emulation family.
The emulation level.

Session.KeyWait

Constant Value Description

sl KEYWEXACT Non-case folded character/ASCII code
sm KEYWNONEXACT Non-case folded character/ASCII code
sm KEYWSCAN PC scan code

sm KEYW/I RTUAL
sm KEYWDECKEY
sm KEYWBUTTON
sm KEYWCOUNT

~N o ok WON R

Virtual key code (Windows specific)

Emulation specific key code (DECKEY in PSL)
L ocator button

Any key, (Use the count)

Session.Language, Application.InstalledLanguages,
Application.StartupLanguage

Constant Value Description

sm GERVAN 1031 German.

sm ENGLISH 1033 English.

sm FRENCH 1036 French.

sml SPANISH 1034 Spanish.

Shell Constants

Constant Value Description

ebH de 0 Application isinitialy hidden.

ebNor mal Focus 1 Application is displayed at the default position and has the
focus.

ebM ni ni zedFocus 2 Application isinitially minimized and has the focus.

ebMaxi i zedFocus 3 Application is maximized and has the focus.

ebNor mal NoFocus 4 Application is displayed at the default position and does
not have the focus.

ebM ni ni zedNoFocus 6 Application is minimized and does not have the focus.

Constants (topic)

Macro Language Constants

Constant Vaue Description

True -1 Boolean value True.

Fal se 0 Boolean value False.

Enpty Empty Variant of type 0, indicating that the variant is uninitialized.

Nothing O Value indicating that an object variable no longer references avalid
object.

Nul | Null Variant of type 1, indicating that the variant contains no data.

String Conversion Constants

Constant Value Description

ebUpper Case Converts string to uppercase.

Converts string to lowercase.

1

ebLower Case 2
ebProper Case 3 Capitalizes thefirst letter of each word.

4

8

ebW de Converts narrow characters to wide characters.

ebNar r ow Converts wide characters to narrow characters.

ebKat akana 16 Converts Hiragana characters to Katakana characters.
ebHi ragana 32 Converts Katakana characters to Hiragana characters.
ebUni code 64 Converts string from MBCS to UNICODE.

ebFr onni code 128 Converts string from UNICODE to MBCS.

Variant Constants

Description Constant Value

ebEnpty 0 Variant has not been initialized.
ebNul | 1 Variant contains no valid data.
ebl nt eger 2 Variant contains an integer.
ebLong 3 Variant contains along.
ebSingl e 4 Variant containsasingle.
ebDoubl e 5 Variant contains a double.
ebCurrency 6 Variant contains a currency.
ebDat e 7 Variant contains a date.
ebString 8 Variant contains a string.
ebj ect 9 Variant contains an Object.
ebError 10 Variant contains an Error.
ebBool ean 11 Variant contains a bool ean.

177

Cos

Cos

Syntax

Description

Example

See Also

Description Constant Value

ebvari ant 12 Variant contains an array of variants.

ebDat aCbj ect 13 Variant contains a data object.

ebArray 8192 Added to any of the other typesto indicate an array of that type.
Cos(nunber)

Returns aDoubl e representing the cosine of nunber . The nunber parameter isabDoubl e specifying an
anglein radians.

Sub Main

c# = Cos(3.14159 / 4)

Sessi on. Echo "The cosine of 45 degrees is: " & c#
End Sub

Numeric, Math, and Accounting Functions on page 6

CreateObject

Syntax

Description

Examples

178

Cr eat eQbj ect (cl ass)

Creates an OL E Automation object and returns a reference to that object. Thecl ass parameter
specifies the application used to create the object and the type of object being created. It uses the
following syntax:

"application.class",

where appl i cat i on isthe application used to create the object and cl ass is the type of the object to
create.

At runtime, Cr eat ebj ect looksfor the given application and runsthat application if found. Oncethe
object is created, its properties and methods can be accessed using the dot syntax (e.g.,
obj ect. property =val ue).

There may be aslight delay when an automation server is loaded (this depends on the speed with
which aserver can be loaded from disk). Thisdelay isreduced if an instance of the automation server
is aready loaded.

This example uses CreateObject to instantiate aVisio object. It then usesthe resulting object to create
anew document.

Sub Main
Dim Visio As Object
Di m doc As bj ect
Di m page As Obj ect

CSng

See Also

CSng

Syntax

Description

Example

See Also

CStr

Syntax

Description

Di m shape As Obj ect
Set Visio = CreateObject("visio.application")
"Create Visio object.

Set doc = Visio.Docunents. Add("") "Create a new doc.

Set page = doc. Pages(1) "Get first page.

Set shape = page. DrawRectangl e(1, 1, 4, 4)

shape.text = "Hello, world." "Set text within shape.
End Sub

Objects on page 10; DDE Access on page 10

CSng(expr essi on)

Converts expr essi on to aSi ngl e. This function accepts any expression convertible to asi ngl e,
including strings. A runtime error is generated if expressi on iSNul | . Enpty istreated as 0.0. A
runtime error results if the passed expression is not within the valid range for Si ngl e.

When passed a numeric expression, this function has the same effect as assigning the numeric
expression to a si ngl e.

When used with variants, thisfunction guaranteesthat the expression is converted to asi ngl e variant
(var Type 4).

Sub Main

s$ = "100"

Sessi on. Echo "The single value is: " & CSng(s$)
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

CStr (expressi on)

Convertsexpressi ontoastring. Unlikestr$ or str, the string returned by cst r will not contain a
leading space if the expression is positive. Further, the cst r function correctly recognizes thousands
and decimal separators for your locale. Different data types are converted to St ri ng in accordance
with the following rules:

Data Type CStr Returns

Any numeric type A string containing the number without the leading space for positive
values

Date A string converted to a date using the short date format

179

CurDir, CurDir$

Example

See Also

CurDir,

Syntax

Description

Example

See Also

Data Type CStr Returns
Boolean A string containing either "True" or "False"
Null variant A runtime error
Empty variant A zero-length string
Sub Main
s# = 123. 456
Session. Echo "The string value is: " & CStr(s#)
End Sub

Character and String Manipulation on page 3; Keywords, Data Types, Operators, and Expressions on
page 5

CurDir$

CurDir[$][(drive)]

Returns the current directory on the specified drive. If nodri ve isspecified or dri ve is zero-length,
then the current directory on the current driveisreturned. cur Di r $ returnsast ri ng, whereas Cur bi r
returnsast ri ng variant. Thereis aruntime error if dri ve isinvalid.

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n
save$ = CurDir$
chhir ("..")

Session. Echo "Od directory: " & save$ & crlf & "New directory: " & CurDir$
ChDir (save$)
Session. Echo "Directory restored to: " & CurDir$

End Sub

Drive, Folder, and File Access on page 4

Currency (data type)

Syntax

Description

180

Currency

Use to declare variables capable of holding fixed-point numbers with 15 digits to the | eft of the
decimal point and 4 digits to the right. Cur r ency variables are used to hold numbers within the
following range:

-922, 337, 203, 685, 477. 5808 <= currency <= 922, 337, 203, 685, 477. 5807

Dueto their accuracy, cur r ency variables are useful within calculations involving money.

The type-declaration character for currency is @.

CVvar

See Also

CVar

Syntax

Description

[]

Example

See Also

CVErr

Syntax

Description

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing within a
structure, currency values require 8 bytes of storage. When used with binary or random files, 8 bytes
of storage are required.

Keywords, Data Types, Operators, and Expressions on page 5

CVar (expr essi on)

Convertsexpressi ontoavari ant .

Use of thisfunction isnot required because assignment to variant variables automatically performsthe
necessary conversion:

Sub Mai n()
Dimv As Variant
v=48&"th" "Assigns "4th" to v.
Session. Echo "You canme in: " & v
v = CVar(4 & "th") "Assigns "4th" to v.
Session. Echo "You canme in: " & v

End Sub

Sub Main

Dims As String
Dima As Variant
s = CStr("The quick brown fox ")
nesg = CVar(s & "junped over the | azy dog.")
Sessi on. Echo nesg
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

CVErr (expressi on)
This function converts an expression into a user-defined error number. A runtime error is generated
under the following conditions:
e |fexpressioniSnull.
» If expressi on isanumber outside the legal range for errors, which is as follows:
0 <= expression <= 65535
e |f expression isboolean.
» Ifexpressionisastring that can't be converted to a number within the legal range.

Enpty istreated as 0.

181

CVErr

Example Sub Min
Session. Echo "The error is: " & CStr(CVErr(2046))
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

182

D

Date (data type)

Syntax

Description

Dat e

I's capable of holding date and time values. Dat e variables are used to hold dates within the following
range:

January 1, 100 00:00:00 <= dat e <= December 31, 9999 23:59:59

-6574340 <= dat e <= 2958465.99998843

Internally, dates are stored as 8-byte | EEE double values. The integer part holds the number of days
since midnight, December 30, 1899, and the fractional part holds the number of seconds asafraction
of the day. For example, the number 32874.5 represents January 1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when used with binary
or random files, 8 bytes of storage are required.

There is no type-declaration character for Dat e.

Date variables that haven't been assigned are given an initial value of O (i.e., December 30, 1899).

Date literals
Literal dates are specified using pound signs:

Dimd As Date
d = #January 1, 1990#

Theinterpretation of the date string (i.e., January 1, 1990 in the above exampl€) occurs at runtime,
using the current country settings. Thisis a problem when interpreting dates such as 1/2/1990. If the
date format is M/D/Y , then this date is January 2, 1990. If the date format is D/M/Y, then this dateis
February 1, 1990. To remove any ambiguity when interpreting dates, use the universal date format:

183

Date (data type)

184

date_variabl e = #YY/ MM DD HH: MM SS#

The following example specifies the date June 3, 1965, using the universal date format:

As Date

Dimd
d = #1965/ 6/3 10: 23: 45#

Dates and Year 2000 Calculations

The Date object in Persoft's macro language always stores the year with 4 digits, regardless of how the
date was entered. However, if ayear is specified with only two digits, and that year isless than 30,
then the macro language assumes a twenty-first century date. Otherwise, it assumes a twentieth-
century date. In pseudocode, the decision looks like this:

If 0 <tw-digit year < 30 Then
year = 2000 + two-digit year
El se
year = 1900 + two-digit year
End | f

For example, if you specify the date 1/1/29, the macro language stores it as 1/1/2029 and all
calculations will assume the year to be 2029: However, if you specify the date 1/1/30, then the macro
language stores it as 1/1/1930.

Compensating for dates specifying two-digit years

Because the macro language calcul ates years correctly given four-digit dates, our recommendation is
that at all times dates in your macros specify the year with four digits. Ensuring that thisis the case
may require you to revise your macrosif one or more date sources specify two-digit years. There are
three possible sources for dates specifying two-digit years:

» Dateliterals (such as#1/ 1/ 24#)

e Macro input routines that allow usersto specify two-digit years

» Legacy datain asource that contains dates specifying two-digit years
Date literals

If you have date literals specifying two-digit years, the solution is simple: revise the macrosto specify
all four digits of yearsin the date literals. Since date literals are marked off on either end with the
pound (#) character, it's easy to use the Macro Editor or any ASCI| text editor to search macros for
date literals.

For exampl e, the following macro incorrectly sets the default startup date to 2029 by specifying the
dateliteral with atwo-digit year:

Sub testdatel
"I Exanpl e of the incorrect definition of a date literal
Di m St artupDat e#, Defaul t StartupDate#
Def aul t St ar t upDat e= #7/ 12/ 294# "This is the problemdefinition

Date (data type)

' Make sure that StartupDate is defined:
Note that 12/30/1899 is the zero-point for dates.

If StartupDate# = 0 Then
MsgBox "StartupDate= " & Format(StartupDate#, "long date")
St art upDat e#= Def aul t St art upDat e#

End | f

MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

This macro has aroutine that makes sure that St ar t upDat e# iS at least set to a default value before
later performing operations on it. Unfortunately, the default value (Def aul t St ar t upDat e#) iS not
clearly specified with afour-digit year. Y ou might not catch thiserror unlessthe StartupDate# variable
was undefined for some reason, and so became set to 7/12/2029. To correct this error, search through
your macros and make sure that date literals specify all four digits for the year:

Sub testdate2
"I Exanpl e of the correct definition of a date literal
Di m St artupDat e#, Defaul t StartupDate#
Def aul t St ar t upDat e= #7/ 12/ 1929# "This is the corrected definition

Make sure that StartupDate is defined:

" Note that 12/30/1899 is the zero-point for dates.

If StartupDate# = 0 Then
MsgBox "StartupDate= " & Format(StartupDate#, "long date")
St art upDat e#= Def aul t St art upDat e#

End | f

MsgBox "StartupDate= " & Format(StartupDate#, "long date")
End Sub

Date input

If you have macro input routines that allow users to specify two-digit years, the solution isto revise
the macros to check for four-digit years, forcing the user to re-specify the date if they fail to comply.
The following code fragment provides a simple check (although it does not check for other input
errors).

Sub testdate3
' Exanpl e showi ng how to check for a 4-digit year in user input.
Di m strDate$, strMnth$, strDay$, strYear$, EnteredDate#

Do Wiile len(strYear$) < 4 'Loop until the year has 4 digits:

StrDat e$= | nput Box("Enter date (MM DD/ YYYY): ", "Date Converted")
If StrDate$ = "" Then ’'dicked OK without entering a date,

Exit Sub "so we quit the macro
End | f

"Parse each itemin the date

strvonth$ = Iten(strDate$, 1, 1, "/")

strDay$ = Iten(strDate$, 2, 2, "/")

strYear$ = Iten(strDate$, 3, 3, "/")
Loop

"OK, the year finally has 4 digits. Confirmthe date:

185

Date (data type)

186

See Also

Ent er edDat e# = CDat e(st r Dat e$)
MsgBox "Date entered: " & strDate$

End Sub

When you run this macro, an input box appears asking for the date and indicating the correct format.
If you click OK without entering anything, the macro ends. Otherwise, it loops aslong asthe year has
fewer than four digits, redisplaying the input box for a correct date. When the macro detects that the

year has been correctly entered, then it displays a message box confirming the date.

Legacy data

If you havelegacy datain a source that specifies dates using only two digitsfor the year, which cannot
be changed to specify four digitsfor the year, and you anticipate adding new data to that source, your

macros will have to compensate. How you compensate will depend upon what kind of date
information is being stored, and what operations you need to perform on the dates.

For example, if you need to cal cul ate the span of years between adate stored in the database and today,
and you know that a negative timespan would be an error, you can test for a negative timespan and

then correct it if it occurs. The following code fragment provides a simple example.

Sub testdated
"I Exanpl e showi ng how to correct for 2-digit dates in |egacy data

Dimdatel As Date

Di m date2 As Date

Dimdiff As Date

datel = #1/1/24# 'This date would cone fromthe database
date2 = Date "This is the current date

"Now cal cul ate the el apsed years: date2 - datel
diff = DateDi ff("yyyy", datel, date2)
MsgBox "The raw date difference is: " & CDbl (diff) & " years."

"Now run the correction routine. If the elapsed tineperiod is negative, then
"subtract a century fromdatel and recal cul ate. OGtherw se, everything is fine.
If Cnt(diff)<0 Then
dat el= Dat eAdd("yyyy", -100, datel)
MsgBox "The corrected datel year is: " & DatePart("yyyy", datel)
diff = DateDi ff("yyyy", datel, date2)
MsgBox "The corrected date difference is " & CDbl (diff) & " years."
El se
MsgBox "The date difference, " & CDbl(diff) & " years, was correct."”
End if

End Sub

This macro first cal cuates the number of years between dat e1# and dat e2#. If the result is negative,
then the macro subtracts a century from dat e1# and recalculates the difference. To verify that the
macro does not subtract a century from valid dates, replace the line defining dat e1# as#1/ 1/ 24# to

define the year with four digits: #1/ 1/ 1924#.

Keywords, Data Types, Operators, and Expressions on page 5; Time and Date Access on page 10

Date, Date$ (functions)

Date, Date$ (functions)

Syntax

Description

Example

See Also

Dat e[$][()]

Returnsthe current system date. The Dat e$ function returns the date using the short date format. The
Dat e function returns the date as aDat e variant.

Use the Dat e/ Dat e$ Statements to set the system date.

Const crlf

Chr$(13) + Chr$(10)

Sub Main
TheDat e$ = Dat e$()
Date$ = "01/01/95"
Sessi on. Echo "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date$()
Dat e$ = TheDate$
Sessi on. Echo "Restored date to: " & TheDate$
End Sub

Time and Date Access on page 10

Date, Date$ (statements)

Syntax

Description

Example

Dat e[$] = newdate

Sets the system date to the specified date. The Dat e$ Statement requires astring variable using one of
the following formats:

MM DD- YYYY
MV DD- YY
MM DD/ YYYY
MV DY YY,

where Wis atwo-digit month between 1 and 31, Dbisatwo-digit day between 1 and 31, and Yyyv is
afour-digit year between 1/1/100 and 12/31/9999.

The Dat e statement converts any expression to adate, including string and numeric values. Unlikethe
Dat e$ Statement, Dat e recognizes many different date formats, including abbreviated and full month
names and avariety of ordering options. If newdat e contains atime component, it is accepted, but the
time is not changed. An error occursif newdat e cannot be interpreted as avalid date.

Under Windows 95, you may not have permission to change the date, causing runtime error 70 to be
generated. The range of valid datesis from January 1, 1980 to December 31, 2099.

Const crlf = Chr$(13) + Chr$(10)

Sub Main

TheDat e$ = Dat e$()

Date$ = "01/01/95"

Sessi on. Echo "Saved date: " & TheDate$ & crlf & "Changed date: " & _
Dat e$()

187

DateAdd

See Also

Dat e$ = TheDat e$
Session. Echo "Restored date to: " & TheDate$
End Sub

Time and Date Access on page 10

DateAdd

Syntax

Description

188

Dat eAdd(i nterval , nunber, date)

Returns abat e variant representing the sum of date and a specified number (nunber) of timeintervals
(i nterval). Thisfunction adds a specified number (nunber) of timeintervals (i nt er val) to the
specified date (dat e). The following table describes the named parameters to the bat eAdd function:

Parameter Description
interval String expression indicating the time interval used in the addition.

number Integer indicating the number of time intervals you wish to add. Positive values result
in dates in the future; negative values result in dates in the past.
date Any expression convertible to a date string expression. An example of avalid date/

time string would be "January 1, 1993".

The i nterval parameter specifieswhat unit of time isto be added to the given date. It can be any of
the following:

Time Interval
"y Day of the year
"yyyy" Year

" g Day

"t Month
"q" Quarter
" Wesek

"h" Hour

"n" Minute
"s" Second
"w! Weekday

To add daysto adate, you may use either day, day of the year, or weekday, asthey are all equivalent
(G RANRE S

The Dat eAdd function will never return an invalid date/time expression. The following example adds
two months to December 31, 1992:

DateDiff

s# = DateAdd("ni', 2, "Decenber 31, 1992")

In this example, s$ is returned as the double-precision number equal to "February 28, 1993", not
"February 31, 1993".

Thereisaruntime error if you try subtracting atime interval that is larger than the time value of the
date.

Example Sub Min
Di m sdat e$
sdate$ = Date$
NewDat e# = Dat eAdd("yyyy", 4, sdate$)
NewDat e# Dat eAdd(" m', 3, NewDat e#)
NewDat e# Dat eAdd("ww', 2, NewDat e#)
NewDat e# = Dat eAdd("d", 1, NewDate#)
s$ = "Four years, three nonths, two weeks, and one day from now
s$ = s$ & Format (NewDat e#, "long date")
Sessi on. Echo s$

End Sub

See Also Time and Date Access on page 10

DateDiff

Syntax DateDiff(interval, datel, date2 [, [firstdayofweek] [,firstweekofyear]])

Description Returnsa Dat e variant representing the number of given time intervals between dat e1 and dat e2.
The following describes the named parameters:

Parameter Description

interval String expression indicating the specific time interval you wish to find the dif-
ference between. An error is generated if i nt erval isnull.

datel Any expression convertible to a date. An example of avalid date/time string
would be "January 1, 1994".

dat e2 Any expression convertible to a date. An example of avalid date/time string

would be "January 1, 1994".

firstdayof week Indicates the first day of the week. If omitted, then Sunday is assumed (i.e.,
the constant ebSunday described bel ow).

firstweekofyear |ndicatesthe first week of the year. If omitted, then the first week of the year
is considered to be that containing January 1 (i.e., the constant ebFirstJanl as
described below).

The following lists the valid time interval strings and the meanings of each. The For mat $ function
uses the same expressions

189

DateDiff

Time Interval
"y" Day of the year
"yyyy" Year

" g Day

Bl Month
"q" Quarter
"' Week

"h" Hour

"n" Minute
"s" Second
"W Weekday

To find the number of days between two dates, you may use either day or day of the year, asthey are
both equivalent ("d", "y").

The time interval weekday (" w') will return the number of weekdays occurring between dat e1 and
dat e2, counting the first occurrence but not the last. However, if thetimeinterval isweek (*ww'), the
function will return the number of calendar weeks between dat e1 and dat e2, counting the number
of Sundays. If dat e1 falls on a Sunday, then that day is counted, but if dat e2 falls on a Sunday, it is
not counted.

Thefirstdayof week parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for f i r st dayof week.
ebSunday 1 Sunday (the default)

ebMbnday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThur sday 5 Thursday

ebFri day 6 Friday

ebSat ur day 7 Saturday

Theftirstdayof year parameter, if specified, can be any of the following constants:

190

DatePart

Example

See Also

Constant Value Description

ebUseSyst em 0 Use the system setting for f i r st dayof year.

ebfirstjanl 1 The first week of the year isthat in which January 1 occurs (the
default).

ebfirstfourdays 2 Thefirst week of the year is that containing at least four daysin the
year.

ebfirstful lweek 3 The first week of the year isthe first full week of the year.

Thenpat ebi f f functionwill return anegative date/timevalueif dat e1 isadatelater intimethan dat e2.
If dat el or dat e2 are Nul |, then Nul | isreturned.

Sub Main
t oday$ = Format (Date$, "Short Date")
Next Week For mat (Dat eAdd("d", 14, today$),"Short Date")
Di f Days# = DateDi ff("d", today$, NextWek)
Di f Week# = DateDi ff("w', today$, NextWeek)
s$ = "The difference between " & today$ & " and " & NextWeek
s$ = s$ &" is: " & DifDays# & " days or " & DifWek# & " weeks"
Sessi on. Echo s$
End Sub

Time and Date Access on page 10

DatePart

Syntax

Description

DatePart (interval, date [, [firstdayofweek] [,firstweekofyear]])

Returnsan I nt eger representing a specific part of a date/time expression. The Dat ePart function
decomposes the specified date and returns a given date/time element. The following table describes
the named parameters:

Parameter Description

interval String expression that indicates the specific time interval you wish to identify
within the given date.

date Any expression convertible to a date. An example of avalid date/time string

would be "January 1, 1995".

firstdayof week Indicates thefirst day of the week. If omitted, then Sunday is assumed (i.e.,
the constant ebSunday described below).

firstweekofyear |ndicatesthe first week of the year. If omitted, then the first week of the year

is considered to be that containing January 1 (i.e., the constant ebFi r st Jan1
as described bellow).

The following table lists the valid time interval strings and the meanings of each. The For nat $
function uses the same expressions.

191

DatePart

192

Time Interval
"y" Day of the year
"yyyy" Year

" g Day

Bl Month
"q" Quarter
"' Week

"h" Hour

"n" Minute
"s" Second
"W Weekday

The firstdayof week parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for f i r st dayof week.
ebsunday 1 Sunday (the default)

ebMbnday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThur sday 5 Thursday

ebFri day 6 Friday

ebSat ur day 7 Saturday

Theftirstdayof year parameter, if specified, can be any of the following constants:

Constant

Description

ebUseSyst em

ebfirstjanl

ebfirstfourdays

ebfirstfull week

Use the system setting for fi r st dayof year.

Thefirst week of the year isthat in which January 1 occurs (the
default).

Thefirst week of the year isthat containing at least four daysin the
year.

Thefirst week of the year isthe first full week of the year.

Sub Main

today$ = Date$

Example Const crlf = Chr$(13) + Chr$(10)

gtr = DatePart("q",today$)

DateSerial

yr = DatePart("yyyy", today$)
no = DatePart("ni,today$)
wk = DatePart("ww',today$)
da = DatePart("d",today$)
s$ = "Quarter: " & qtr &crlf
s$ = s$ & "Year D" &yr &ecrlf
s$ = s$ & "Month : " &m &ecrlf
s$ = s$ & "Week D" & wk &ecrlf
s$ = s$ & "Day ;" &da &ecrlf
Sessi on. Echo s$
End Sub
See Also Time and Date Access on page 10
DateSerial
Syntax DateSerial (year, nonth, day)
Description Returnsa Dat e variant representing the specified date. The bat eSeri al function takes the following
named parameters:
Named Parameter Description
year Integer between 100 and 9999
mont h Integer between 1 and 12
day Integer between 1 and 31
Example Sub Min
tdate# = DateSerial (1993, 08, 22)
Sessi on. Echo "The DateSerial value for August 22, 1993, is: " & tdate#
End Sub
See Also Time and Date Access on page 10
DateValue
Syntax DateVal ue(date)
Description Returnsanbat e variant representing the date contained in the specified string argument.
Example Sub Min
tdate$ = Date$
tday = DateVal ue(tdate$)
Sessi on. Echo tdate & " date value is: " & tday$
End Sub
See Also Time and Date Access on page 10

Day

Syntax

Day(dat e)

193

DDB

Description

Example

See Also

DDB

Syntax

Description

Example

194

Returns the day of the month specified by dat e. The value returned isan | nt eger between 0 and 31
inclusive. The date parameter isany expression that convertsto abate.
Const crlf = Chr$(13) + Chr$(10)
Sub Main
CurDate = Now()
Session. Echo "Today is day " & Day(CurDate) & " of the month." & _
crlf & _ "Tomorrow is day " & Day(CurDate + 1)
End Sub

Time and Date Access on page 10

DDB(cost, salvage, life, period [,factor])

Calculates the depreciation of an asset for a specified per i od of time using the double-declining
balance method. The double-declining balance method cal cul ates the depreciation of an asset at an
accelerated rate. The depreciation is at its highest in thefirst period and becomes progressively lower
in each additional period. bbB uses the following formulato calcul ate the depreciation:

DDB =((Cost-Total _depreciation_fromall _other_periods) * 2)/Life

The pbB function uses the following named parameters:

Parameter Description

cost Double representing theinitial cost of the asset

sal vage Double representing the estimated val ue of the asset at the end of its predicted useful
life

life Double representing the predicted length of the asset’s useful life

peri od Double representing the period for which you wish to cal culate the depreciation

factor Depreciation factor determining the rate the balance declines. If this parameter is

missing, then 2 is assumed (double-declining method).

Thelife and peri od parameters must be expressed using the same units. For example, if life is
expressed in months, then peri od must also be expressed in months.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
s$ = "Depreciation Table" & crlf &crlf
For yy =1 To 4
Cur Dep# = DDB(10000. 0, 2000. 0, 10, yy)
s$ = s$ & "Year " &yy &" : " & CurDep# & crlf
Next yy
Sessi on. Echo s$
End Sub

DDEExecute

See Also Numeric, Math, and Accounting Functions on page 6

DDEEXxecute

Syntax DDEExecute channel, command$

Description Executes acommand in another application. The DDEExecut e Statement takes the following
parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEI ni ti at e. An error
will result if channel isinvalid.

command$ String containing the command to be executed. The format of conmand$ depends on
the receiving application.

If the receiving application does not execute the instructions, there is a runtime error.

Example Thisexample selectsacell in an Excel spreadsheet.

Sub Main
g$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmi$ = "[Select(" & gq$ & "RIC1: R8C1" & q$ & ")]"

DDEExecut e ch% cnd$
DDETer mi nate ch%
End Sub

See Also DDE Access on page 10

DDElnitiate

Syntax DDElnitiate(application$, topic$)

Description Initializesa DDE link to another application and returns a unique number subsequently used to refer
to the open DDE channel. The DDEI ni ti at e Statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with which a DDE con-
versation will be established.

topic$ String containing the name of the topic for the conversation. The possible values
for this parameter are described in the documentation for the server application.

This function returns O if the compiler cannot establish the link. Thiswill occur under any of the fol-
lowing circumstances:

» The specified application is not running.

195

DDEPoke

Example

See Also

e Thetopic wasinvalid for that application.
* Memory or system resources are insufficient to establish the DDE link.
This example selects arange of cellsin an Excel spreadsheet.

Sub Main
g$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmi$ = "[Select(" & gq$ & "RIC1: R8C1" & q$ & ")]"

DDEExecut e ch% cnd$
DDETer mi nate ch%
End Sub

DDE Access on page 10

DDEPoke

Syntax

Description

Example

See Also

DDEPoke channel, Dataltem val ue

Sets the value of adataitem in the receiving application associated with an open DDE link. The
DDEPoke Statement takes the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An error
will result if channel isinvalid.

Dataltem Dataitem to be set. This parameter can be any expression convertible to a string.
The format depends on the server.

Val ue The new value for the dataitem. This parameter can be any expression convertible

to astring. The format depends on the server. A runtime error isgenerated if val ue is
null.

This example pokes avalue into an Excel spreadsheet.

Sub Main
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDEPoke ch% "R1C1", " 980"
DDETer mi nate ch%

End Sub

DDE Access on page 10

DDERequest, DDERequest$

Syntax

Description

196

DDERequest [$] (channel , Dat al t ents)

Returns the value of the given dataitem in the receiving application associated with the open DDE
channel. DDERequest $ returns a st ri ng, whereas DDERequest returnsast ri ng variant. The
DDERequest / DDERequest $ functions take the following parameters:

DDESend

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An error
results if channel isinvalid.

Datal tent String containing the name of the dataitem to request. The format for this parameter
depends on the server.

The format for the returned value depends on the server.
Example Thisexample gets avalue from an Excel spreadsheet.

Sub Main
ch% = DDEInitiate("Excel","c:\excel\test.xls")
s$ = DDERequest $(ch% "R1C1")
DDETer mi nate ch%
Sessi on. Echo s$
End Sub

See Also DDE Access on page 10

DDESend

Syntax DDESend application$, topic$, Dataltem value

Description InitiatesaDDE conversation with the server as specified by appl i cati on$ andt opi ¢$ and sendsthat
server anew value for the specified item. The DDESend statement takes the following parameters:

Parameter Description

appl i cation$ String containing the name of the application (the server) with which a DDE con-
versation will be established.

t opi c$ String containing the name of the topic for the conversation. The possible valuesfor
this parameter are described in the documentation for the server application.

Datal tem Dataitem to be set. This parameter can be any expression convertible to a string.
The format depends on the server.

Val ue New value for the dataitem. This parameter can be any expression convertibleto a

string. The format depends on the server. A runtime error is generated if val ue is
null.

The DbESend statement performs the equivalent of the following statements:

ch% = DDEIl ni ti ate(application$, topic$)
DDEPoke ch% item data
DDETer mi nate ch%

Example This code sets the content of the first cell in an Excel spreadsheet.

197

DDETerminate

See Also

Sub Main
On Error CGoto Trapl
DDESend "Excel ", "c:\excel\test.xls","RLC1","Hello, world."
On Error Goto O
"Add nore lines here.
Exit Sub
Trapl:
MsgBox "Error sending data to Excel."
End Sub

DDE Access on page 10

DDETerminate

Syntax

Description

Example

See Also

DDETer mi nat e channel

Closesthe specified DDE channel. Thechannel parameterisani nt eger containing the DDE channel
number returned from DDEI ni ti at e. Anerror will resultif channel isinvalid. All open DDE channels
are automatically terminated when the macro ends.

This code setsthe content of the first cell in an Excel spreadsheet.

Sub Main
g$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cmi$ = "[Select(" & gq$ & "RIC1:R8C1" & q$ & ")]"

DDEExecut e ch% cnd$
DDETer mi nate ch%
End Sub

DDE Access on page 10

DDETerminateAll

Syntax

Description

Example

See Also

198

DDETer mi nat eAl |

Closesall open DDE channels. All open DDE channels are automatically terminated when the macro
ends.

This code selects the contents of the first cell in an Excel spreadsheet.

Sub Main
g$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
cnd$ = "[Select(" & gq$ & "RICL: R8C1" & g% & ")]"

DDEExecut e ch% cnd$
DDETer mi nat eAl |
End Sub

DDE Access on page 10

DDETimeout

DDETimeout

Syntax DDETi meout nilliseconds

Description Setsthe number of milliseconds that must elapse before any DDE command times out. The
mi | 1iseconds parameter isalLong and must be within the following range:

0 <= nmlliseconds <= 2,147, 483, 647

The default is 10,000 (10 seconds).

Example Sub Min
g$ = Chr(34)
ch% = DDEInitiate("Excel","c:\sheets\test.xls")
DDETi meout (20000)
cmi$ = "[Select(" & gq$ & "RIC1:R8C1" & q$ & ")]"
DDEExecut e ch% cnd$
DDETer mi nate ch%
End Sub

See Also DDE Access on page 10

Declare

Syntax Declare {Sub | Function} nane[TypeChar] [{[ParanmeterList]}] [As type]

Decl are {Sub | Function} nane[TypeChar] [CDecl | Pascal | System |
StdCall] [Lib "Li bNane$" [Alias "AliasNane$"]] [([ParaneterList])] [As type]

Thefirst syntax isfor prototyping subroutines and functionsfor later portions of the macro or for other
members of the macro collective, while the second syntax isfor declaring compiled routines stored in
externa .DLL files. In both cases, Par anet er Li st isacomma-separated list of the following (up to
30 parameters are allowed):

[Optional] [ByVal | ByRef] ParaneterNane[()] [As Paraneter Type]

Description Decl ar e Statements must appear outside of any Sub or Funct i on declaration. Decl ar e Statements are
only valid during thelife of the macro in which they appear. The Dec! ar e statement usesthefollowing
parameters:

199

Declare

Parameter

Description

name

TypeChar

Pascal

System

StdcCal |

Li bNane$

type

200

Any valid name. When you declare functions, you can include a type-declaration char-
acter to indicate the return type. This name is specified as anormal keyword— i.e., it
does not appear within quotes.

An optional type-declaration character used when defining the type of data returned
from functions. It can be any of the following characters. #, !, $, @, %, or &. For
external functions, the @ character is not alowed. Type-declaration characters can
only appear with function declarations, and take the place of the As type clause. Cur-
rency data cannot be returned from external functions. Therefore, the @ type-declara-
tion character cannot be used when declaring external functions.

Optional keyword indicating that the external subroutine or function usesthe C calling
convention. With C routines, arguments are pushed right to left on the stack and the
caller performs stack cleanup.

Optional keyword indicating that this external subroutine or function usesthe Pascal
calling convention. With Pascal routines, arguments are pushed left to right on the
stack and the called function performs stack cleanup.

Optional keyword indicating that the external subroutine or function uses the System
calling convention. With System routines, arguments are pushed right to left on the
stack, the caller performs stack cleanup, and the number of argumentsis specified in
the AL register.

Optional keyword indicating that the external subroutine or function uses the StdCall
calling convention. With StdCall routines, arguments are pushed right to left on the
stack and the called function performs stack cleanup.

Must be specified if the routineis stored in an external .DLL file. This parameter spec-
ifies the name of the library or code resource containing the external routine and must
appear within quotes. The Li bNane$ parameter can include an optional path specifying
the exact location of the library or code resource. Alias name that must be given to
provide the name of the routine if the name parameter is not the routine's real name.
For example, the following two statements declare the same routine:

Decl are Function GetCurrentTinme Lib "user" () As |nteger
Declare Function GetTinme Lib "user" Alias "GetCurrentTi me" _As |nteger

Use an alias when the name of an external routine conflicts with the name of an inter-
nal routine or when the external routine name contains invalid characters. The Al i as-
Nanme$ parameter must appear within quotes.

Indicates the return type for functions. For external functions, the valid return types
are: integer, long, string, single, double, date, boolean, and data objects. Currency,
variant, fixed-length strings, arrays, OLE Automation objects, and user-defined types
cannot be returned by external functions.

Declare

Parameter

Description

Opti ona

By Val

By Ref

Par anet er -

Nanme

O

Par anet er -

Type

Keyword indicating that the parameter is optional. All optional parameters must be of
type variant. Furthermore, all parameters that follow the first optional parameter must
also be optional. If this keyword is omitted, then the parameter being defined is
required when calling this subroutine or function.

Optional keyword indicating that the caller will pass the parameter by value. Parame-
ters passed by value cannot be changed by the called routine.

Optional keyword indicating that the caller will pass the parameter by reference.
Parameters passed by reference can be changed by the called routine. If neither ByVal
or ByRef are specified, then ByRef is assumed.

Name of the parameter, which must follow naming conventions:

Must start with aletter; may contain letters, digits, and the underscore character ().
Punctuation and type-declaration charactersare not allowed. The exclamation point (1)
can appear within the name aslong asit is not the last character, in which caseitis
interpreted as a type-declaration character.

Must not exceed 80 charactersin length. Also, Par anet er Name can end with an
optional type-declaration character specifying the type of that parameter (i.e., any of
the following characters: %, &, !, #, @).

Indicates that the parameter is an array.

Specifies the type of the parameter (e.g., integer, string, variant, and so on). The As
Par anet er Type clause should only beincluded if Par amet er Name does not contain a
type-declaration character. In addition to the default datatypes, Par anet er Type can
specify any user-defined structure, OLE Automation object, or dataobject . If the data
type of the parameter is not known in advance, then the Any keyword can be used.
Thisforces the compiler to relax type checking, allowing any datatype to be passed in

place of the given argument. For example:
Decl are Sub Convert Lib "nylib" (a As Any)
The Any datatype can only be used when passing parameters to external routines.

Prototying macro subroutines and functions

Functionsthat need to be accessible to other members of the macro collective must be prototyped with
the Decl ar e statement. This prototyping is optional for subroutines unless you have also required
explicit type-checking with the Opti on Explicit Statement.

The following sample shows how to prototype subroutines and functions, and how to call those
subroutines and functions from other macros in the collective. See “Modules and collectives’ on
page 22 for more information on which modules can provide subroutines and functions, and which
modul es can access them.

201

Declare

202

Adding and subtracting via prototypes

In this example, we create a small palette of SmarTerm Buttons that ask for two numbers and either
add them or multiply them. Follow these steps:

Use the Tools>Macros command to add a subroutine called Add to the user macro file. The macro
should look like this:

Sub Add(x As Double, y As Doubl e)

"1 Add two nunbers.

Msgbox x & " plus " &y & " equals " & x +y
End Sub

While you have the user macro file open, add the following function after the Add subroutine.

Function Multiply(x As Double, y As Double) As Double
"Multiply two nunbers together.
Miltiply = x * vy

End Function

Then save and close the user macro file.

Now create a new palette of SmarTerm Buttons called Math. It should have two buttons, an Add
button and a Multiply button.

Edit the Add button to attach an embedded macro called GetSum. GetSum should look like this:

Sub Get Sum
! Add to nunbers by calling Add() in the user macro file.
Dim x As Doubl e
Dimy As Doubl e
X I nput Box("Enter the first nunmber.", "Addition Exanple")
y I nput Box("Enter the first number.", "Addition Exanple")

Add x,y 'Using the Add subroutine in the user macro file
End Sub

Save the macro and close the macro editor.

Now edit the Multiply button to attach an embedded macro called GetProduct. GetProduct should
look like this:

Sub Get Product
"Multiply two numbers using the Miultiply function in the user macro file
Di m Pr oduct
Dim x As Doubl e
Dimy As Doubl e
X I nput Box("Enter the first nunmber.", "Miltiplication Exanple")
y I nput Box("Enter the first number.", "Miltiplication Exanple")

Product = Multiply(x,y) 'Using the Miultiply function in the user macro file

Msgbox x & " times " & CStr(y) & " equals " & Product, ebOKOnly, "Miliplication”
End Sub

Declare

Don't save and close the macro file just yet. While you have this macro open, scroll to the top of the
editor and insert the following lines to the very beginning of thefile:
Option Explicit

Decl are Sub Add(x As Double, y As Doubl e)
Decl are Function Multiply(x As Double, y as Double) As Double

Thefirst line sets the compiler to require type-checking. Y ou must add this line to be able to access
external functions. The next line prototypes the Add subroutine, and the third line prototypes the
Multiply function.

Now save and close the macro file, save the palette and close the palette editor, and try out your new
Buttons. You can confirm that subroutines are available without Option Explicit by commenting out
the Option Explicit statement in the Buttons macro and then trying out the Buttons again. The Add
Button will work, while the Multiply Button will halt with an error message.

Declaring routines in external .DLL files

Thefollowing sections describe some of theissuesinvolvedin calling routines stored in external .DLL
files. Thisis avery powerful feature of the macro language, as it gives you access to any routinein
any accessible .DLL file onthe computer. However, because of differencesin calling conventionsand
data representation, it can be tricky to implement.

Passing parameters

By default, the compiler passes arguments by reference. Many external routines require avalue rather
than areferenceto avaue. The Byval keyword does this. For example, this C routine:

voi d MessageBeep(int);

would be declared as follows:

Decl are Sub MessageBeep Lib "user" (ByVal n As |nteger)

Asan example of passing parameters by reference, consider the following C routine which requires a
pointer to an integer as the third parameter:

int SystenParanetersinfo(int,int,int *, int);

This routine would be declared as follows (notice the ByRef keyword in the third parameter):

Decl are Function SystenParanetersinfo Lib "user" (ByVal action As Integer, _
ByVal uParam As | nteger,ByRef plnfo As Integer, ByVal updatelNl As Integer) _
As | nteger

Strings can be passed by reference or by value. When they are passed by reference, a pointer to a
pointer to a null-terminated string is passed. When they are passed by value, the compiler passes a
pointer to a null-terminated string (i.e., a C string).

When passing astring by reference, the external routine can change the pointer or modify the contents

203

Declare

204

of the existing. If an external routine modifiesapassed string variabl e (regardl ess of whether the string
was passed by reference or by value), then there must be sufficient space within the string to hold the
returned characters. This can be accomplished using the space function, as shown in the following ex-
ample:

Decl are Sub Get W ndowsDirectory Lib "kernel" (ByVal dirnanme$, ByVal |ength%

Sub Main

Dims As String

s = Space(128)

Get WndowsDi rectory s, 128
End Sub

Another alternative to ensure that a string has sufficient space is to declare the string with a fixed
length:

Decl are Sub Get W ndowsDirectory Lib "kernel" (ByVal dirnanme$, ByVal |ength%

Sub Main

Dims As String * 128

Get WndowsDi rectory s, | en(s)
End Sub

Calling conventions with external routines

For external routines, the argument list must exactly match that of the referenced routine. When
calling an external subroutine or function, the compiler needs to be told how that routine expectsto
receive its parameters and who is responsible for cleanup of the stack. The following table describes
the macro language’ s calling conventions and how these trandate to those supported by C.

Macro Call C Cdl Characteristics

StdCal | _stdcall Arguments are pushed right to left. The called function performs stack
cleanup. Thisisthe default.

Pascal pascal Arguments are pushed left to right. The called function performs stack
cleanup

Cdecl cdecl Arguments are pushed right to left. The caller performs stack cleanup.

Passing null pointers

For external routines defined to receive strings by value, the compiler passes uninitialized strings as
null pointers (a pointer whose value is 0). The constant ebNul | St ri ng can be used to force anull
pointer to be passed as shown below:

Decl are Sub Foo Lib "sanple" (ByVal |pName As Any)

Sub Main
Foo ebNul I String "pass a null pointer
End Sub

Declare

Another way to passanull pointer isto declare the parameter that isto receive the null pointer astype
Any, then pass along value O by value:

Decl are Sub Foo Lib "sanple" (ByVal |pName As Any)

Sub Main

Foo ByVval 0& "Pass a null pointer.
End Sub

Passing data to external routines
The following table shows how the different data types are passed to external routines:

Data Type Passed As

ByRef Bool ean Pointer to a 2-byte value containing —1 or O.

Byval Bool ean 2-byte value containing —1 or 0.

ByVal Integer Pointer to a2-byte short integer.

ByRef Integer 2-byteshort integer.

ByVval Long Pointer to a 4-byte long integer.

ByRef Long 4-byte long integer.

ByRef Single Pointer to a 4-byte |EEE floating-point value (af | oat).
Byval Single 4-bytelEEE floating-point value (afl oat).

ByRef Doubl e Pointer to an 8-byte | EEE floating-point value (adoubl e).
Byval Doubl e 8-byte |EEE floating-point value (adoubl e).

ByVal String A pointer to a null-terminated string. With strings containing embedded nulls
(chr$(0)), itisnot possible to determine which null represents the end of the
string; therefore, the first null is considered the string terminator. An external
routine can freely change the content of a string. It cannot, however, write
beyond the end of the null terminator.

ByRef String A pointer to a pointer to a null-terminated string. With strings containing
embedded nulls (chr $(0)), it is not possible to determine which null represents
the end of the string; therefore, the first null is considered the string terminator.
An external routine can freely change the content of astring. It cannot, however,
write beyond the end of the null terminator.

ByRef Variant A pointer to a 16-byte variant structure. This structure contains a 2-byte type
(the same as that returned by the VarType function), followed by 6-bytes of slop
(for alignment), followed by 8-bytes containing the value.

Byval Vvariant A 16-bytevariant structure. This structure contains a 2-byte type (the same as
that returned by the VarType function), followed by 6-bytes of slop (for align-
ment), followed by 8-bytes containing the value.

205

Declare

Data Type Passed As

Byval Obj ect For data objects, a4-byte unsigned long integer. This value can only be used by
external routines written specifically for the macro language. For OLE Automa-
tion objects, a 32-bit pointer to an LPDISPATCH handle is passed.

ByRef Obj ect For data objects, a pointer to a 4-byte unsigned long integer that references the
object. Thisvalue can only be used by external routines written specifically for
the macro language. For OL E Automation objects, a pointer to an LPDIS-
PATCH valueis passed.

Byval User - Theentire structureis passed to the external routine. It isimportant to remember

defined type that structuresin the macro language are packed on 2-byte boundaries, meaning
that the individual structure members may not be aligned consistently with sim-
ilar structures declared in C.

ByRef User- A pointer to the structure. It isimportant to remember that structuresin the
defined type macro language are packed on 2-byte boundaries, meaning that the individual
structure members may not be aligned consistently with similar structures

declared in C.

Arrays A pointer to apacked array of elements of the given type. Arrays can only be
passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Only variable-length strings can be passed to external routines; fixed-length strings are automatically
converted to variable-length strings.

The compiler passes data to external functions consistent with that routine’s prototype as defined by
the Decl ar e statement. There is one exception to thisrule: you can override ByRef parameters using
the Byval keyword when passing individual parameters. The following example shows a number of
different waysto passan | nt eger to an external routine called Foo:

Decl are Sub Foo Lib "MLib" (ByRef i As Integer)

Sub Main
Dimi As |nteger
i =6
Foo 6 "Passes a tenporary integer (value 6) by
"reference
Foo i 'Passes variable "i" by reference
Foo (i) "Passes a tenporary integer (value 6) by
"reference
Foo i + 1 ' Passes tenporary integer (value 7) by
"reference
Foo ByVal i 'Passes i by val ue
End Sub

The above example shows that the only way to override passing a value by referenceis to use the
ByVal keyword.

206

Declare

a M W NP

Use caution when using the ByVal keyword in this way. The external routine Foo expects to receive
apointer to an I nt eger —a 32-bit value; using ByVval causes the compiler to passthe| nt eger by
value—a 16-bit value. Passing data of the wrong size to any external routine will have unpredictable
results.

Returning values from external routines

The compiler supports the following values returned from external routines: I nt eger, Long, Si ngl e,
Doubl e, Stri ng, Bool ean, and all object types. When returning a st ri ng, the compiler assumes that
the first null-terminator isthe end of the string.

Calling external routines

The compiler makes a copy of all data passed to external routines. This allows other simultaneously
executing macros to continue executing before the external routine returns.

Care must be exercised when passing the same by-reference variable twice to external routines. When
returning from such calls, the compiler must update the real datafrom the copies made prior to calling
the external function. Sincethe same variablewas passed twice, you will be unableto determinewhich
variable will be updated.

External routines are contained in DLLs. The libraries containing the routines are |loaded when the
routineiscalled for thefirst time (i.e., not when the macro isloaded). Thisallowsamacroto reference
external DLLsthat potentially do not exist.

Y ou cannot execute routines contained in 16-bit Windows DLLs.

All the Windows API routinesare contained in DLLs, such as"user32", "kernel 32", and "gdi32". The
file extension ".exe" isimplied if another extension is not given.

The Pascal and stdcal | calling conventions are identical. Furthermore, the arguments are passed
using C ordering regardless of the calling convention—right to left on the stack.

If the Li bNarre$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

The directory containing the compiler

The current directory

The Windows system directory

The Windows directory

All directories listed in the path environment variable

207

DefType

Example

See Also

If the first character of Al i asNane$ is#, then the remainder of the characters specify the ordinal
number of the routine to be called. For example, the following two statements are equivalent (under
Win32, Get current Ti ne is defined as Get Ti ckCount , ordinal 300, in kernel32.dl1):

Decl are Function GetTinme Lib "kernel 32.dI 1" Alias "GetTickCount" () As Long

Decl are Function GetTime Lib "kernel 32.dl 1" Alias "#300" () As Long

Both nane and Al i asNane$ are case-sensitive.

All strings passed by value are converted to MBCS strings. Similarly, any string returned from an
externa routine is assumed to be a null-terminated MBCS string.

The compiler does not perform an increment on OL E automation objects before passing them to
external routines. When returned from an external function, it assumesthat the propertiesand methods
of the OLE automation object are UNICODE and that the object uses the default system locale.

Decl are Function Get Mbdul eHandl e& Lib "kernel 32" Alias "Get Mbdul eHandl eA" (ByVal _
name2 As_ String)

Decl are Function GetProfileString& Lib "Kernel 32" Alias "GetProfileStringA" (Byval _
SNane As_ String, ByVal KNane As String, ByVal Def As String, ByVal Ret As String, _
ByVal Size As Long)

Sub Main
SNane$ = "Intl" "Wn.ini section nane.
KNane$ = "sCountry" "Wn.ini country setting.
ret$ = String$(255, 0) "Initialize return string.
If GetProfileString(SNane$, KNane$, "",ret$, Len(ret$)) Then
Sessi on. Echo "Your country setting is: " &ret$
El se

Session. Echo "There is no country setting in your win.ini file."
End | f
I f Get Mbdul eHandl e(" Progman") Then
Sessi on. Echo "Prognman is | oaded."
El se
Sessi on. Echo "Progman is not | oaded."
End I f
End Sub

Macro Control and Compilation on page 7

DefType

Syntax

Description

208

{Deflnt | DefLng | DefStr | DefSng | DefDbl | DefCur | DefOhj | DefVar | DefBool |
Def Dat e} |etterrange

Establishes the default type assigned to undeclared or untyped variables. The Def Type statement
controls automati c type declaration of variables. Normally, if avariable is encountered that hasn't yet
been declared with the bi m Publ i ¢, or Pri vat e statement or does not appear with an explicit type-
declaration character, then that variable is declared implicitly asavariant (Def var A—Z). Thiscan be
changed using the Def Type Statement to specify starting letter rangesfor Type other thaninteger. The

DefType

| ett errange parameter is used to specify starting letters. Thus, any variable that beginswith a
specified character will be declared using the specified Type.

The syntax for | etterrange is:

letter [-letter] [,letter [-letter]]...

Def Type Vvariable types are superseded by an explicit type declaration using either atype-declaration
character or the i m Publ i ¢, Or Pri vat e Statement.

The Def Type statement only affects how macros are compiled and has no effect at runtime.
The Def Type statement can only appear outside all sub and Funct i on declarations.

The following table describes the data types referenced by the different variations of the Def Type

Statement:

Statement Data Type
Def | nt Integer
Def Lng Long

Def St r String
Def Sng Single
Def Dbl Double
Def Cur Currency
Def Obj Object
Def Var Variant
Def Bool Boolean
Def Dat e Date

Example DefStr a-|

DefLhg mr
Def Sng s-u
Def Dbl v-w
Deflnt x-z
Const crlf = Chr$(13) + Chr$(10)
Sub Main
a = 100.52
m = 100. 52
s = 100.52
v = 100.52
x = 100.52
nmesg = "The values are:"
nesg = nesg & “(String) a: & a
nmesg = mesg & "(Long) m " & m
nesg = nesg & “(Single) s: " &s
nmesg = nmesg & "(Double) v: " & v

209

Dialog (function)

nesg = nesg & "(Integer) x: " & x
Sessi on. Echo nesg
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

Dialog (function)

Syntax Dial og(Di al ogVariable [,[DefaultButton] [, Tineout]])

Description Displaysthe dialog associated with bi al ogVari abl e, returning an | nt eger indicating which button
was clicked. The Di al og function returns any of the following values:

Value Function
-1 The OK button was clicked.
0 The Cancel button was clicked.

>0 A push button was clicked. The returned number represents which button was clicked
based on its order in the dialog template (1 is the first push button, 2 is the second push
button, and so on).

The Di al og function accepts the following parameters:

210

Dialog (function)

Example

See Also

Parameter Description

Di al ogvariable Name of avariable that has previoudy been dimensioned as a user dialog. This
is accomplished using the Dim statement: Di m MyDi al og As MyTenpl ate. All
dialog variables are local to the Sub or Function in which they are defined. Pri-
vate and public dialog variables are not allowed.

Defaul tButton AnInteger specifying which button isto act as the default button in the dialog.
Thevalue of Def aul t But t on can be any of the following:

e -1 Thisvaueindicatesthat the OK button, if present, should be used asthe
defaullt.

e 0 Thisvalueindicates that the Cancel button, if present, should be used as
the default.

¢ >0 Thisvalueindicates that the Nth button should be used as the default.
This number isthe index of a push button within the dialog template.

If Def aul t But t on is not specified, then —1 is used. If the number specified by
Def aul t But t on does not correspond to an existing button, then there will be no
default button. The default button appears with a thick border and is selected
when the user presses Enter on a control other than a push button.

Ti meout An integer specifying the number of milliseconds to display the dialog before
automatically dismissing it. If Ti reout isnot specified or isegual to 0, then the
dialog will be displayed until dismissed by the user. If adialog has been dis-
missed due to atimeout, the Dialog function returns O.

A runtime error is generated if the dialog template specified by Di al ogVvari abl e does not contain at
least one of the following statements:

PushBut t on Cancel Button
OKBut t on Pi ct ureButton

Sub Main
Begi n Di al og Di skError Tenpl ate 16, 32, 152, 48, "Di sk Error"
Text 8,8, 100, 8,"The di sk drive door is open."
PushButton 8, 24, 40, 14, " Abort", . Abort
PushButton 56, 24, 40, 14, "Retry", . Retry
PushBut t on 104, 24, 40, 14, "I gnore", .l gnore
End Di al og
Di m Di skError As Di skError Tenpl ate
r% = Di al og(Di skError, 3, 0)
Sessi on. Echo "You sel ected button: " & r%
End Sub

User Interaction on page 9

211

Dialog (statement)

Dialog (statement)

Syntax

Description

Example

See Also

Di al og Di al ogVariable [,[Defaul tButton] [, Timeout]]

Same asthe bi al og function, except that the bi al og statement does not return avalue. (Seebi al og
[function].)

Sub Main
Begi n Di al og Di skError Tenpl ate 16, 32, 152, 48, "Di sk Error"
Text 8,8, 100, 8,"The di sk drive door is open."
PushButton 8, 24, 40, 14, " Abort", . Abort
PushButton 56, 24, 40, 14, "Retry", . Retry
PushButt on 104, 24, 40, 14, "I gnore", .l gnore
End Di al og
Di m Di skError As Di skError Tenpl ate
Di al og Di skError, 3,0
End Sub

User Interaction on page 9

Dialogs (topic)

See Also

Dim
Syntax

Description

212

The compiler displays all runtime dialogs in the following fonts:

e 8-point MS Sans Serif font for non-MBCS systems
e Thedefault system font for MBCS systems
The default help key isF1.

User Interaction on page 9

Di m nane [(<submacros>)] [As [New] type] [,nane [(<submacros>)] [As [New] type]]...

Declares alist of local variables and their corresponding types and sizes. If atype-declaration
character is used when specifying nane (such as%, @, &, $, or !), the optional [As t ype] expression
isnot allowed. For example, the following are allowed:

Di m Tenperature As | nteger
Di m Tenper at ur e%

The submacr os parameter allows the declaration of dynamic and fixed arrays. The subnacr os
parameter uses the following syntax:

[l ower to] upper [,[l|ower to] upper]...

Dim

The 1 ower and upper parameters are integers specifying the lower and upper bounds of the array. If
I ower isnot specified, then the lower bound as specified by opti on Base isused (or 1if no Option
Base statement has been encountered). Y ou can have a maximum of 60 array dimensions.

Thetotal size of an array (not counting space for strings) is limited to 64K. Dynamic arrays are
declared by not specifying any bounds:

Di m a()

The type parameter specifies the type of the dataitem being declared. It can be any of the following
datatypes: string, I nt eger, Long, Si ngl e, Doubl e, Cur r ency, Obj ect , data object, built-in datatype,
or any user-defined data type. When specifying explicit object types, you can use thefollowing syntax
for type:

nodul e. cl ass

where nodul e isthe name of the module in which the object is defined and ¢l ass isthetype of object.
For example, to specify the OLE automation variable for Excel’s Application object, you could use
the following code:

Dima As Excel . Application

Explicit object types can only be specified for data objects and early bound OL E automation objects—
i.e., objects whose type libraries have been registered with the compiler.

A Di mstatement within asubroutine or function declaresvariableslocal to that subroutine or function.
If the Di mstatement appears outside of any subroutine or function declaration, then that variable has
the same scope as variables declared with the pri vat e Statement.

Fixed-length strings
Fixed-length strings are declared by adding a length to the st ri ng type-declaration character:

Dimnane As String * length

where| engt h isalitera number specifying the string's length.

Implicit variable declaration

If the compiler encounters a variable that has not been explicitly declared with bi m then the variable
will be implicitly declared using the specified type-declaration character (#, %, @, $, or &). If the
variable appears without a type-declaration character, then the first letter is matched against any
pending Def Type statements, using the specified type if found. If no Def Type statement has been
encountered corresponding to the first letter of the variable name, then vari ant is used.

213

Dim

214

Declaring explicit OLE automation objects

The bi mstatement can be used to declare variables of an explicit object type for objects known to the
compiler through type libraries. Thisis accomplished using the following syntax:

Di m nane As application.class

Theappl i cat i on parameter specifies the application used to register the OL E automation object and
cl ass specifiesthe specific object type as defined in the type library. Objects declared in this manner
are early bound, meaning that the compiler is able to resolve method and property information at
compile time, improving the performance when invoking methods and properties of that object
variable.

Creating new objects

The optional New keyword is used to declare anew instance of the specified data object. Thiskeyword
cannot be used when declaring arrays or OLE automation objects.

At runtime, the application or extension that defines that object type is notified that a new object is
being defined. The application responds by creating a new physical object (within the appropriate
context) and returning a reference to that object, which isimmediately assigned to the variable being
declared.

When that variable goes out of scope (i.e., the sub or Funct i on procedure in which the variableis
declared ends), the application is notified. The application then performs some appropriate action,
such as destroying the physical object.

Initial values
All declared variables are given initial values, as described in the following table:

Data Type Initial Vaue

Integer 0

Long 0

Double 0.0

Single 0.0

Date December 30, 1899 00:00:00
Currency 0.0

Boolean False

Object Nothing

Variant Empty

Dir, Dir$

Examples

See Also

DataType Initial Value

String """ (zero-length string)

User-defined type Each element of the structure gets an initial value as described above.
Arrays Each element of the array gets an initial value as described above.

Naming conventions
Variable names must follow these naming rules:

¢ Must start with aletter.

* May contain letters, digits, and the underscore character (_); punctuation is not allowed. The ex-
clamation point (!) can appear within the name aslong asit is not the last character, in which case
it isinterpreted as a type-declaration character.

» Thelast character of the name can be any of the following type-declaration characters: #, @, %, !,
&,and $.

* Must not exceed 80 charactersin length.

» Cannot be areserved word.
The following examples use the Dim statement to declare various variable types.

Sub Main
Dimi As I|nteger
Dml & " Long
Dims As Single
Di m d# ' Doubl e
Dimc$ "String
Dim MArray(10) As Integer "10 el ement integer array
Dim MyStrings$(2, 10) '2-10 elenment string arrays
Dim Fil enanes$(5 to 10) "6 elenent string array
Di m Val ues(1 to 10, 100 to 200) '111 el ement variant array
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

Dir, Dir$

Syntax

Description

Dir[$] [(pathnane [,attributes])]

Returnsast ri ng containing the first or next file matching pat hnane. If pat hnane is specified, then
thefirst file matching that pat hnane is returned. If pat hnane is not specified, then the next file
matching theinitia pat hnane is returned.

Di r$ returnsa String, whereas Di r returnsast ri ng variant.

The bi r$/ 0i r functions take the following named parameters:

215

Dir, Dir$

Parameter Description

pat hnane String containing afile specification. If this parameter is specified, then bi r $ returns
the first file matching thisfile specification. If this parameter is omitted, then the next
file matching the initial file specification is returned. If no path is specified in pat h-
nare, then all files are returned from the current directory.

attributes |nteger specifying attributes of files you want included in the list, as described bel ow.

If this parameter is omitted, then only the normal, read-only, and archivefiles are
returned.

Anerror isgenerated if Di r$ iscalled without first calling it with avalid pat hnane.

If there is no matching pat hnane, then a zero-length string is returned.

Wildcards

The pat hname argument can include wildcards, such as* and ?. The* character matches any
sequence of zero or more characters, whereas the ? character matches any single character. Multiple
*s and ?s can appear within the expression to form complete searching patterns. The following table
shows some examples:

ThisPattern Matches These Files Not TheseFiles
*S*TXT SAMPLE.TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT
C*T.TXT CAT.TXT CAPTXT, ACATS.TXT
CT CAT, CAPTXT CAT.DOC
C?T CAT, CUT CAT.TXT, CAPITCT
* (All files)

Attributes

Y ou can control which files are included in the search by specifying the optional attributes parameter.
TheDir, Dir$ functionsaways return al normal, read-only, and archivefiles (ebNor mal O
ebReadOnly Or ebAr chi ve). To include additional files, you can specify any combination of the
following attributes (combined with the o operator):

Constant Vaue Includes

ebNor mal 0 Read-only, archive, subdir, and none
ebH dden 2 Hidden files

ebSystem 4 System files

ebVol une 8 Volume label

ebDirectory 16 Subdirectories

Example Const crlf = Chr$(13) + Chr$(10)

216

DiskDrives

Sub Main
Di m a$(10)
a(l) =Dir$("*.*")
i%=1
Vile (a(i% <> "") And (i %< 10)
i%=1i%+ 1
a(ip = Dr$
Wend
Session. Echo a(1) & crlf & a(2) &crlf & a(3) &crlf & a(4)
End Sub

See Also Drive, Folder, and File Access on page 4

DiskDrives

Syntax DiskDrives array()

Description Fillsthe specified Stri ng or vari ant array with alist of valid driveletters. The array() parameter
specifies either a zero- or a one-dimensioned array of strings or variants. The array can be either
dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of elements. If
there are no el ements, then the array will be redimensioned to contain no dimensions. Y ou can usethe
LBound, UBound, and Ar rayDi ns functions to determine the number and size of the new array’s
dimensions.

If thearray isfixed, each array element isfirst erased, then the new elements are placed into the array.
If there arefewer elementsthan will fit in the array, then the remaining el ements areinitialized to zero-
length strings (for st ri ng arrays) or Enpt y (for vari ant arrays). A runtime error resultsif the array is
too small to hold the new elements.

Example Sub Min
Dimdrive$()
Di skDrives drive$
Sessi on. Echo "Avail abl e Di sk Drives: <CR><LF>"
For i= 0 to UBound(drive$)
Sessi on. Echo drive$ & "<CR><LF>"
Next i
End Sub

See Also Drive, Folder, and File Access on page 4

DiskFree

Syntax DiskFree&([drive$])

Description ReturnsaLong containing the free space (in bytes) available on the specified drive. If dri ve$ is zero-
length or not specified, then the current driveisassumed. Only the first character of the dri ve$ string
isused.

217

DlgCaption (function)

Example Sub Min
s$ = "c"
i # = Di skFree(s$)
Session. Echo "Free di sk space on drive '" & s$ & "' is: " &i#
End Sub

See Also Drive, Folder, and File Access on page 4

DlgCaption (function)

Syntax Dl gCaption[()]

Description Returnsastring containing the caption of the active user-defined dialog. This function returns a zero-
length string if the active dialog has no caption.

See Also User Interaction on page 9

DligCaption (statement)

Syntax DigCaption text

Description Changes the caption of the current dialog to t ext .

Example Function DigProc(c As String,a As Integer,v As Integer)
If a =1 Then
Dl gCapti on choose(Dl gVal ue("Opti onG oupl") + 1, _
"Bl ue", "G een")
El self a = 2 Then
Dl gCapti on choose(Dl gVal ue("Opti onG oupl") + 1, _
"Bl ue", "G een")
End I f
End Function

Sub Main
Begi n Di al og UserDial og ,, 149, 45,"Untitled",. D gProc
OKBut t on 96, 8, 40, 14
Opti onGroup . Opti onG oupl
OptionButton 12,12, 56, 8, "Bl ue", . Opti onButtonl
OptionButton 12, 28,56, 8, "G een", . Opti onButton2
End Di al og
Dimd As UserDi al og
Di al og d
End Sub

See Also User Interaction on page 9

DlgControlld

Syntax DI gControl | d(Control Name$)

Description Returnsan | nt eger containing the index of the specified control asit appearsin the dialog template.
Thefirst control in the dialog template is at index O, the second is at index 1, and so on. The

218

DlgEnable (function)

Example

See Also

Control Name$ parameter contains the name of the . 1 denti fi er parameter associated with that
control in the dialog template.

The macro statements and functions that dynamically manipulate dialog controlsidentify individual
controls using either the . 1 denti fi er hame of the control or the control’s index. Using the index to
refer to acontrol is slightly faster but results in code that is more difficult to maintain.

Function Dl gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
"If a control is clicked, disable the next three controls.

If Action% = 2 Then
"Enabl e the next three controls.
start % = Dl gControl | d(Control Name$)

For i = start%+ 1 To start% + 3
Dl gEnabl e i, True
Next i
DigProc =1 "Don’t close the dialog.
End | f

End Function

User Interaction on page 9

DigEnable (function)

Syntax

Description

[]

Example

See Also

Dl gEnabl e(Control Nane$ | Control | ndex)

Returns Tr ue if the specified control is enabled; returns Fal se otherwise. Disabled controls are
dimmed and cannot receive keyboard or mouse input.

The Cont r ol Name$ parameter contains the name of the . 1 denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont rol | ndex is specified, Opt i onGr oup Statements do not count as a control.

If you attempt to disable the control with the focus, the compiler will automatically set the focusto the
next control in the tab order.

I f Dl gEnabl e(" SaveOpti ons") Then
Sessi on. Echo "The Save Options are enabled."
End | f
| f Dl gEnabl e(10) And Dl gVisible(12) Then code = 1 Else code = 2

User Interaction on page 9

219

DlgEnable (statement)

DlgEnable (statement)

Syntax

Description

[]

Example

See Also

Dl gEnabl e {Control Name$ | Control I ndex} [,isOn]

Enables or disables the specified control. Disabled controls are dimmed and cannot receive keyboard
or mouse input.

Thei son parameter isan | nt eger specifying the new state of the control. It can be any of the
following values:

Value Description
0 The control is disabled.
1 The control is enabled.

Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual option button) or asa
group (by specifying the name of the option group).

The Cont r ol Name$ parameter contains the name of the . I denti fi er parameter associated with a
control inthedialog template. Alternatively, by specifying the Cont r ol | ndex parameter, acontrol can
be referred to using itsindex in the dialog template (0 is the first control in the template, 1 isthe
second, and so on).

When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.

Dl gEnabl e "SaveOpti ons", False 'Disable the Save Options control.
Dl gEnabl e "Editi ngOptions"’' Toggl e a group of option buttons.

For i =0 To 5
Dl gEnabl e i, True " Enabl e six controls.
Next i

User Interaction on page 9

DlgFocus (function)

Syntax

Description

220

Example

See Also

Dl gFocus$[()]

Returnsa st ri ng containing the name of the control with the focus. The name of the control is the
.Identifier parameter associated with the control in the dialog template.

I f Dl gFocus$ = "Files" Then "Does it have the focus?

Dl gFocus " K" ' Change the focus to another control.
End | f
Dl gEnabl e "Files", False "Now we can disable the control.

User Interaction on page 9

DlgFocus (statement)

DlgFocus (statement)

Syntax

Description

[]

Example

See Also

Dl gFocus Control Nane$ | Control | ndex

Setsfocusto the specified control. A runtime error resultsif the specified control is hidden, disabled,
or nonexistent.

The Cont r ol Nane$ parameter contains the name of the . 1 denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont rol | ndex is specified, Opt i onGr oup Statements do not count as a control.

If Dl gFocus$ = "Files" Then 'Does it have the focus?
Dl gFocus " K" ' Change the focus to another control.
End I f

Dl gEnabl e "Files", False 'Now we can disable the control.

User Interaction on page 9

DigListBoxArray (function)

Syntax

Description

Example

Dl gLi st BoxArray({Control Name$ | Control I ndex}, ArrayVariable)

Fills alistbox, combo box, or drop listbox with the elements of an array, returning an | nt eger
containing the number of elements that were actually set into the control.

The Cont r ol Name$ parameter contains the name of the . 1 denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont rol | ndex is specified, Opt i onGr oup Statements do not count as a control.

TheArrayVvari abl e parameter specifies asingle-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. Ar r ayVari abl e can
specify an array of any fundamental datatype (structures are not allowed). Nul | and Enpt y values are
treated as zero-length strings.

Function DI gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 And Control Nane$ = "Files" Then
Di m NewFi | es$() "Create a new dynanic array.
FileList NewFiles$,"*.txt" 'Fill the array with files.

221

DlgListBoxArray (statement)

r% = DI gLi st BoxArray "Files", NewFil es$
"Set itens in the |istbox.

Dl gvalue "Files", 0 "Set the selection to first item
DigProc =1 "Don’t close the dialog.

End I f

Session. Echo r% & " itens were added to the |istbox."

End Function

See Also User Interaction on page 9

DligListBoxArray (statement)

Syntax DI gListBoxArray {Control Name$ | Control Index}, ArrayVariable

Description Fillsalistbox, combo box, or drop listbox with the elements of an array.

The Cont r ol Nane$ parameter contains the name of the . 1 dent i fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

|:| When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.

The ArrayVvari abl e parameter specifies asingle-dimensioned array used to initialize the elements of
the control. If this array has no dimensions, then the control will be initialized with no elements. A
runtime error results if the specified array contains more than one dimension. Ar r ayVari abl e can
specify an array of any fundamental datatype (structures are not allowed). Nul | and Enpt y values are
treated as zero-length strings.

Example Function D gProc(Control Nane$, Acti on% SuppVal ue% As | nteger
If Action% = 2 And Control Nane$ = "Files" Then

Di m NewFi | es$() "Create a new
"dynamic array.
Fi |l eLi st NewFil es$, "*.txt" "Fill the array with files.
Dl gLi st BoxArray "Files", NewFiles$ 'Set items in the |istbox.
Dl gvalue "Files", 0 "Set the selection

"to the first item
End I f
End Function

See Also User Interaction on page 9

DlgProc

Syntax Function D gProc(Control Name$, Action, SuppValue) As Integer

Description Describesthe syntax, parameters, and return value for dialog functions. Dialog functions are called by
the compiler during the processing of a custom dialog. The name of a dialog function (Dl gPr oc)

222

DlgProc

appearsin the Begi n Di al og Statement asthe . Dl gPr oc parameter. Dialog functions require the
following parameters:

Parameter Description

Control Name$ String containing the name of the control associated with Act i on.

Action Integer containing the action that called the dialog function.

SuppVal ue Integer of extrainformation associated with Act i on. For some actions, this

parameter is not used.

When the compiler displays a custom dialog, the user may click buttons, type text into edit fields,
select items from lists, and perform other actions. When these actions occur, the compiler calls the
dialog function, passing it the action, the name of the control on which the action occurred, and any
other relevant information associated with the action.

The following table describes the different actions sent to dialog functions:

223

DlgProc

224

Action

Description

1

Thisaction is sent immediately before the dialog is shown for the first time. This gives
the dialog function a chance to prepare the dialog for use. When this action is sent, Con-
trol Name$ contains a zero-length string, and SuppVval ue is 0.The return value from the

dialog function isignored in this case.

Before Showing the dialog: After action 1 is sent, the compiler performs additional pro-
cessing before the dialog is shown. Specifically, it cycles though the dialog controls
checking for visible picture or picture button controls. For each visible picture or picture
button control, the compiler attempts to load the associated picture. In addition to check-
ing picture or picture button controls, the compiler automatically hides any control out-
side the confines of the visible portion of the dialog. This prevents the user from tabbing
to controls that cannot be seen. However, it does not prevent you from showing these
controls with the D gvi si bl e statement in the dialog function.

This action is sent when:

A buttoniis clicked, such as OK, Cancel, or a push button. In this case, Cont r ol Nane$
contains the name of the button. Suppval ue contains 1 if an OK button was clicked and 2
if aCancel button was clicked; suppval ue is undefined otherwise. If the dialog function
returns O in response to this action, then the dialog will be closed. Any other val ue causes
the compiler to continue dialog processing.

A checkbox's state has been modified. In this case, Cont r ol Name$ contains the name of
the checkbox, and suppVal ue contains the new state of the checkbox (1 if on, O if off).
An option button is selected. In this case, Cont r ol Nane$ contains the name of the option
button that was clicked, and suppVval ue containstheindex of the option button within the
option button group (0-based).

The current selection is changed in alistbox, drop listbox, or combo box. In this case,
Cont r ol Narre$ contains the name of the listbox, combo box, or drop listbox, and Sup-
pVal ue contains the index of the new item (O isthefirst item, 1 isthe second, and so on).

This action is sent when the content of atext box or combo box has been changed. This
action is only sent when the control loses focus. When this action is sent, Cont r ol Nane$
contains the name of the text box or combo box, and SuppVval ue contains the length of
the new content. The dialog function’s return value is ignored with this action.

DlgProc

Example

Action Description

4 This action is sent when a control gains the focus. When this action is sent, Cont r ol -
Nanme$ contains the name of the control gaining the focus, and SuppVal ue contains the
index of the control that lost the focus (0-based).The dialog function's return value is
ignored with this action.

5 Thisaction is sent continuously when the dialog isidle. If thedialog function returns 1in
response to this action, then the idle action will continue to be sent. If the dialog function
returns 0, then the compiler will not send any additional idle actions. When the idle
actionis sent, Cont r ol Nane$ contains a zero-length string, and SuppVval ue containsthe
number of times the idle action has been sent so far.

6 Thisaction is sent when the dialog is moved. The Cont r ol Nane$ parameter contains a
zero-length string, and suppVval ue is0.The dialog function’s return value is ignored with
this action.

User-defined dial oges cannot be nested. In other words, the dial og function of one dial og cannot create
another user-defined dialog. Y ou can, however, invoke any built-in dialog, such as Sessi on. Echo or
| nput Box$.

Within dialog functions, you can use the following additional statements and functions. These
statements allow you to manipulate the dialog controls dynamically.

Dl gVisible Dl gText $ DI gText
Dl gSet Pi cture Dl gLi st BoxArray Dl gFocus
Dl gEnabl e Dl gControl I d

The dialog function can optionally be declared to return a vari ant . When returning a variable, the
compiler will attempt to convert the variant to an | nt eger . If the returned variant cannot be converted
toan I nt eger, then 0 is assumed to be returned from the dialog function.

Function Sanpl eDl gProc(Control Nane$, Action% SuppVal ue%
If Action% = 2 And Control Nane$ = "Printing" Then
Dl gEnabl e "Print Opti ons", SuppVal ue%
Sanpl eDlgProc = 1 'Don’t close the dialog.
End I f
End Function

Sub Main
Begi n Di al og Sanpl eDi al ogTenpl ate 34, 39, 106, 45, "Sanple", _
. Sanpl eDl gProc
OKBut t on 4, 4, 40, 14
Cancel Button 4, 24, 40, 14
CheckBox 56, 8,38,8,"Printing",.Printing
OptionGroup . PrintOptions
OptionButton 56, 20, 51, 8, "Landscape", . Landscape
OptionButton 56, 32,40,8,"Portrait",.Portrait
End Di al og
Di m Sanpl eDi al og As Sanpl eDi al ogTenpl ate

225

DlgSetPicture

See Also

Sanpl eDi al og. Printing = 1
r% = Di al og(Sanpl eDi al og)

End Sub

User Interaction on page 9

DlgSetPicture

Dl gSet Pi cture {Control Name$ | Control | ndex}, Pi ct ureNane$, Pi ct ur eType

Syntax

Description

Examples

226

Changes the content of the specified picture or picture button control. The DI gSet Pi ct ur e Statement
accepts the following parameters:

Parameter

Description

Cont r ol Narme$

Pi ct ur eNane$

Pi ctureType
0
10

String containing the name of the . | denti fi er parameter associated with a con-
trol in the dialog template. A case-insensitive comparison is used to locate the
specified control within the template. Alternatively, by specifying the cont rol I n-
dex parameter, acontrol can be referred to using itsindex in the dialog template
(Oisthefirst control in the template, 1 isthe second, and so on).

When Cont r ol | ndex is specified, OptionGroup statements do not count as a con-
trol.

String containing the name of the picture. If Pi ct ur eType iSO, then this parameter
specifies the name of the file containing the image. If Pi ct ur eType is 10, then

Pi ct ur eNane$ specifies the name of the image within the resource of the picture
library. If Pi ct ur eNames$ is empty, then the current picture associated with the
specified control will be deleted. Thus, a technique for conserving memory and
resources would involve setting the picture to empty before hiding a picture con-
trol.

Integer specifying the source for the image. The following sources are supported:
Theimage is contained in afile on disk.

Theimage is contained in the picture library specified by the Begin Dialog state-
ment. When thistypeis used, the pi ct ur eNamre$ parameter must be specified with
the Begin Dialog statement.

Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting images
from apicture library, the compiler assumes that the resource type for metafilesis 256.

Picture libraries are implemented as DLLs.

"Set picture froma file.
Dl gSet Pi cture "Picturel","\w ndows\ checks. bmp", 0

" Set control

10's image froma library.

Dl gSet Pi cture 27, "FaxReport", 10

DlgText

See Also

User Interaction on page 9

DligText

Syntax DI gText {Control Name$ |

Description

[]

Example

See Also

Control I ndex}, NewText$

Changes the text content of the specified control. The effect of this statement depends on the type of
the specified control:

Control Type

Effect of DigText

Picture
Option group
Drop listbox

OK button
Cancel button
Push button
Listbox

Combo box
Text

Text box
Group box
Option button

Runtime error.
Runtime error.

If an exact match cannot be found, the Di gText statement searches from the first
item looking for an item that starts with NewText $. If no match is found, then the
selection is removed.

Sets the label of the control to NewText $.
Sets the label of the control to NewText $.
Sets the label of the control to NewText $.

Setsthe current selection to the item matching NewText $. If an exact match cannot
be found, the Dl gText statement searches from the first item looking for an item
that starts with NewText $. If no match isfound, then the selection is removed.

Sets the content of the edit field of the combo box to NewText $.
Setsthe label of the control to NewText $.

Sets the content of the text box to NewText $.

Setsthe label of the control to NewText $.

Setsthe label of the control to NewText $.

The Control Name$ parameter contains the name of the . | denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,

and so on).

When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.

Dl gText

If Dl gText$(9)

" GroupBox1", " Save Options"
= "Save Options" Then

' Change text of group box 1.

Dl gText 9,"Editing Options"’ Change text to "Editing Options".

End | f

User Interaction on page 9

227

DIgText$

DIgText$

Syntax

Description

[]

Example

See Also

Dl gText $(Cont r ol Nane$ |

Control I ndex)

Returnsthetext content of the specified control. Thetext returned depends on the type of the specified

control:

Control Type

Value Returned by DIgText$

Picture No valueisreturned. A runtime error occurs.

Optiongroup No vaueisreturned. A runtime error occurs.

Drop listbox Returns the currently selected item. A zero-length string is returned if no itemis
currently selected.

OK button Returns the label of the control.

Cancel button Returnsthe label of the control.

Push button Returnsthe label of the control.

Listbox Returns the currently selected item. A zero-length string isreturned if no itemis
currently selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.

Group box Returns the label of the control.

Option button

Returns the |abel of the control.

The Control Name$ parameter contains the name of the . I denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont rol | ndex is specified, Opt i onGr oup Statements do not count as a control.

Sessi on. Echo Dl gText $(10) "Display the text in the tenth control.
I f DI gText $(" SaveOptions") = "EditingOptions" Then

Session. Echo "You are currently viewing the editing options."
End | f

User Interaction on page 9

DlgValue (function)

228

Syntax

Dl gVal ue(Control Nane$ | Control | ndex)

DlgValue (statement)

Description Returnsan| nt eger indicating the value of the specified control. The value of any given control
depends on its type, according to the following table:

Control Type

DlgValue Returns

Option group

Listbox
Drop listbox
Checkbox

Theindex of the selected option button within the group (0 isthe first option but-
ton, 1 isthe second, and so on).

The index of the selected item.
The index of the selected item.
1if the checkbox is checked; O otherwise.

A runtime error is generated if DI gval ue is used with controls other than those listed in the above

table.

The Cont r ol Nane$ parameter contains the name of the . 1 dent i fi er parameter associated with a
control inthedialog template. Alternatively, by specifyingthe Cont r ol | ndex parameter, acontrol can
be referred to using itsindex in the dialog template (0 is the first control in the template, 1 isthe
second, and so on).

|:| When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.

Example See D gval ue (Statement).

See Also User Interaction on page 9

DlgValue (statement)

Syntax Digvalue {Control Name$ | Control I ndex}, Val ue

Description Changesthe value of the given control. The value of any given control isan | nt eger and dependson
its type, according to the following table:

Control Type

Description of Value

Option group

Listbox
Drop listbox
Checkbox

Theindex of the new selected option button within the group (O is the first option
button, 1 is the second, and so on).

The index of the new selected item.
The index of the new selected item.
1 if the checkbox is to be checked; 0 to remove the check.

Aruntine error is generated if D gVval ue isused with controls other than those listed in the

above table.

229

DlgVisible (function)

[]

Example

See Also

The Cont r ol Nane$ parameter contains the name of the . 1 denti fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont rol | ndex is specified, Opt i onGr oup Statements do not count as a control.

I f Dl gVal ue("MyCheckBox") = 1 Then
Dl gVval ue "MyCheckBox", 0

El se
Dl gVval ue "MyCheckBox", 1

End | f

User Interaction on page 9

DlgVisible (function)

Syntax

Description

[]

Example

See Also

Dl gVi si bl e(Control Nane$ | Control | ndex)

Returns Tr ue if the specified control isvisible; returns Fal se otherwise.

The Cont r ol Nane$ parameter contains the name of the . 1 dent i fi er parameter associated with a
control inthedialog template. Alternatively, by specifyingthe Cont r ol | ndex parameter, acontrol can
bereferred to using itsindex in the template (0 isthefirst control in the template, 1 isthe second, and
SO On).

When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.
A runtime error is generated if DI gVi si bl e is called when no user dialog is active.

Dl gVisible("Portrait") Then Beep

Dl gVi si bl e(10) And DI gVisi bl e(12) Then
Sessi on. Echo "The 10th and 12th controls are visible."
End I f

I f
| f

User Interaction on page 9

DlgVisible (statement)

Syntax

Description

230

Dl gVisi bl e {Control Nane$ | Control I ndex} [,isOn]

Hides or shows the specified control. Hidden controls cannot be seen in the dialog and cannot receive
the focus using Tab.

Thei son parameter isan | nt eger specifying the new state of the control. It can be any of the
following values:

DlgVisible (statement)

Example

Value Description
1 The control is shown.
0 The control is hidden.

Omitted Toggles the visibility of the control.

Option buttons can be manipulated individually (by specifying an individual option button) or asa
group (by specifying the name of the option group).

The Cont r ol Nane$ parameter contains the name of the . 1 dent i fi er parameter associated with a
control in the dialog template. A case-insensitive comparison is used to locate the specific control
within the template. Alternatively, by specifying the Cont r ol | ndex parameter, a control can be
referred to using itsindex in the dialog template (0 isthefirst control in the template, 1 isthe second,
and so on).

When Cont r ol | ndex is specified, Opt i onGr oup Statements do not count as a control.

Picture Caching

When the dialog isfirst created and before it is shown, the compiler calls the dialog function with
action set to 1. At thistime, no pictures have been loaded into the picture controls contained in the
dialog template. After control returns from the dialog function and before the dialog is shown, the
compiler will load the pictures of al visible picture controls. Thus, it is possiblefor the dial og function
to hide certain picture controls, which prevents the associated pictures from being loaded and causes
thedialog to load faster. When apicture control ismadevisiblefor thefirst time, the associated picture
will then be loaded.

Sub Enabl eG oup(start% finish%

For i =6 To 13 "Disable all options.
DigVisible i, False
Next i
For i = start% To finish% "Enabl e only the right ones.
DigVisible i, True
Next i
End Sub

Function DI gProc(Control Nane$, Action% SuppVal ue%
If Action% = 1 Then

Dl gVval ue "Wi chOptions", 0 "Set to save options.
Enabl eG oup 6, 8 " Enabl e the save options.

End | f

If Action% = 2 And Control Name$ = "SaveOptions" Then
Enabl eG oup 6, 8 " Enabl e the save options.
DigProc =1 "Don’t close the dial og.

End | f

If Action% = 2 And Control Name$ = "Edi ti ngOptions" Then
Enabl eGroup 9, 13 "Enabl e the editing options.
DigProc =1 "Don’t close the dial og.

End If

End Function

231

Do...Loop

See Also

Sub Main

Begin Di al og OptionsTenpl ate 33, 33, 171, 134, "Options", .Dl gProc

" Background (controls 0-5)

G oupBox 8, 40, 152, 84

Opti onGroup . Wi chOpti ons
OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions
OptionButton 8, 20, 65, 8, "Editing Options",.EditingOptions

OKButton 116, 7, 44, 14

Cancel Button 116, 24, 44, 14

" Save options (controls 6-8)

CheckBox
CheckBox
CheckBox
"Editing
CheckBox
CheckBox
CheckBox
CheckBox
CheckBox
End Di al og

20,
20,

56, 88, 8, "Always create backup",.CheckBox1l
68, 65, 8, "Autommtic save",.CheckBox2
80, 70, 8, "Allow overwiting",.CheckBox3

options (controls 9-13)

56, 65, 8, "Overtype node",.OvertypeMde

68, 69, 8, "Uppercase only",.UppercaseOnly

80, 105, 8, "Autommtically check syntax",.AutoCheckSynt ax
92, 73, 8, "Full line selection",.FullLineSelection

104, 102, 8, "Typing replaces sel ection",.Typi ngRepl acesText

Di m OptionsDi al og As Opti onsTenpl ate
Di al og OptionsDi al og

End Sub

User Interaction on page 9

Do...Loop

Syntax 1

Syntax 2

Syntax 3

Description

Examples

232

Do {While |

Do
statenents

Loop {Wile

Do
statenents
Loop

Repeats a block of statements while a condition is Tr ue or until a condition is Tr ue. If the {whi | e |
unti |} conditional clauseis not specified, then the loop repeats the statements forever (or until the

Until} condition statements Loop

Until} condition

compiler encountersan Exi t Do Statement).

The condi ti on parameter specifies any Bool ean expression.

Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. When you're
running amacro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Thisfirst example uses the Do...While statement, which performs the iteration, then checks the

condition, and repeats if the condition is True.

Sub Main

Di m a$(100)

i%=-1
Do

DoEvents (function)

i%=i%+ 1
If i%= 0 Then
a(ivy = Dir$("*")
El se
a(ivp =Dir$
End | f
Loop Wiile (a(i% <> "" And i % <= 99)
Session. Echo str$(i% & " files found" & "<CR><LF>

This second example usesthe Do whi | e...Loop, which checks the condition and then repeats if the
condition is True.

Di m a$(100)

i%=0

a(i% = Dirg("*")

Do Vhile a(i% <> "" And i % <= 99

i%=i%+1
a(ivp =Dir$
Loop

Session. Echo str$(i% & " files found" & "<CR><LF>

Thisthird example usesthe Do unti | ...Loop, which does the iteration and then checks the condition
and repeatsif the conditionis True.

Di m a$(100)
i%=0
a(ivy = Dir$("*")
Do Until a(i®y ="" O i%= 100
i%=1i%+ 1
a(ip =Dr$
Loop
Session. Echo str$(i% & " files found" & "<CR><LF>

Thislast exampleusestheDo. . . Unti | Loop, which performstheiteration first, checksthe condition,
and repeats if the conditionis True.

Di m a$(100)
i%=-1
Do
i%=i%+ 1
If i%= 0 Then
a(i% = Dr$("*")

El se
a(ivp =Dir$
End | f
Loop Until (a(i%p ="" O i%= 100)
Session. Echo str$(i% & " files found" & "<CR><LF>
End Sub

See Also Macro Control and Compilation on page 7

DoEvents (function)

Syntax DoEvents[()]

233

DoEvents (statement)

Description Yields control to other applications, returning an | nt eger 0. This statement yields control to the
operating system, allowing other applications to process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keysin the queue have been
processed.

Example See DoEvents (statement).

See Also Operating System Control on page 9

DoEvents (statement)

Syntax DoEvents

Description Yields control to other applications. This statement yields control to the operating system, allowing
other applicationsto process mouse, keyboard, and other messages.

If asendKeys statement is active, this statement waits until all the keys in the queue have been
processed.

Examples Thisfirst example showsamacro that takes along time and hogs the system. The subroutine explicitly
yields to allow other applications to execute.

Sub Main
Open "test.txt" For Qutput As #1
For i = 1 To 10000
Print #1,"This is a test of the systemand stuff."
DoEvent s
Next i
Cl ose #1
End Sub

In this second example, the DoEvents statement is used to wait until the queue has been completely

flushed.

Sub Main
AppActi vate "Not epad” "Activate Notepad.
SendKeys "This is a test.",False ’'Send sone keys.
DoEvent s "Wait for the keys to play back.

End Sub

See Also Operating System Control on page 9

Double (data type)

Syntax Doubl e

Description Used to declare variables capable of holding real numbers with 15-16 digits of precision. Double
variables are used to hold numbers within the following ranges:

234

DropListBox

See Also

Sign Range
Negative —1.797693134862315E308 <= doubl e <= —4.94066E-324
Positive 4.94066E-324 <= doubl e <= 1.797693134862315E308

The type-declaration character for Doubl e is#.

Storage

Internally, doubles are 8-byte (64-bit) |EEE values. Thus, when appearing within astructure, doubles
require 8 bytes of storage. When used with binary or random files, 8 bytes of storage are required.

Each Doubl e consists of the following

e A l-bitsign
e An11-bit exponent
e A 53-hit significant (mantissa)

Keywords, Data Types, Operators, and Expressions on page 5

DropListBox

Syntax

Description

DropListBox x, y, width, height, ArrayVariable, .ldentifier

Creates adrop listbox within adialog template. When the dialog is invoked, the drop listbox will be
filled with the elements contained in Ar r ayVar i abl e. Drop listboxes are similar to combo boxes, with
the following exceptions:

« Thelistbox portion of adrop listbox is not opened by default. The user must open it by clicking
the down arrow.

» Theuser cannot typeinto adrop listbox. Only itemsfrom the listbox may be selected. With combo
boxes, the user can type the name of an item from the list directly or type the name of an item that
is not contained within the combo box.

This statement can only appear within a dialog template (i.e., between the Begi n Di al og and End
Di al og Statements).

The DropLi st Box statement requires the following parameters:

235

DropListBox

236

Example

See Also

Parameter Description

X,y Integer coordinates specifying the position of the control (in dialog units) rela-
tive to the upper left corner of the dialog.

wi dt h, hei ght Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVari abl e

.ldentifier

Single-dimensioned array used to initialize the elements of the drop listbox. If
this array has no dimensions, then the drop listbox will be initialized with no
elements. A runtime error results if the specified array contains more than one
dimension. ArrayVari abl e can specify an array of any fundamental datatype
(structures are not alowed). null and empty values are treated as zero-length
strings.

Name by which this control can be referenced by statementsin adial og function
(such as Dl gFocus and Dl genabl e). This parameter also creates an integer vari-
able whose value corresponds to the index of the drop listbox’s selection (0 is
thefirst item, 1 is the second, and so on). This variable can be accessed using
the following syntax: Di al ogVari abl e. | denti fier

Sub Mai n

Di m Fi el dNanes$(4)

Fi el dNames$(0)
Fi el dNanes$(1)
Fi el dNames$(2)
Fi el dNanes$(3)
Fi el dNanmes$(4)

"Last Name"
"First Nane"
"Zip Code"
"State"
"Gity"

Begi n Di al og Fi ndTenpl ate 16, 32, 168, 48, "Fi nd"
Text 8,8,37,8,"&Find what:"
Dr opLi st Box 48, 6, 64, 80, Fi el dNares, . Wi chFi el d
OKButt on 120, 7, 40, 14
Cancel Button 120, 27, 40, 14

End Di al og

Di m Fi ndDi al og As Fi ndTenpl ate
Fi ndDi al og. WhichField = 1
Di al og Fi ndDi al og

End Sub

User Interaction on page 9

End

Syntax End

Description Terminates execution of the current macro, closing al open files.

Example Sub Min
Sessi on. Echo "The next line will term nate the nacro."
End
End Sub

See Also Macro Control and Compilation on page 7

Environ, Environ$

Syntax Environ[$] (variable$ | Variabl eNunber)

Description Returnsthe value of the specified environment variable.
Envi ron$ returns a st ri ng, whereas Envi ron returnsast ri ng variant.

If vari abl e$ is specified, then this function looks for that vari abl e$ in the environment. If the
vari abl e$ name cannot be found, then a zero-length string is returned.

If vari abl eNunber is specified, then this function looks for the Nth variable within the environment
(the first variable being number 1). If there is no such environment variable, then a zero-length string
is returned. Otherwise, the entire entry from the environment is returned in the following format:

variabl e = val ue

Example Sub Min
Dim a$(1)
a$(1) = Environ$(" COVSPEC")
Sessi on. Echo "The DOS Conspec variable is set to: " & a$(1)
End Sub

237

EOF

See Also

EOF

Syntax

Description

Example

See Also

Eqv

Syntax

Description

238

Operating System Control on page 9

EOF(fi | enunber)

Returns Tr ue if the end-of-file has been reached for the given file; returns Fal se otherwise. The
fil enunber parameter isan | nt eger used to refer to the open file—the number passed to the open
statement.

With sequential files, EOF returns Tr ue when the end of the file hasbeen reached (i.e., the next fileread
command will result in aruntime error).

With Random or Binary files, EOF returns Tr ue after an attempt has been made to read beyond the end
of thefile. Thus, EcF will only return Tr ue when Get was unable to read the entire record.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Dims$
Qpen "c:\autoexec.bat" For |nput As #1
Do Wile Not EOF(1)

I nput #1, s$
Loop
Cl ose
Session. Echo "The last line was:" & crlf & s$
End Sub

Drive, Folder, and File Access on page 4

result = expressionl Eqv expression2

Performs alogical or binary equivalence on two expressions. If both expressions are either Bool ean,
Bool ean variants, or Nul | variants, then alogical equivalenceis performed as follows:

Expresson One Expression Two Result
True True True
True False False
False True False
False False True

If either expressionis Nul | , then Nul | is returned.

Erase

Example

See Also

Erase

Syntax

Description

Binary equivalence

If the two expressions are | nt eger , then abinary equivalence is performed, returning an | nt eger
result. All other numeric types (including Enpt y variants) are converted to Long and a binary
equivalenceisthen performed, returning aLong result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions, according to the following table:

Bit in Expression One Bit in Expression Two Result
1 1 1
0 1 0
1 0 0
0 0 1

This example assigns False to a, performs some equivalent operations, and displays the result. Since
a isequivalent to False, and Falseis equivalent to 0, and by definition, a = 0, then the prompt will
display "A is False."

Sub Main
a = Fal se
If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then
Session. Echo "a is Fal se.™
El se
Session. Echo "a is True."
End | f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

Erase arrayl [,array2]...

Erases the elements of the specified arrays. For dynamic arrays, the elements are erased, and the array
is redimensioned to have no dimensions (and therefore no elements). For fixed arrays, only the
elements are erased; the array dimensions are not changed.

After adynamic array is erased, the array will contain no elements and no dimensions. Thus, before
the array can be used by your program, the dimensions must be reestablished using the Redi m
statement.

Up to 32 parameters can be specified with the Er ase statement.

The meaning of erasing an array element depends on the type of the element being erased:

239

Err (object)

Example

See Also

Element Type Effect of Erase
Integer Sets element to 0.
Boolean Sets element to Fal se.
Long Sets element to 0.
Double Sets element to 0.0.
Date Sets element to December 30, 1899.
Single Sets element to 0.0.
String (variable-length) Frees string, then sets element to a zero-length string.
String (fixed-length) Sets every character of each element to zero (chr $(0)).
Object Decrements reference count and sets element to Not hi ng.
Variant Sets element to enpt y.
User-defined type Sets each structure element as a separate variable.
Sub Main
Di m a$(10) "Declare an array.
a$(1) = Dirg("*") "Fill element 1 with a filename
Sessi on. Echo "Array before Erase: " & a$(1) ' Di spl ay el ement
b Erase a$ "Erase all elenments in array
Engezjibon. Echo "Array after Erase: " & a$(1l) ’'again (should be erased).

Keywords, Data Types, Operators, and Expressions on page 5

Err (object)

Syntax

Description

Example

240

TheErr object allowsyou to create your own routines to handle errors returned by the compiler, OLE
objects, and external DLLs. Y ou can a so construct macro code to raise errors as necessary. The
methods and properties of the Err object provide access to the calling OLE object or external DLL,
and the source if possible.

Erl
Erl[()]

Returns the line number of the most recent error. Thefirst line of the macrois 1, the second lineis 2,
and so on.

Theinternal value of Er i isreset to 0 with any of the following statements: Resure, Exit Sub, Exi t
Functi on. Thus, if you want to use thisvalue outside an error handler, you must assign it to avariable.

Sub Mai n
Dimi As |nteger
On Error CGoto Trapl
i = 32767 "CGenerate an error--overfl ow

Err (object)

See Also

Syntax

Description

Example

See Also

Syntax

Description

i =i +1

Exit Sub
Trapl:

Session. Echo "Error on line: " & Erl

Exit Sub "Reset the error handler.
End Sub

Error Handling (topic).

Err.Clear

Err. d ear

Clears the properties of the Err object. After this method has been called, the properties of the Er r
object will have the following values:

Value Property
" Err. Description

0 Er r. Hel pCont ext
" Err. Hel pFile

0 Err.Last DLLError
0 Err. Nunber

" Err. Source

The properties of the Err object are automatically reset when any of the following statements are
executed: Resune, Exit Function,On Error,Exit Sub

Sub Main
Dim x As |nteger
On Error Resunme Next
X = | nput Box("Type in a nunber")
If Err.Nunber <> 0 Then
Err. d ear
x =0
End I f
Sessi on. Echo x
End Sub

Macro Control and Compilation on page 7

Err.Description

Err.Description [= stringexpression]

Sets or retrieves the description of the error. For errors generated by the compiler, the

Err. Descri ption property isautomatically set. For user-defined errors, you should set this property
to be a description of your error. If you set the Err. Nunber property to one of the internal error
numbers and you don’t set the Err. Descri pti on property, thenthe Err. Descri pti on property is
automatically set when the error is generated (i.e., with Err . Rai se).

241

Err (object)

Example

See Also

Syntax

Description

Example

See Also

242

Sub Main
Dim x As |nteger
On Error Resunme Next
X = | nput Box("Type in a nunber")
If Err.Nunmber <> 0 Then
Session. Echo "The following error occurred: " & Err.Description
x =0
End | f
Sessi on. Echo x
End Sub

Macro Control and Compilation on page 7

Err.HelpContext

Err. Hel pContext [= contextid]

Sets or retrieves the help context 1D that identifies the help topic for information on the error. The
Err. Hel pCont ext property, together with theErr. Hel pFi | e property, contain sufficient information
to display help for the error. When the compiler generates an error, the Er r . Hel pCont ext property is

set to 0 and the and the Er r . Hel pFi | e property is set to ""; the value of the Err. Nunber property is
sufficient for displaying help in this case. The exception iswith errors generated by an OLE
automation server; both the Err. Hel pFi | e and Err. Hel pCont ext properties are set by the server to
values appropriate for the generated error.

When generating your own user-define errors, you should set the Er r . Hel pCont ext property and the
Err. Hel pFi | e property appropriately for your error. If these are not set, then the compiler displaysits
own help at an appropriate place.

Function I nputlnteger(Pronpt, Optional Title, Optional Def)
On Error Resume Next
Dim x As |nteger
X = | nput Box(Pronpt, Titl e, Def)
If Err.Nunber Then
Err. Hel pCont ext = "W DGET. HLP"
Err. Hel pContext = 10
Err.Description = "Integer val ue expected"
I nputlnteger = Null
Err. Rai se 3000
End I f
I nput I nteger = X
End Function

Sub Main
Dim x As |nteger
Do
On Error Resume Next
X = lnputlnteger("Enter a nunber:")
Loop Until Err.Nunber <> 3000
End Sub

Macro Control and Compilation on page 7; User Interaction on page 9

Err (object)

Syntax

Description

Example

See Also

Syntax

Description

Err.HelpFile

Err.HelpFile [= fil enane]

Sets or retrieves the name of the help file associated with the error. The Err . Hel pFi | e property,
together with the Er r . Hel pCont ent s property, contain sufficient information to display help for the
error. When the compiler generates an error, the Er r . Hel pCont ent s property is set to 0 and the and
the Err. Hel pFi | e property is set to ""; the value of the Err. Nurber property is sufficient for
displaying helpinthis case. The exception iswith errors generated by an OL E automation server; both
theErr. Hel pFil e and Err. Hel pCont ext propertiesare set by the server to values appropriate for the
generated error.

When generating your own user-defined errors, setthe Err. Hel pCont ext property and the
Err. Hel pFi | e property appropriately for your error. If these are not set, then the compiler displaysits
own help at an appropriate place.

TheErr. Hel pFi | e property can be set to any valid Windows help file (i.e., afilewitha .HLP
extension compatible with the WINHELP help engine).

Function I nputlnteger(Pronpt, Optional Title, Optional Def)
On Error Resume Next
Dim x As |nteger
X = | nput Box(Pronpt, Titl e, Def)
If Err.Nunber Then
Err. Hel pCont ext = "W DGET. HLP"
Err. Hel pContext = 10
Err.Description = "Integer val ue expected"
I nputlnteger = Null
Err. Rai se 3000
End I f
I nput I nteger = X
End Function

Sub Mai n
Dim x As |nteger
Do
On Error Resume Next
X = lnputlnteger("Enter a nunber:")
Loop Until Err.Nunber <> 3000
End Sub

Macro Control and Compilation on page 7; User Interaction on page 9

Err.LastDLLError

Err. Last DLLError

Returnsthelast error generated by an external call—i.e., acall to aroutine declared with the Decl ar e
statement that residesin an external module. The Err. Last DLLError property is automatically set

when calling aroutine defined in an external module. If no error occurs within the external call, then
this property will automatically be set to 0. This property is set by DLL routinesthat set the last error

243

Err (object)

Example

See Also

Syntax

Description

244

Example

using the function set Last Er r or () . The compiler uses the function Get Last Error () to retrievethe
value of this property. The value 0 is returned when calling DLL routines that do not set an error.

Decl are Sub GetCurrentDirectoryA Lib "kernel 32" (ByVal DestlLen As Integer, _
ByVal | pDest As String)

Sub Main
Dim dest As String * 256
Err.d ear
Get CurrentDi rectoryA | en(dest), dest
If Err.LastDLLError <> 0 Then
Session. Echo "Error " & Err.LastDLLError & " occurred."”
El se
Session. Echo "Current directory is " & dest
End I f
End Sub

Macro Control and Compilation on page 7

Err.Number
Err. Nunber [= errornunber]

Returns or sets the number of the error. The Err. Nurber property is set automatically when an error
occurs. This property can be used within an error trap to determine which error occurred. Y ou can set
the Err. Nunber property to any Long value.

The Nunber property isthe default property of the Er r object. Thisallowsyou to useolder style syntax
such as those shown below:

Err = 6
If Err = 6 Then Session. Echo "Overfl ow'

TheErr function can only be used while within an error trap.

Theinternal value of the Err. Number property isreset to O with any of the following statements:
Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside an error handler, you
must assign it to avariable.

Setting Err . Nunber to —1 has the side effect of resetting the error state. This allows you to perform
error trapping within an error handler. The ability to reset the error handler while within an error trap
isnot standard Basic. Normally, the error handler isreset only with the Resure, Exit Sub, Exi t
Function, End Function, OF End Sub Statements.

Sub Main
On Error Coto TestError
Error 10
Session. Echo "The returned error is: '" & Err() &" - " &
Error$ & """
Exit Sub
TestError:
If Err = 55 Then "File already open.

Err (object)

Sessi on. Echo "Cannot copy an open file. Close it and try again."

El se
Session. Echo "Error '" & Err & "' has occurred!"
Err = 999
End | f
Resunme Next
End Sub

See Also Macro Control and Compilation on page 7

Err

Syntax Err = val ue

Description Setsthevaluereturned by theEr r function to aspecific | nt eger value. Only positive values|essthan
or equal to 32767 can be used. Setting val ue to —1 has the side effect of resetting the error state. This
allows you to perform error trapping within an error handler. The ability to reset the error handler
while within an error trap is not standard Basic. Normally, the error handler isreset only with the
Resune, Exit Sub, OF Exi t Functi on Statement.

Example Sub Min
On Error CGoto TestError
Error 10
Session. Echo "The returned error is: '" & Err() &" - " & Error$ & """
Exit Sub
TestError:
If Err = 55 Then "File already open.
Sessi on. Echo "Cannot copy an open file. Close it and try again."
El se
Session. Echo "Error '" & Err & "’ has occurred."”
Err = 999
End I f
Resunme Next
End Sub

See Also Macro Control and Compilation on page 7

Err.Raise
Syntax Err.Raise number [,[source] [,[description] [,[helpfile] [,helpcontext]]]]

Description Generates aruntime error, setting the specified properties of the Err object. The Err . Rai se method
has the following named parameters:

245

Err (object)

Example

See Also

Syntax

Description

246

Parameter Description

number A Long valueindicating the error number to be generated. This parameter is
required. Predefined errors are in the range 0 to 1000.

Sour ce Anoptional st ri ng expression specifying the source of the error—i.e., the object or

module that generated the error. If omitted, then the compiler uses the name of the
currently executing macro.

description Anoptional String expression describing the error. If omitted and nunber mapsto
a predefined error number, then the corresponding predefined description is used.
Otherwise, the error " Application-defined or object-define error” is used.

hel pfile An optional st ri ng expression specifying the name of the help file containing con-
text-sensitive help for this error. If omitted and number maps to a predefined error
number, then the default help file is assumed.

Hel pcontext An optional long value specifying the topic within hel pfi | e containing context-
sensitive help for this error.
If some arguments are omitted, then the current property values of the Err object
are used.

This method can be used in place of the Err or statement for generating errors. Using the Err . Rai se
method gives you the opportunity to set the desired properties of the Err object in one statement.

Sub Main
Dim x As Variant
On Error Coto TRAP
X = | nput Box("Enter a nunber:")
If Not IsNuneric(x) Then
Err. Rai se 3000, ,"Invalid nunber specified","WDGET. HLP", 30
End | f
Sessi on. Echo x
Exit Sub
TRAP:
Sessi on. Echo Err. Description
End Sub

Macro Control and Compilation on page 7

Err.Source

Err. Source [= stringexpression]
Sets or retrieves the source of aruntime error.
For OLE automation errors generated by the OLE server, the Err. Sour ce property is set to the name

of the object that generated the error. For al other errors generated by the macro language, the
Err. Sour ce property is automatically set to be the name of the macro that generated the error.

Error Handling (topic)

For user-defined errors, the Er r . Sour ce property can be set to any valid string expression indicating
thesourceof theerror. If theEr r. Sour ce property isnot explicitly set for user-defined errors, thevalue
is the name of the macro in which the error was generated.

Example Function Inputlnteger(Pronpt, Optional Title, Optional Def)
On Error Resume Next
Dim x As |nteger
X = | nput Box(Pronpt, Titl e, Def)
If Err.Nunber Then

Err. Source = "l nputlnteger"
Err.Description = "Integer val ue expected"
Err. Rai se 3000

End I f

I nput I nteger = X
End Function

Sub Mai n

On Error Resume Next

X = lnputlnteger("Enter a nunber:")

If Err.Nunber Then Session. Echo Err.Source & ":" & Err.Description
End Sub

See Also Macro Control and Compilation on page 7

Error Handling (topic)

The macro language supports nested error handlers. When an error occurs within a subroutine, the
compiler checksfor an on Error handler within the currently executing subroutine or function. An
error handler is defined as follows:

Sub foo()
On Error Goto catch
" Do sonet hing here.
Exit Sub
cat ch:
" Handl e error here.
End Sub

Error handlershave alifelocal to the procedurein which they are defined. The error isreset when any
of the following conditions occurs:

e Anon Error oOr Resume Statement is encountered.

e WheneErr. Nunber issetto-1.

« WhentheErr. d ear method iscalled.

e WhenanExit Sub,Exit Function, End Function, End Sub isencountered.

Cascading Errors

If aruntimeerror occursand no on Er r or handler isdefined within the currently executing procedure,
then control returnsto the calling procedure and the error handler there runs. This process repeats until

247

Error Handling (topic)

Syntax

Description

248

aprocedureisfound that contains an error handler or until there are no more procedures. If an error is
not trapped or if an error occurs within the error handler, then there is an error message, halting
execution of the macro.

Once an error handler has control, it should address the condition that caused the error and resume
execution with the Resure statement. This statement resetsthe error handler, transferring execution to
an appropriate place within the current procedure. The error isreset if the procedure exits without first
executing Resune.

Visual Basic Compatibility
Where possible, the macro language has the same error numbers and error messages as Visual Basic.
Thisisuseful for porting macros between environments.

Handling errors involves querying the error number or error text using the r r or $ function or
Err. Descri ption property. Sincethisisthe only way to handle errors, compatibility with Visual
Basic's error numbers and messages is essential.

Macro language errors fall into three categories:
» Visual Basic-compatibleerrors: These errors, numbered between 0 and 799, are numbered and

named according to the errors supported by Visual Basic.

e Macrolanguageerrors: These errors, numbered from 800 to 999, are unique to the macro lan-
guage.

e User-defined errors: These errors, equal to or greater than 1,000, are available for use by exten-
sions or by the macro itself.

Y ou can intercept trappable errorsusingtheon Error construct. Almost all errorsaretrappable except
for various system errors.

Error, Error$ (functions)
Error[$][(errornunber)]

Returnsast ri ng containing the text corresponding to the given error number or the most recent error.
Error$ returnsastring, whereasEerror returnsastri ng variant.

Theerrornumber parameter isan | nt eger containing the number of the error message to retrieve. If
this parameter is omitted, then the function returns the text corresponding to the most recent runtime
error (i.e., the same asreturned by the Err . Descri pti on property). If no runtime error has occurred,
then a zero-length string is returned.

If theEr r or statement was used to generate auser-defined runtime error, then this function will return
azero-length string ("").

Error Handling (topic)

Example Sub Min
On Error Goto TestError
Error 10
Session. Echo "The returned error is: '" & Err() &" - " & Error$ & """
Exit Sub
TestError:
If Err = 55 Then "File already open.
Sessi on. Echo "Cannot copy an open file. Close it and try again."
El se
Session. Echo "Error '" & Err & "’ has occurred."”
Err = 999
End If
Resunme Next
End Sub

See Also Character and String Manipulation on page 3; Macro Control and Compilation on page 7

Error (statement)

Syntax Error errornunber

Description Simulates the occurrence of the given runtime error. The er r or nunber parameter isany | nt eger
containing either abuilt-in error number or auser-defined error number. TheErr. Nunber property can
be used within the error trap handler to determine the val ue of the error.

TheError statement is provided for backward compatibility. Usethe Err. Rai se method instead.
When using the Err or statement to generate an error, the Err object’s properties are set to the
following default values:

Property Default Value

Nunber errornunber asspecifiedinthe Error statement.

Sour ce Name of currently executing macro.

Description Text of error. If error nunber isunknown, is set to an empty string.
Hel pFi | e Name of help file.

Hel pContext Context ID corresponding to er r or nunber.

Example Sub Min
On Error Goto TestError
Error 10
Session. Echo "The returned error is: '" & Err &" - " & Error$ & """
Exit Sub
TestError:
If Err = 55 Then "File already open.
Sessi on. Echo "Cannot copy an open file. Close it and try again."
El se
Session. Echo "Error '" & Err & "' has occurred."
Err = 999
End | f
Resunme Next
End Sub

249

Exit Do

See Also Macro Control and Compilation on page 7

Exit Do

Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause. This statement can only
appear within abo. . . Loop statement.

Example Const crlf = Chr$(13) + Chr$(10)
Sub Main
Di m a$(5)
Do

i%=1i%+ 1
If i%= 1 Then
a(i%y = Dr$("*")
El se
a(ip =Dr$
End |f
If i%>= 10 Then Exit Do
Loop Wiile (a(i%p <> "")
If i%= 10 Then
Session. Echo i % & " entries processed!"
El se
Session. Echo "Less than " & i% & " entries processed!"
End | f
End Sub

See Also Macro Control and Compilation on page 7

Exit For

Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the line following the Next
statement. This statement can only appear within aFor . . . Next block.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
Di m a$(100)
For i =1 To 100
If i =1 Then
a$(i) = Dirg("*")
El se
a$(i) =Dr$
End | f
If (a$(i) ="") O (i >= 100) Then Exit For
Next
nesg = "There are " & i & " files found." & crlf
Session. Echo nesg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(10)
End Sub

See Also Macro Control and Compilation on page 7

250

Exit Function

Exit Function

Syntax

Description

Example

See Also

Exit Function

Causes execution to exit the current function, continuing execution on the statement following the call
to this function. This statement can only appear within a function.

Function Test _Exit() As Integer
Session. Echo "Testing function exit, returning to Main()."
Test _Exit =0
Exit Function
Sessi on. Echo "This |ine should never execute."
End Function

Sub Main

a% = Test _Exit()

Session. Echo "This is the last line of Main()."
End Sub

Macro Control and Compilation on page 7

Exit Sub

Syntax

Description

Example

See Also

Exp

Syntax

Description

Exit Sub

Causes execution to exit the current subroutine, continuing execution on the statement following the
call to this subroutine. This statement can appear anywhere within a subroutine. It cannot appear
within afunction.

Sub Main
Sessi on. Echo "Termi nating Main()."
Exit Sub
Session. Echo "Still here in Main()."
End Sub

Macro Control and Compilation on page 7

Exp(nunber)

Returns the value of e raised to the power of nunber . The nunber parameter isaDoubl e within the
following range:

0 <= nunber <= 709.782712893

A runtime error is generated if nunber isout of the range specified above.

Thevalue of e is2.71828.

251

Example Sub Min
a# = Exp(12.40)
Session. Echo "e to the 12.4 power is: " & a#
End Sub

See Also Numeric, Math, and Accounting Functions on page 6

Expression Evaluation (topic)

Expressions may involve data of different types. When this occurs, the two arguments are converted
to be of the same type by promoting the less precise operand to the same type as the more precise
operand. For example, the compiler will promote the value of 1% to a double in the following
expression:

result# = i%* d#

In some cases, the data type to which each operand is promoted is different than that of the most
precise operand. Thisis dependent on the operator and the data types of the two operands and is noted
in the description of each operator.

If an operation is performed between a numeric expression and a st ri ng expression, thenthe st ri ng
expression is usually converted to be of the same type as the numeric expression. For example, the
following expression convertsthe St ri ng expression to an | nt eger before performing the
multiplication:

result = 10 * "2" "Result is equal to 20.

There are exceptions to thisrule, as noted in the description of the individual operators.

Type Coercion
The compiler performs numeric type conversion automatically. Automatic conversions sometimes
result in overflow errors, as shown in the following example:

d# = 45354
i % = d#

In this example, an overflow error is generated because the value contained in d# islarger than the
maximum size of an | nt eger.

Rounding

When floating-point values (Si ngl e or Doubl e) are converted to integer values (1 nt eger or Long), the
fractional part of the floating-point number is lost, rounding to the nearest integer value. The macro
language uses Baker’s rounding:

« If thefractional part islarger than .5, the number isrounded up.

« If thefractional part is smaller than .5, the number is rounded down.

Expression Evaluation (topic)

« If thefractional part isequal to .5, then the number isrounded up if itisodd and downif it iseven.

The following table shows sample values before and after rounding:

Before Rounding After Rounding

21 2
4.6 5
2.5 2
35 4

Default Properties

When an OLE object variable or an ovj ect variant is used with numerical operators such as addition
or subtraction, then the default property of that object is automatically retrieved. For example,
consider the following:

Di m Excel As Obj ect
Set Excel = Get bject(,"Excel.Application")
Session. Echo "This application is " & Excel

The above example displays "This application is Microsoft Excel". When the variable Excel is used
within the expression, the default property is automatically retrieved, which, in this case, isthe string
"Microsoft Excel." Considering that the default property of the Excel object is.Value, then the
following two statements are equivalent:

Session. Echo "This application is " & Excel
Session. Echo "This application is " & Excel. Val ue

253

Expression Evaluation (topic)

254

FileAttr

Syntax FileAttr(filenunber, returntype)

Description Returnsan | nt eger specifying the file mode (if r et ur nt ype is 1) or the operating system file handle
(if returntype is2). TheFil eattr function takes the following named parameters:

Parameter Description

filenumber |nteger value used to refer to the open file—the number passed to the Open
statement.

Returntype |nteger specifying the type of valueto be returned. If returntypeis 1, then one of
the following valuesis returned:

Input
Output
Random
Append
32 Binary

D AN P

If returntype is 2, then the operating system file handle isreturned. Thisis a special | nt eger value
identifying the file.

Example Sub Min
Qpen "c:\autoexec.bat" For |nput As #1
a% = FileAttr(1,1)
Sel ect Case a%
Case 1
Sessi on. Echo "Qpened for input."
Case 2
Sessi on. Echo "QOpened for output."”
Case 4
Sessi on. Echo "Opened for random"
Case 8
Sessi on. Echo "Opened for append."

255

FileCopy

Case 32
Sessi on. Echo "Opened for binary."
Case El se
Sessi on. Echo "Unknown file node."
End Sel ect
a% = FileAttr(1,2)
Session. Echo "File handle is: " & a%
Cl ose
End Sub

See Also Drive, Folder, and File Access on page 4

FileCopy

Syntax Fil eCopy source, destination

Description Copiesasource fileto adesti nati on file. TheFi | eCopy function takes the following named

parameters:
Parameter Description
source String containing the name of a single file to copy. The source parameter cannot

contain wildcards (? or *) but may contain path information.

Destination String containing asingle, unique destination file, which may contain adrive and
path specification.

The file will be copied and renamed if the sour ce and dest i nat i on filenames are not the same.

Example Sub Min
On Error Goto ErrHandl er

Fi | eCopy "c:\autoexec.bat", "c:\autoexec.sav"
Qpen "c:\autoexec.sav" For |nput As # 1
Fi | eCopy "c:\autoexec.sav", "c:\autoexec.sv2"
Cl ose
Exit Sub
Er r Handl er:
If Err = 55 Then "File already open.
Sessi on. Echo "Cannot copy an open file. Close it and try again."
El se
Sessi on. Echo "An unspecified file copy error has occurred."”
End I f
Resune Next
End Sub

See Also Drive, Folder, and File Access on page 4

FileDateTime

Syntax Fil eDat eTi ne(pat hnane)

Description Returnsanbat e variant representing the date and time of the last modification of afile. This function
retrievesthe date and time of the last modification of thefile specified by pat hname (wildcards are not

256

FileDirs

allowed). A runtime error resultsif the file does not exist. The value returned can be used with the
date/time functions (i.e., Year , Mont h, Day, Weekday, M nut e, Second, Hour) to extract the individual
elements.

Win32 storesthefile creation date, |ast modification date, and the date the file was | ast written to. The
Fi | eDat eTi me function only returns the last modification date.

Example Sub Min
If FileExists("c:\autoexec.bat") Then
a# = Fil eDateTi me("c:\autoexec. bat")

Session. Echo "The date/tine information for the file is: " & Year(a#) & "-" &
Month(a#) & "-" & Day(a#)
El se
Session. Echo "The file does not exist."
End I f
End Sub

See Also Drive, Folder, and File Access on page 4; Time and Date Access on page 10

FileDirs

Syntax FileDirs array() [,dirspec$]

Description Fillsastring or vari ant array with directory namesfrom disk. TheFi | eDi r s statement takes the
following parameters:

Parameter Description

array() Either azero- or aone-dimensioned array of strings or variants. The array can be
either dynamic or fixed.

If array() isdynamic, then it will be redimensioned to exactly hold the new number
of elements.

If there are no elements, then the array will be redimensioned to contain no dimen-
sions. You can use the LBound, UBound, and Ar r ayDi s functions to determine the
number and size of the new array’s dimensions.

array() If the array isfixed, each array element isfirst erased, then the new elements are
placed into the array.

If there are fewer elements than will fit in the array, then the remaining elements are
initialized to zero-length strings (for string arrays) or Enpt y (for variant arrays). A
runtime error resultsif the array istoo small to hold the new elements.

dirspec$ String containing thefile search mask, suchas: t *. c:\ *. * If this parameter is omitted
or an empty string, then * isused, which fillsthe array with all the subdirectory names
within the current directory.

257

FileExists

Example Sub Min
Di m a$()
FileDirs a$,"c:*. ="
Sessi on. Echo "The first directory is: " & a$(0)
End Sub

See Also Character and String Manipulation on page 3; Drive, Folder, and File Access on page 4

FileExists

Syntax Fil eExi sts(fil enane$)

Description ReturnsTrue if fil ename$ exists; returnsFal se otherwise. This function determines whether agiven
filenanme$ isvalid. Thisfunction returns Fal se if fi | ename$ specifies a subdirectory.

Example Sub Min
If FileExists("c:\autoexec.bat") Then
Session. Echo "This file exists!"
El se
Sessi on. Echo "Fil e does not exist."
End I f
End Sub

See Also Drive, Folder, and File Access on page 4

FileLen

Syntax Fil eLen(pat hnane)

Description ReturnsaLong representing the length of pat hnane in bytes. Thisfunction isused in place of the LoF
function to retrieve the length of afile without first opening thefile. A runtime error resultsif thefile
does not exist.

Example Sub Min
If (FileExists("c:\autoexec.bat") And (FileLen("c:\autoexec.bat") _
<> 0)) Then
b% = Fil eLen("c:\autoexec. bat")
Session. Echo "The I ength of autoexec.bat is: " & b%
El se
Session. Echo "Fil e does not exist."
End | f
End Sub

See Also Drive, Folder, and File Access on page 4

FileList

Syntax FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

Description Fillsastring or vari ant array with filenamesfrom disk. TheFi I eLi st function takes the following
parameters:

258

FileList

Parameter Description

array() Either azero- or aone-dimensioned array of strings or variants. The array can be
either dynamic or fixed.

If array() isdynamic, thenit will be redimensioned to exactly hold the new
number of elements.

If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and Ar r ayDi ns functions to deter-
mine the number and size of the new array’s dimensions.

If the array isfixed, each array element isfirst erased, then the new elements are
placed into the array.

If there are fewer elements than will fit in the array, then the remaining elements
areinitialized to zero-length strings (for string arrays) or Enpt y (for variant
arrays). A runtime error resultsif the array istoo small to hold the new elements.

Fil espec$ String specifying which filenames are to beincluded in the list. Thefi | espec$
parameter can include wildcards, such as* and ?. If this parameter is omitted,
then * is used.

include_attr [nteger specifying attributes of files you want included in thelist. It can be any
combination of the attributes listed below.

exclude_attr Integer specifying attributes of filesyou want excluded from thelist. It can be any
combination of the attributes listed below.

TheFi I eLi st function returnsdifferent filesas specified by thei ncl ude_at t r andexcl ude_attr and
whether these parameter have been specified. The following table shows these differences: If neither
theinclude_attr oOr exclude_attr hasbeen specified, then the following defaults are assumed:

Parameter Default
exclude_attr ebHi dden Or ebDirectory Or ebSystem Or ebVol une
include_attr ebNone Or ebArchive Or ebReadOnly

If i ncl ude_at tr isspecified and excl ude_at t r ismissing, then Fi | eLi st excludes al files not
specified by i ncl ude_attr. If i ncl ude_at tr ismissing, itsvalue is assumed to be zero.

Wildcards

The* character matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple*’sand 2’s can appear within the expression to form complete searching
patterns. The following table shows some examples:

259

FileParse$

ThisPattern Matches These Files Not These Files
*SHATXT SAMPLE. TXT, GOOSE.TXT, SAMS.TXT SAMPLE, SAMPLE.DAT
C*T.TXT CAT.TXT CAPTXT, ACATS.TXT
CT CAT, CAPTXT CAT.DOC

C?T CAT, CUT CAT.TXT, CAPITCT

* (All files)

File attributes
These numbers can be any combination of the following:

Constant Vaue Includes

ebNor mal 0 Read-only, archive, subdir, none

ebReadOnl y 1 Read-only files

ebHi dden 2 Hidden files

ebSystem 4 System files

ebVol une 8 Volume label

ebDi rectory 16 Subdirectories

ebAr chive 32 Files that have changed since the last backup
ebNone 64 Files with no attributes

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
Di m a$()
FileList a$,"*.*", (ebNornmal + ebNone), ebSystem
If ArrayDins(a$) > 0 Then
Session. Echo a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)
El se
Sessi on. Echo "No files found."
End I f
End Sub

See Also Drive, Folder, and File Access on page 4

FileParse$

Syntax Fil eParse$(fil enane$[, operation])

Description Returnsastri ng containing a portion of fi | enane$ such asthe path, drive, or file extension. The
fil ename$ parameter can specify any valid filename (it does not have to exist). For example:

.. \test. dat
c:\sheets\test.dat
test. dat

260

Fix

[]

Example

See Also

Fix
Syntax

Description

A runtime error is generated if fi | ename$ isazero-length string.

The optional oper at i on parameter isan I nt eger specifying which portion of thefi | enanes$ to
extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat
1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test

5 Extension dat

If operati on is not specified, then the full nameis returned. A runtime error will result if operati on
is not one of the above values.

A runtime error resultsif fi | ename$ isempty.

The backslash and forward slash can be used interchangeably. For example, "c:\test.dat" is the same
as'"c:/test.dat".

Const crlf = Chr$(13) + Chr$(10)
Sub Main

Di m a$(6)

For i =1 To 5

a$(i) = FileParse$("c:\testsub\autoexec.bat",i - 1)

Next

Session. Echo a$(1) & crif & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf & a$(5)
End Sub

Character and String Manipulation on page 3; Drive, Folder, and File Access on page 4

Fi x(nunber)

Returns the integer part of nunber . This function returns the integer part of the given value by
removing the fractional part. The signispreserved. TheFi x function returnsthe same type asnunber ,
with the following exceptions:

e |f nunber iSEnpty, thenan i nteger variant of value O is returned.

e |f nunber isastring, then aboubl e variant isreturned.

e If nunber contains no valid data, then aNul | variant is returned.

261

For...Each

Example Sub Min
a# = -19923. 45
b% = Fi x(a#)
Sessi on. Echo "The fixed portion of -19923.45 is: " & b%
End Sub

See Also Numeric, Math, and Accounting Functions on page 6

For...Each

Syntax For Each menber in group:
[statenents]
[Exit For]
[statenents]
Next [nmenber]

Description Repeats a block of statements for each element in acollection or array. The For . . . Each Statement
takes the following parameters:

Parameter Description

member Name of avariable to hold an element for each iteration of the loop. If group isan
array, then member must be a variant variable. If group is a collection, then member
must be an object variable, an explicit OLE automation object, or a variant.

Goup Name of acollection or array.
Statements Any number of statements.

The compiler supportsiteration through OL E collections or arrays with the exception of arrays of user-
defined types or fixed-length strings. Theiteration variableisacopy of the collection or array element
in the sense that change the value of menber within the loop has no effect on the collection or array.

TheFor. . . Each statement traverses array elements in the same order the elements are stored in
memory. For example, the array elements contained in the array defined by the statement

Dima(l To 2,3 To 4)

aretraversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the elements are
traversed should not be relevant to the correct operation of the macro.

TheFor. . . Each statement continues executing until there are no more elementsin gr oup or until an
Exi t For Statement isencountered.

For . . . Each statements can be nested. In such a case, the Next [nenber] statement appliesto the
innermost For . . . Each Of For . . . Next Statement. Each nenber variable of nested For . . . Each
statements must be unique.

A Next statement appearing by itself (with no nenber variable) matchesthe innermost For . . . Each or
For. .. Next loop.

262

For...Next

Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. When you're
running amacro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example Sub Min
Dima(3 To 10) As Single
Dimi As Variant
Dims As String

For i = 3 To 10
a(i) = Rnd()

Next i

For Each i In a
i =i +1

Next i

s =""

For Each i In a
If s <>"" Then s =s &","
s =s &i

Next i

Sessi on. Echo s

End Sub

The following subroutine displays the names of each worksheet in an Excel workbook.

Sub Mai n
Di m Excel As Object
Di m Sheets As Obj ect
Set Excel = CreateObject("Excel.Application")
Excel .Visible = 1
Excel . Wor kbooks. Add
Set Sheets = Excel . Worksheets
For Each a In Sheets
Sessi on. Echo a. Nane
Next a
End Sub

See Also Macro Control and Compilation on page 7

For...Next

Syntax For counter = start To end [Step increnent]
[statenents]
[Exit For]
[statenents]
Next [counter [, nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop counter by a given
increment each time through the loop. The For statement takes the following parameters.

263

For...Next

Parameter Description

counter Name of a numeric variable. Variables of the following types can be used: integer,
long, single, double, variant.

Start Initial value for count er. The first time through the loop, count er isassigned this
value.

End Final value for count er. The st at enrent s will continue executing until count er is
equal to end.

Increment Amount added to counter each time through the loop. If end is greater than st art
theni ncrement must be positive.

If end islessthanstart, theni ncrement must be negative.

If i ncrenent isnot specified, then 1isassumed. The expression given asi ncr enent
is evaluated only once. Changing the step during execution of the loop will have no
effect.

statements Any number of statements.

TheFor. .. Next Statement continues executing until an Exi t For statement is encountered when
count er isgreater than end.

For. .. Next statementscan be nested. In such acase, the Next [count er] statement appliesto the
innermost For . . . Next .

TheNext clause can be optimized for nested next loops by separating each counter with acomma. The
ordering of the counters must be consistent with the nesting order (innermost counter appearing before
outermost counter). The following example shows two equivalent For statements:

For i =1 To 10 For i =1 To 10
For j =1 To 10 For j =1 To 10
Next j Next j,i

Next i

A Next clause appearing by itself (with no count er variable) matches the innermost For loop.

The count er variable can be changed within the loop but will have no effect on the number of times
the loop will execute.

Dueto errorsin program logic, you can inadvertently create infinite loopsin your code. When you're
running amacro within the macro editor, you can break out of an infinite loop by pressing Ctrl+Break.

Example Sub Min

For x = -1 To O
For y =-1To O
Z=x Oy
nmesg = nmesg & Format (Abs(x%,"0") & " O "
nesg = nesg & Format (Abs(y%,"0") & " ="

264

Format, Format$

nesg = nesg & Format (Z, "True/ Fal se") & Basic. Eol n$

Next vy
Next x

Sessi on. Echo nesg

End Sub

See Also Macro Control and Compilation on page 7

Format, Format$

Syntax Format[$] (expression [, [format] [, [firstdayofweek] [, firstweekofyear]]])

Description Returnsast ri ng formatted to user specification. For mat $ returnsa st ri ng, whereas For mat returns
astring variant. The For mat $/For mat functions take the following named parameters:

Parameter

Description

expressi on

f or mat

Fi r st dayof week

Fi r st weekof year

String or numeric expression to be formatted. The compiler will only examine
the first 255 characters of expr essi on.

Format expression that can be either one of the built-in formats or a user-
defined format consisting of charactersthat specify how the expression should
be displayed. string, numeric, and date/time formats cannot be mixed in asin-
gleformat expression.

Indicates the first day of the week. If omitted, then Sunday is assumed (i.e.,
the constant ebSunday described bel ow).

Indicates the first week of the year. If omitted, then the first week of the year
is considered to be that containing January 1 (i.e., the constant ebFirstJanl as
described bellow).

If f or mat isomitted and the expression is numeric, then these functions perform the same function as
thestrs or str statements, except that they do not preserve aleading space for positive values.

If expressi on isSNul I, then azero-length string is returned.

The maximum length of the string returned by For mat or For mat $ functionsis 255.

Thefirst dayof week parameter, if specified, can be any of the following constants:

Constant

Value Description

ebUseSyst em
EbSunday
ebMbonday
ebTuesday
ebWednesday

Use the system setting for f i r st dayof week.
Sunday (the default)

Monday

Tuesday

Wednesday

265

Format, Format$

266

Constant Value Description

ebThur sday 5
ebFri day 6
ebSat ur day 7

Thursday
Friday
Saturday

Thefirstdayof year parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSyst em 0 Use the system setting for i r st dayof year.

EbFirstJanl 1 The first week of the year isthat in which January 1 occurs (the
default).

ebFi rst FourDays 2 The first week of the year isthat containing at least four daysin the
year.

ebFirstFul | Wek 3 Thefirst week of the year isthefirst full week of the year.

Built-in formats

To format numeric expressions, you can specify one of the built-in formats. There are two categories
of built-in formats: one deals with numeric expressions and the other with date/time values. The
following tableslist the built-in numeric and date/time format strings, followed by an explanation of

what each does.

Numeric formats

Format

Description

General Nunber
Currency

Fi xed

St andar d

Per cent

Displays the numeric expression as is, with no additional formatting.
Displays the numeric expression as currency, with thousands separator if neces-
sary. The built-in currency format allows the specification of an optional user-

defined format specification used only for zero values:
Currency; zero-format-string
where zer o- f or mat - st ri ng isa user-defined format used specifically for zero

values.

Displays at least one digit to the left of the decimal separator and two digitsto
theright.

Displays the numeric expression with thousands separator if necessary. Dis-
plays at least one digit to the left of the decimal separator and two digits to the
right.

Displays the numeric expression multiplied by 100. A percent sign (%) will
appear at the right of the formatted output. Two digits are displayed to the right
of the decimal separator.

Format, Format$

Format

Description

Scientific

Yes/ No
True/ Fal se

O/ O f

Displays the number using scientific notation. One digit appears before the dec-
imal separator and two after.

Displays No if the numeric expression is 0. Displays Yesfor all other values.
Displays Falseif the numeric expression is 0. Displays True for all other values.
Displays Off if the numeric expression is 0. Displays On for all other values.

Date/Time formats

Format

Description

General date

Long date

Medi um dat e
Short date
Long tine

Medi um time

Short tinme

Displaysthe date and time. If thereis no fractional part in the numeric expression,
then only the date is displayed. If thereis no integral part in the numeric expres-
sion, then only thetimeis displayed. Output isin the following form:

1/ 1/ 95 01:00: 00 AM

Displays along date—prints out the day of the week, the full name of the month,
and the numeric date and year.

Displays a medium date—prints out only the abbreviated name of the month.
Displays a short date.
Displays the long time. The default is: h: nm ss.

Displays the time using a 12-hour clock. Hours and minutes are displayed, and
the AM/PM designator is at the end.

Displays the time using a 24-hour clock. Hours and minutes are displayed.

Default date/time formats are read from the[1 nt 1] section of the win.ini file.

User-defined formats

In addition to the built-in formats, you can specify auser-defined format by using charactersthat have
special meaning when used in aformat expression. The following list the characters you can use for
numeric, string, and date/time formats and explain their functions.

267

Format, Format$

Numeric formats

Character Meaning

Empty string Displays the numeric expression asis, with no additional formatting.

0 Thisisadigit placeholder. Displays a number or a0. If anumber existsin the
numeric expression in the position where the 0 appears, the number will be
displayed. Otherwise, a0 will be displayed. If there are more Osin the format
string than there are digits, the leading and trailing Os are displayed without
modification.

Thisisadigit placeholder. Displays anumber or nothing. If anumber existsin

%

E- E+ e- e+t

268

the numeric expression in the position where the number sign appears, the
number will be displayed. Otherwise, nothing will be displayed. Leading and
trailing Os are not displayed.

Thisisthe decimal placeholder. Designates the number of digitsto the left of
the decimal and the number of digits to the right. The character used in the
formatted string depends on the decimal placeholder, as specified by your
locale.

Thisisthe percentage operator. The numeric expression is multiplied by 100,
and the percent character is inserted in the same position as it appearsin the
user-defined format string.

Thisisthe thousands separator. The common use for the thousands separator
isto separate thousands from hundreds. To specify this use, the thousands sep-
arator must be surrounded by digit placeholders. Commas appearing before
any digit placeholders are specified are just displayed. Adjacent commaswith
no digit placeholders specified between them and the decimal mean that the
number should be divided by 1,000 for each adjacent commain the format
string. A commaimmediately to the left of the decimal has the same function.
The actual thousands separator character used depends on the character speci-
fied by your locale.

These are the scientific notation operators, which display the number in scien-
tific notation. At least one digit placeholder must exist to theleft of E- , E+, e-,
or e+. Any digit placeholders displayed to the left of E-, E+, e-, Or e+ deter-
mine the number of digits displayed in the exponent. Using E+ or e+ placesa +
in front of positive exponents and a- in front of negative exponents. Using E-
or e- placesa- in front of negative exponents and nothing in front of positive
exponents.

Thisisthe time separator. Separates hours, minutes, and seconds when time
values are being formatted. The actual character used depends on the charac-
ter specified by your locale.

Thisisthe date separator. Separates months, days, and years when date values
are being formatted. The actual character used depends on the character speci-
fied by your locale.

Format, Format$

Character

Meaning

- +$% () space Thesearetheliteral charactersyou can display. To display any other character,

" ABC'

you should precede it with a backslash or encloseit in quotes.

This designates the next character as a displayed character. To display charac-
ters, precede them with a backslash. To display a backslash, use two back-
slashes. Double quotation marks can also be used to display characters.
Numeric formatting characters, date/time formatting characters, and string
formatting characters cannot be displayed without a preceding backslash.

Displays the text between the quotation marks, but not the quotation marks.
To designate adoubl e quotation mark within aformat string, use two adjacent
double quotation marks.

Thiswill display the next character asthefill character. Any empty spacein a
field will be filled with the specified fill character.

Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you specify
oneformat, it appliesto all values. If you specify two formats, the first applies to positive values and
the second to negative values. If you specify three formats, the first applies to positive values, the
second to negative values, and the third to Os. If you include semicolonswith no format between them,
the format for positive valuesis used.

String formats

Character Meaning

@

Thisisacharacter placeholder. It displays a character if one existsin the expressionin
the same position; otherwise, it displays a space. Placeholders are filled from right to
left unless the format string specifiesleft to right.

Thisisacharacter placeholder. It displays a character if one existsin the expressionin
the same position; otherwise, it displays nothing. Placeholders are filled from right to
left unless the format string specifies left to right.

This character forces lowercase. It displays all charactersin the expressionin lower-
case.

This character forces uppercase. It displays all charactersin the expression in upper-
case.

This character forces placehol ders to be filled from left to right. The default is right to
eft.

269

Format, Format$

270

Example

Date/Time formats

Character Meaning

c Displaysthe date as ddddd and the time as ttttt. Only the date is displayed if no frac-
tional part exists in the numeric expression. Only thetimeis displayed if no integral
portion exists in the numeric expression.

d Displays the day without aleading 0 (1-31).

dd Displays the day with aleading 0 (01-31).

ddd Displays the day of the week abbreviated (Sun—Sat).

dddd Displays the day of the week (Sunday—Saturday).

ddddd Displays the date as a short date.

dddddd Displaysthe date as along date.

w Displays the number of the day of the week (1-7). Sunday is 1; Saturday is 7.

ww Displays the week of the year (1-53).

m Displays the month without aleading 0 (1-12). If m immediately follows h or hh, mis
treated as minutes (0-59).

nm Displays the month with aleading 0 (01-12). If mm immediately follows h or hh, mm
is treated as minutes with aleading 0 (00-59).

mmm Displays the month abbreviated (Jan-Dec).

nmmm Displays the month (January—December).

q Displays the quarter of the year (1-4).

yy Displaysthe year, not the century (00-99).

yyyy Displays the year (1000-9999).

h Displays the hour without a leading 0 (0-24).

hh Displays the hour with aleading 0 (00—24).

n Displays the minute without aleading 0 (0-59).

nn Displays the minute with aleading 0 (00-59).

S Displays the second without aleading 0 (0-59).

ss Displays the second with aleading 0 (00-59).

ttttt Displaysthe time. A leading O is displayed if specified by your locale.

AM PMor Displaysthe time using a 12-hour clock. Displays an uppercase AM for time values

AVPM before 12 noon. Displays an uppercase PM for time val ues after 12 noon and before 12
midnight.

anm pm Displays the time using a 12-hour clock. Displays alowercase am or pm at the end.

AP Displays the time using a 12-hour clock. Displays an uppercase A or P at the end.

alp Displays the time using a 12-hour clock. Displays alowercase aor p at the end.

Const crlf = Chr$(13) + Chr$(10)

FreeFile

Sub Main
a# = 1199. 234
nesg = "Some general formats for '" & a# & "' are:"
nesg = nesg & Fornat $(a#, "Ceneral Nunber") & crlf
mesg = mesg & Format$(a#, "Currency") & crlf
nmesg = nesg & Format $(a#, "Standard") & crlf
mesg = nmesg & Format $(a#, "Fixed") & crlf
nmesg = nesg & Format $(a#, "Percent") & crlf
mesg = nmesg & Format $(a#, "Scientific") & crlf
nmesg = nesg & Format $(True, "Yes/ No") & crlf
mesg = nesg & Format $(True, "True/ Fal se") & crlf
nmesg = nesg & Format $(True,"On/ OFf") & crlf
mesg = nesg & Format $(a#,"0,0.00") & crlf
nesg = nesg & Fornat $(a#, " ##, ###, ###. #44") & crlf
Sessi on. Echo nesg
da$ = Date$
nesg = "Sone date formats for '" & da$ & "' are:"
nesg = nesg & Fornat $(da$, "Ceneral Date") & crlf
mesg = nesg & Format $(da$, "Long Date") & crlf
nesg = nesg & Fornat $(da$, "Medi um Date") & crlf
mesg = nmesg & Format $(da$, "Short Date") & crlf
Sessi on. Echo nesg
ti$ = Tine$
nesg = "Sonme time formats for '" &ti$ & "' are:"
mesg = nesg & Format $(ti $, "Long Tinme") & crlf
nesg = nesg & Format $(ti $, "Medium Tine") & crlf
mesg = mesg & Format $(ti $, "Short Time") & crlf
Sessi on. Echo nesg
End Sub
See Also Character and String Manipulation on page 3
FreeFile
Syntax FreeFile [([rangenunber])]
Description Returnsan| nt eger containing the next available file number. Thisfunction returnsthe next available
file number within the specified range. If r angenunber is 0, then a number between 1 and 255 is
returned; if 1, then anumber between 256 and 511 isreturned. If r angenunber isnot specified, then a
number between 1 and 255 is returned.
The function returns O if there is no available file number in the specified range.
The number returned is suitable for use in the Open statement.
Example Sub Main
a = FreeFile
Sessi on. Echo "The next free file nunmber is: " & a
End Sub
See Also Drive, Folder, and File Access on page 4

271

Function...End Function

Function...End Function

Syntax

Description

272

[Private | Public] [Static] Function nane[(arglist)] [As ReturnType]
[statenents]

End Sub

where ar gl i st isacomma-separated list of the following (up to 30 arguments are allowed):

[Optional] [ByVal | ByRef] paraneter [()] [As type]

Creates a user-defined function. The Funct i on statement has the following parts:

Part

Description

Private

Public

Static

name

Opti onal

ByVal
By Ref

par anet er

Indicates that the function being defined cannot be called from other macros in other
modules.

Indicates that the function being defined can be called from other macrosin other
modules. If both the Private and Public keywords are missing, then Public is
assumed.

Recognized by the compiler but currently has no effect.
Name of the function, which must follow naming conventions:

Must start with aletter.

May contain letters, digits, and the underscore character (_). Punctuation and type-
declaration characters are not allowed. The exclamation point (!) can appear within
the name aslong asit isnot the last character, in which case it isinterpreted asatype-
declaration character.

Must not exceed 80 charactersin length. Additionally, the name parameter can end
with an optional type-declaration character specifying the type of datareturned by the
function (i.e., any of the following characters: %, &, !, #, @).

Keyword indicating that the parameter is optional . All optional parameters must be of
typevariant. Furthermore, all parametersthat follow the first optional parameter must
also be optional. If this keyword is omitted, then the parameter is required.

Note: You can usethel sM ssi ng function to determine whether an optional parame-
ter was actually passed by the caller.

Keyword indicating that par anet er is passed by value.

Keyword indicating that par anet er is passed by reference. If neither the ByVal nor
the ByRef keyword is given, then ByRef is assumed.

Name of the parameter, which must follow the same naming conventions as those
used by variables. This name can include a type-declaration character, appearing in
place of As type.

Function...End Function

Part Description

type Type of the parameter (integer, string, and so on). Arrays are indicated with parenthe-
ses. For example, an array of integers would be declared as follows:
Function Test(a() As Integer)End Function

ReturnType Type of datareturned by the function. If the return type is not given, then variant is
assumed. The Ret ur nType can only be specified if the function name (i.e., the nane
parameter) does not contain an explicit type-declaration character.

A function returnsto the caller when either of the following statementsis encountered: End Functi on
Or Exit Functi on.

Functions can be recursive.

Returning Values from Functions
To assign areturn value, an expression must be assigned to the name of the function, as shown below:

Function TinesTwo(a As |Integer) As |nteger
TimesTwo = a * 2
End Function

If no assignment is encountered before the function exits, then one of the following valuesisreturned:

Value Data Type Returned by the Function
0 Integer, long, single, double, currency
Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean

The type of the return value is determined by the As Ret ur nType clausein the Functi on statement
itself. Asan aternative, atype-declaration character can be added to the Funct i on name. For example,
the following two definitions of Test both return st ri ng values:

Function Test() As String
Test = "Hello, world"
End Function
Function Test $()
Test = "Hello, world"
End Function

273

Function...End Function

274

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending on the declaration of
that parameter inar gl i st . If the parameter is declared using the ByRef keyword, then any
maodifications to that passed parameter within the function change the value of that variablein the
caller. If the parameter is declared using the Byval keyword, then the value of that variable cannot be
changed in the called function. If neither the ByRef or Byval keywords are specified, then the
parameter is passed by reference.

Y ou can override passing a parameter by reference by enclosing that parameter within parentheses.
For instance, the following example passes the variable j by reference, regardliess of how the third
parameter isdeclared inthear gl i st oOf User Functi on:

i = UserFunction(10, 12, (j))

Optional Parameters
Y ou can skip parameters when calling functions, as shown in the following example:

Function Test(a%b%c% As Variant
End Function
Sub Main
a = Test(1,,4) "Paraneter 2 was ski pped.
End Sub

Y ou can skip any parameter, with the following restrictions:

e Thecal cannot end with acomma. For instance, using the above example, the following is not
valid:
a = Test(1,,)

e The call must contain the minimum number of parameters as required by the called function. For
instance, using the above example, the following are invalid:

a = Test(,1) "Only passes two out of three required
' par aneters.
a = Test(1,2) "Only passes two out of three required

' par aneters.

When you skip a parameter in this manner, the compiler creates atemporary variable and passes this
variable instead. The value of this temporary variable depends on the data type of the corresponding
parameter in the argument list of the called function, as described in the following table:

Value Data Type

0 Integer, long, single, double, currency
Zero-length string String

Nothing Object (or any data object)

Fv

Value Data Type
Error Variant
December 30, 1899 Date
False Boolean

Within the called function, you will be unable to determine whether a parameter was skipped unless
the parameter was declared as a variant in the argument list of the function. In this case, you can use
the 1 sM ssi ng function to determine whether the parameter was skipped:

Function Test(a,b,c)
If IsMssing(a) O IsMssing(b) Then Exit Sub
End Function

Example Function Factorial (n% As |nteger
"This function calculates NI (N-factoral).
f%=1
For i = n To 2 Step -1
fo=f*i

Next i
Factorial = f

End Function

Sub Main
a% =0
Do Wiile a% < 2
a% = Val (I nput Box$("Enter an integer nunber greater than 2.","Conpute
Factorial"))
Loop
b# = Factorial (a%
Sessi on. Echo "The factoral of " & a% & " is: " & b#
End Sub

See Also Macro Control and Compilation on page 7

Fv

Syntax Fv(rate, nper, pnt, pv, due)

Description Calculates the future value of an annuity based on periodic fixed payments and a constant rate of
interest. An annuity is a series of fixed payments made to an insurance company or other investment
company over aperiod of time. Examples of annuities are mortgages and monthly savings plans. The
Fv function requires the following named parameters:

275

Fv

276

Example

See Also

Parameter Description

rate Double representing the interest rate per period. Make sure that annual rates are nor-
malized for monthly periods (divided by 12).

nper Double representing the total number of payments (periods) in the annuity.

prt Double representing the amount of each payment per period. Payments are entered as
negative values, whereas receipts are entered as positive values.

pv Double representing the present value of your annuity. In the case of aloan, the
present value would be the amount of the loan, whereas in the case of a retirement
annuity, the present value would be the amount of the fund.

due Integer indicating when payments are due for each payment period. A 0 specifies pay-

ment at the end of each period, whereas a 1 indicates payment at the start of each
period.

The rat e and nper values must be expressed in the same units. If r at e is expressed as a percentage
per month, then nper must also be expressed in months. If r at e isan annual rate, then the nper value
must also be given in years.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

This example cal culates the future value of 100 dollars paid periodically for aperiod of 10 years (120
months) at arate of 10% per year (or .10/12 per month) with payments made on thefirst of the month.
Note that payments are negative values.

Sub Mai n

a# = Fv((.10/12), 120, -100.00,0, 1)
Session. Echo "Future value is: " & Format(a#, "Currency")

End Sub

Numeric, Math, and Accounting Functions on page 6

G

Get

Syntax Get [#] filenunber, [recordnunber], variable

Description Retrieves datafrom arandom or binary file and stores that data into the specified variable. The Get
statement accepts the following parameters:

Parameter Description
filenunber Integer used to identify the file. Thisis the same number passed to the Open
statement.

recor dnunber Long specifying which record is to be read from the file. For binary files, this
number represents the first byte to be read starting with the beginning of thefile
(thefirst byteis 1). For random files, this number represents the record number
starting with the beginning of thefile (the first record is 1). This value ranges
from 1to 2147483647. If ther ecor dnunber parameter is omitted, the next
record is read from the file (if no records have been read yet, then the first
record in thefileisread). When this parameter is omitted, the commas must still
appear, asin the following example:

Get #1,,recvar |If recordnunber

is specified, and it overrides any previous change in file position specified with
the Seek statement.

vari abl e Variable into which datawill be read. The type of the variable determines how
the datais read from the file, as described below.

With random files, aruntime error will occur if the length of the data being read exceedsther ecl en
parameter specified with the open statement. If the length of the data being read islessthan the record
length, the file pointer is advanced to the start of the next record. With binary files, the data elements
being read are contiguous; the file pointer is never advanced.

277

Get

278

Variable types

The type of thevari abl e parameter determines how data will be read from the file. It can be any of

the following types:

Variable Type File Storage Description

Integer 2 bytes are read from thefile.

Long 4 bytes are read from the file.

String (variable-length) In binary files, variable-length strings are read by first determining the

String (fixed-length)
Double

Single

Date

Boolean

Variant

User-defined types

Arrays
Object

specified string variable’s length and then reading that many bytes
from the file. For example, to read a string of eight characters:

s$=String$(8,"")Get#1, , s$

In random files, variable-length strings are read by first reading a 2-
byte length and then reading that many characters from the file.

Fixed-length strings are read by reading a fixed number of characters
from the file equal to the string’s declared length.

8 bytes are read from the file (IEEE format).
4 bytes are read from the file (IEEE format).
8 bytes are read from the file (IEEE double format).

2 bytesareread from thefile. Nonzero values are True, and zero values
are False.

A 2-byte VarTypeisread from thefile, which determines the format of
the data that follows. Once the VarType is known, the data is read indi-
vidually, as described above. With user-defined errors, after the 2-byte
VarType, a 2-byte unsigned integer is read and assigned as the value of
the user-defined error, followed by 2 additional bytes of information
about the error. The exception is with strings, which are always pre-
ceded by a 2-byte string length.

Each member of auser-defined datatypeisread individually. In binary
files, variable-length strings within user-defined types are read by first
reading a 2-byte length followed by the string’s content. Thisstorageis
different from variable-length strings outside of user-defined types.
When reading user-defined types, the record length must be greater
than or equal to the combined size of each element within the data

type.
Arrays cannot be read from afile using the Get statement.

Object variables cannot be read from afile using the Get statement.

Example Sub Min

Open "test.dat" For Random Access Wite As #1

For x =1 to 10

GetAttr

See Also

GetAttr

Syntax

Description

Example

y% = x * 10
Put #1,x,y
Next x
Cl ose

Open "test.dat" For Random Access Read As #1
For y = 1to5

CGet #1,y,x%
nesg = nesg & "Record " &y & ": " & x% & Basic. Eol n$
Next y
Sessi on. Echo nesg
Cl ose
End Sub

Drive, Folder, and File Access on page 4

Get At t r (pat hnane)

Returnsan | nt eger containing the attributes of the specified file. The attribute value returned is the
sum of the attributes set for the file. The value of each attribute is as follows:

Value Constant Includes

0 ebNor nal Read-only files, archive files, subdirectories, and files with no attributes
1 ebReadOnly Read-only files

2 ebHi dden Hidden files

4 ebSyst em System files

9 ebVol une Volume | abel

16 ebDirectory Subdirectories

32 ebArchive Files that have changed since the last backup

64 ebNone Files with no attributes

To determine whether a particular attribute is set, you can And the values shown above with the value
returned by Get Attr.

If the result is Tr ue, the attribute is set, as shown below:

Dimw As | nteger
w = CetAttr("sanple.txt")
If w And ebReadOnly Then Session.Echo "This file is read-only."

Const crlf = Chr$(13) + Chr$(10)

Sub Main
If Not FileExists("test.dat") Then
Qpen "test.dat" For Random Access Wite As #1
Cl ose
End | f
y% = GetAttr("test.dat")

279

GetObject

See Also

If y% And ebNone Then nmesg = nmesg & _
"No archive bit is set." &crlf
If y% And ebReadOnly Then nesg = nesg & _
"The read-only bit is set." &crlf
If y% And ebH dden Then mesg = mesg & "The hidden bit is set." & _

crlf

If y% And ebSystem Then mesg = mesg & "The systembit is set." & _
crlf

If y% And ebVol une Then mesg = mesg & "Volune bit is set." & crlf

If y% And ebDirectory Then nesg = nesg & "Directory bit is set." &
&crlf
If y% And ebArchive Then nmesg = nesg & "The archive bit is set."
Sessi on. Echo nesg
Kill "test.dat"

End Sub

Drive, Folder, and File Access on page 4

GetObject

Syntax

Description

280

Get Obj ect (pat hnanme [, class])

Returnsthe object specified by pat hnane or returnsapreviously instantiated object of thegivencl ass.
Thisfunctionisused to retrieve an existing OLE Automation object, either one that comesfrom afile
or one that has previously been instantiated.

The pat hname argument specifies the full pathname of the file containing the object to be activated.
The application associated with the file is determined by OLE at runtime. For example, suppose that
afile called c:\docs\resume.doc was created by aword processor called wordproc.exe. The following
statement would invoke wordproc.exe, load the file called c:\docs\resume.doc, and assign that object
to avariable:

Di m doc As (bj ect
Set doc = Get Obj ect ("c:\docs\resune. doc")

To activate a part of an object, add an exclamation point to the filename followed by a string
representing the part of the object that you want to activate. For example, to activate the first three
pages of the document in the previous example:

Di m doc As (bj ect
Set doc = Get Obj ect ("c:\docs\resune. doc! P1- P3")

The Get bj ect function behaves differently depending on whether the first named parameter is
omitted. The following table summarizes the different behaviors of Get vj ect :

GoSub

Examples

See Also

GoSub

Syntax

Description

Example

Pathname Class Get bj ect Returns

Not specified Specified A reference to an existing instance of the specified object. A runt-
ime error results if the object is not already loaded.

" Specified A reference to anew object (as specified by class). A runtime error

occursif an object of the specified class cannot be found. Thisis
the same as Cr eat ebj ect .

Specified Not specified The default object from pathname. The application to activate is
determined by OLE based on the given filename.

Specified Specified The object given class from the file given by pathname. A runtime
error occurs if an object of the given class cannot be found in the
givenfile.

Thisfirst example instantiates the existing copy of Excel.

Di m Excel As Obj ect
Set Excel = Get bject(,"Excel.Application")

This second exampl e loads the OL E server associated with a document.

Dim MyObj ect As bj ect
Set MyQbj ect = Get Obj ect ("c:\docunments\resune. doc",)

Objects on page 10; DDE Access on page 10

GoSub | abel

Causes execution to continue at the specified label. Execution can later be returned to the statement
following the Gosub by using the Ret ur n statement. Thel abel parameter must be alabel within the
current function or subroutine. GoSub outside the context of the current function or subroutine is not
allowed.

Sub Main
uname$ = Ucase$(| nput Box$("Enter your nane:","Enter Nanme"))
GoSub CheckNane
Sessi on. Echo "Hello, " & unane$
Exit Sub
CheckNane:
If (unane$ = "") Then

GoSub Bl ankNane
El sel f uname$ = "M CHAEL" Then
GoSub Ri ght Nanme
El se
GoSub O her Nane
End I f
Return
Bl ankNane:
Session. Echo "No nanme? Cicked Cancel ? |’ m shutting down."

281

Goto

See Also

Goto

Syntax

Description

Example

See Also

282

Exit Sub
Ri ght Nane:
Return
O her Nane:
Session. Echo "I amrenami ng you M CHAEL!"
unane$ = "M CHAEL"
Return
End Sub

Macro Control and Compilation on page 7

Got o | abel

Transfers execution to the line containing the specified label. The compiler will produce an error if
| abel doesnot exist. Thel abel must appear within the same subroutine or function as the Got o.

Labels are identifiers that follow these rules:

e Must begin with aletter.

« May contain letters, digits, and the underscore character.
e Must not exceed 80 charactersin length.

e Must befollowed by acolon ().

L abels are not case-sensitive.

When you're running amacro within the macro editor, you can break out of aninfiniteloop by pressing
Ctrl+Break.

Sub Main
unanme$ = Ucase$(| nput Box$("Enter your name:","Enter Name"))
If unane$ = "M CHAEL" Then
Got o Ri ght Nane
El se
CGot o W ongNane
End I f
W ongNane:
I'f (unanme$ = "") Then
Sessi on. Echo "No nane? Cicked Cancel ? |'m shutting down."
El se
Session. Echo "I amrenam ng you M CHAEL!"
unanme$ = "M CHAEL"
Got o Ri ght Nane
End I f
Exit Sub
Ri ght Nane:
Sessi on. Echo "Hell o, M CHAEL!"
End Sub

Macro Control and Compilation on page 7

GroupBox

GroupBox

Syntax GoupBox Xx,y,w dth, height,title$ [,.Identifier]

Description Definesagroup box within adialog template. This statement can only appear within adial og template
(i.e., between the Begi n Di al og and End Di al og Statements).

The group box control isused for static display only the user cannot interact with a group box control.
Separator lines can be created using group box controls. Thisisaccomplished by creating a group box
that is wider than the width of the dialog and extends below the bottom of the dialog; i.e., three sides
of the group box are not visible.

Iftitle$ isazero-length string, then the group box is drawn as a solid rectangle with no title.

The Gr oupBox Statement requires the following parameters:

Parameter Description

X, Yy Integer coordinates specifying the position of the control (in dialog units) relative
to the upper left corner of the dialog.

wi dt h, hei ght Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the label of the group box. If ti t I e$ isazero-length string, then
no title will appear.

ldentifier Optional parameter that specifies the name by which this control can be refer-
enced by statementsin adialog function (such as Dl grocus and Dl genabl e). If
omitted, then the first two words of ti t | e$ are used.

Example Sub Min

Begi n Di al og OptionsTenpl ate 16, 32, 128, 84, " Opti ons"
GroupBox 4, 4,116, 40, "W ndow Opti ons"
CheckBox 12, 16, 60, 8, "Show &Tool bar", . ShowTool bar
CheckBox 12, 28, 68, 8, " Show &St atus Bar", . ShowSt at usBar
GroupBox -12,52,152,48," ",.SeparatorlLine
OKBut ton 16, 64, 40, 14, . &K
Cancel Button 68, 64, 40, 14, . Cancel

End Di al og

Di m OptionsDi al og As Opti onsTenpl ate

Di al og OptionsDi al og

End Sub

See Also User Interaction on page 9

283

GroupBox

284

H

HelpButton

Syntax Hel pButton x,y, w dt h, hei ght, Hel pFi | eNane$, Hel pContext, [,.ldentifier]

Description Defines ahelp button within a dialog template. This statement can only appear within adialog
template (i.e., between the Begi n Di al og and End Di al og Statements). The Hel pBut t on Statement
takes the following parameters:

Parameter Description

X,y Integer position of the control (in dialog units) relative to the upper left cor-
ner of the dialog.

wi dt h, hei ght Integer dimensions of the control in dialog units.

Hel pFileName$ String expression specifying the name of the help file to be invoked when
the button is selected.

Hel pCont ext Long expression specifying the ID of the topic within Hel pFi | eName$ con-
taining context-sensitive help.
ldentifier Name by which this control can be referenced by statements in a dialog

function (such as Dl gFocus and DI gEnabl e).

When the user selects a help button, the associated help fileislocated at the indicated topic. Selecting
ahelp button does not remove the dialog. Similarly, no actions are sent to the dial og procedure when
ahelp button is selected.

When ahelp button is present within adialog, it can be automatically selected by pressing the help key
F1.

Example Sub Min
Begi n Di al og Hel pDi al ogTenpl ate ,, 180,96, "Untitl ed"
OKBut t on 132, 8, 40, 14
Cancel Button 132, 28, 40, 14
Hel pButton 132, 48, 40, 14,"", 10

285

Hex, Hex$

See Also

Text 16, 12,88,12,"Please click ""Help"".",.Text1l
End Di al og
Di m Hel pDi al og As Hel pDi al ogTenpl at e
Di al og Hel pDi al og
End Sub

User Interaction on page 9

Hex, Hex$

Syntax

Description

Example

See Also

Hour

Syntax

Description

286

Example

Hex[$] (nunber)

Returnsa st ri ng containing the hexadecimal equivalent of nunber . Hex$ returnsa st ri ng, whereas
Hex returnsa st ri ng variant. The returned string contains only the number of hexadecimal digits
necessary to represent the number, up to a maximum of eight.

Thenunber parameter can be any type but is rounded to the nearest whole number before converting
to hex. If the passed number is an integer, then a maximum of four digits are returned; otherwise, up
to eight digits can be returned.

Thenunber parameter can be any expression convertible to anumber. If nunber isNul I, thenNul | is
returned. Enpt y istreated as 0.

Sub Main
Do
xs$ = I nput Box$("Enter a nunber to convert:","Hex Convert")
x = Val (xs$)

If x <> 0 Then
Session. Echo "Dec: " & x & " Hex: " & Hex$(x)

El se
Sessi on. Echo " Goodbye. "
End | f
Loop Wiile x <> 0
End Sub

Character and String Manipulation on page 3

Hour (ti nme)

Returnsthe hour of the day encoded in the specifiedti me parameter. Thevaluereturnedisani nt eger
between 0 and 23 inclusive. Thet i me parameter is any expression that convertsto abat e.

Sub Main

xt# = TimeVal ue(Ti me$())

xh# = Hour (xt #)

xm# = M nut e(xt #)

xs# = Second(xt #)

Session. Echo "The current tine is: " & xh# & ":" & xm# & ":" & Xxs#
End Sub

Hour

See Also Time and Date Access on page 10

287

Hour

288

If... Then...Else

Syntax1 If condition Then statenents [El se el se_statenents]

Syntax 2 If condition Then
[statenents]
[Elself else_condition Then
[el seif_statenents]]
[El se
[el se_statenents]]
End I f

Description Conditionally executes a statement or group of statements. The single-line conditional statement
(syntax 1) hasthe following parameters:

Parameter Description
condi tion Any expression evaluating to a boolean value.
St at ement s One or more statements separated with colons. This group of statementsis

executed when condi ti on is True.

el se_statements One or more statements separated with colons. This group of statementsis
executed when condi ti on is False.

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description
condi tion Any expression evaluating to a boolean value.
St at enent s One or more statements to be executed when condi ti on is True.

289

lif

Parameter Description
el se_condition Any expression evaluating to aboolean value. Theel se_condi tionis

evaluated if condi ti on isFalse.

el sei f _statenents One or more statements to be executed when condi ti on is False and
el se_condi tion isTrue.

el se_statnents One or more statements to be executed when both condi ti on and
el se_condi tion are False.

There can be asmany El sel f conditions as required.

Example Sub Min
uname$ = Ucase$(| nput Box$("Enter your nane:","Enter Nanme"))
If unane$ = "M CHAEL" Then GoSub M keNane
If unane$ = "M KE" Then
GoSub M keNane

Exit Sub
End | f
If unane$ = "" Then
Sessi on. Echo "Since you don't have a nane, I'Il call you MKE!"

unane$ = "M KE"
GoSub M keNane
El sel f unane$ = "M CHAEL" Then
GoSub M keNane
El se
GoSub O her Nane
End I f
Exit Sub
M keNane:
Sessi on. Echo "Hel | o, M CHAEL!"
Return
O her Nane:
Session. Echo "Hello, " & unane$ & "!"
Return
End Sub

See Also Macro Control and Compilation on page 7

Syntax 1if(expression, truepart, falsepart)

Description Returnstruepart if conditionisTr ue; otherwise, returnst al separt . Both expressions are calculated
beforelif returns. Thelif function is shorthand for the following construct:

If condition Then
variable = truepart
El se
variabl e = fal separt
End I f

290

IMEStatus

Example Sub Min
s$ = "Car”

Session. Echo 1if(s$ = "Car","Nice Car","Nice Autonobile")

End Sub

See Also Macro Control and Compilation on page 7

IMEStatus

Syntax | MEStatus[()]

Description Returnsthe current status of the input method editor. The | MESt at us function returns one of the
following constants for Japanese locales:

Constant Value Description

ebl MENoQp 0 IME not installed.

Ebl MEON 1 IME on.

Ebl MEC f 2 IME off.

Ebl MEDi sabl ed 3 IME disabled.

Ebl MEH r agana 4 Hiragana double-byte character.

Ebl MEKat akanaDbl 5 Katakana double-byte characters.

Ebl MEKat akanaSng 6 Katakana single-byte characters.

Ebl MEAI phaDbl 7 Alphanumeric double-byte characters.
Ebl MEAl phaSng 8 Alphanumeric single-byte characters.

For Chinese locales, one

of the following constants are returned:

Description

Constant Value
ebl MENoOp 0
Ebl MEOn 1
Ebl MEC f 2

IME not installed.
IME on.
IME off.

For Korean locales, this function returns a value with thefirst 5 bits having the following meaning:

Bit If Not Set (Or

0) If Set (Or 1)

Bit0 IME not installed IME installed

Bit 1 IME disabled
Bit 2 English mode

IME enabled
Hangeul mode

Bit 3 Banjamode (single-byte) Junja mode (double-byte)

Bit4 Normal mode

Hanja conversion mode

291

Imp (operator)

I:I Y ou can test for the different bits using the And operator as follows:

a = | MEStatus()

If a And 1 Then ... 'Test for bit 0O
If a And 2 Then ... 'Test for bit 1
If a And 4 Then ... 'Test for bit 2
If a And 8 Then ... 'Test for bit 3
If a And 16 Then ... 'Test for bit 4

This function always returns 0 if no input method editor isinstalled.

Example Sub Min
a = | MESt at us()
Sel ect case a
Case 0
Session. Echo "I ME not installed.”
Case 1
Sessi on. Echo "I ME on."
Case 2
Session. Echo "I ME of f."
End Sel ect
End Sub

See Also Operating System Control on page 9

Imp (operator)

Syntax result = expressionl |Inp expression2

Description Performsalogical or binary implication on two expressions. If both expressions are either Bool ean,
Bool ean Variants, or Nul | variants, then alogical implication is performed as follows:

Expresson One Expression Two Result
True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null

292

Input#

Example

See Also

Input#

Syntax

Description

Binary implication
If the two expressions are | nt eger , then abinary implication is performed, returning an | nt eger

result. All other numeric types (including Enpt y variants) are converted to Long and a binary
implication is then performed, returning aLong result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary representations
of the two expressions, according to the following table:

Bit in Expression One Bit in Expression Two Result
1 1 1

0 1 1

1 0 0

0 0 1

Sub Main

a=10: b=20: c =30: d =140
If (a<b) Inp (¢ <d) Then
Session.Echo "a is less than b inplies that ¢ is less than d."
El se
Session. Echo "a is less than b does not inply that ¢ is less than d."
End | f
If (a<b) Inp (c >d) Then
Session.Echo "a is less than b inplies that c is greater than d."
El se
Session. Echo "a is less than b does not inmply that ¢ is greater than d."
End I f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5

Input [#]filenunber%variabl e[, variable]...

Reads data from the file referenced by i | enunber into the given variables. Each vari abl e must be
type-matched to the datain thefile. For example, ast ri ng variable must be matched to astring inthe
file. The following parsing rules are observed while reading each variable in the variable list:

« Leading white spaceisignored (spaces and tabs).

e Whenreading st ri ng variables, if the first character on the line is a quotation mark, then charac-
tersareread up to the next quotation mark or the end of theline, whichever comesfirst. Blank lines
areread asempty strings. If thefirst character read isnot aquotation mark, then characters are read
up to the first commaor the end of the line, whichever comesfirst. String delimiters (quotes, com-
ma, end-of-line) are not included in the returned string.

293

Input#

294

« When reading numeric variables, scanning of the number stops when the first non-numeric char-
acter (such asacomma, aletter, or any other unexpected character) isencountered. Numeric errors
areignored while reading numbers from afile. The resultant number is automatically converted to
the same type asthe variabl e into which the value will be placed. If thereisan error in conversion,
then O is stored into the variable.

« After reading the number, input is skipped up to the next delimiter—a comma, an end-of-line, or
an end-of -file.

e Numbers must adhere to any of the following syntax:

[-1+]digits[.digits][E[-|+]digits][!|# %& @
&Hhexdi gits[!|#| % &
& O octaldigits[!|# % & @

* When reading Bool ean variables, the first character must be #; otherwise, a runtime error occurs.
If the first character is#, then input is scanned up to the next delimiter (a comma, an end-of-line,
or an end-of-file). If the input matches #FAL SE#, then Fal se is stored in the Bool ean; otherwise,
True is stored.

« Whenreading date variabl es, thefirst character must be #; otherwise, aruntime error occurs. If the
first character is#, then the input is scanned up to the next delimiter (a comma, an end-of-line, or
an end-of-file). If the input endsin a# and the text between the #s can be correctly interpreted as
adate, then the date is stored; otherwise, December 31, 1899, is stored.

Normally, dates that follow the universal date format are input from sequential files. These dates use
this syntax:

#YYYY- M DD HH: MMt SS#

where YYYY isayear between 100 and 9999, mvis a month between 1 and 12, b is a day between 1
and 31, HH is an hour between 0 and 23, vmis a minute between 0 and 59, and ss is a second between
0 and 59.

e Whenreading vari ant variables, if the databeginswith aquotation mark, then astringisread con-
sisting of the characters between the opening quotation mark and the closing quotation mark, end-
of-line, or end-of-file.

If theinput does not begin with aquotation mark, then input is scanned up to the next comma, end-of-
ling, or end-of-file and a determination is made as to what datais being represented. If the data cannot
be represented as a number, Dat e, Error, Bool ean, Or Nul |, then it is read as a string.

The following table describes how special dataisinterpreted as variants:

Specia Data Interpreted as Variant

Blank line Read as an empty variant.
#NULL# Read as anull variant.
TRUE# Read as a boolean variant.

Input#

Specia Data Interpreted as Variant

#FAL SE# Read as a boolean variant.

ERROR code# Read as a user-defined error.
Dat e# Read as a date variant.

"text" Read as a string variant.

If an error occursin interpretation of the data as a particular type, then that dataisread asast ri ng
variant.

When reading numbers into variants, the optional type-declaration character determines the
VarType of the resulting variant. If no type-declaration character is specified, then the compiler
will read the number according to the following rules:

* Rulel: If thenumber containsadecimal point or an exponent, then the number isread as cur -
rency. If thereisan error converting to cur r ency, then the number istreated asaDoubl e.

* Rule 2: If the number does not contain a decimal point or an exponent, then the number is
stored in the smallest of the following data types that most accurately represents that value:
integer, long, currency, double.

End-of-lineisinterpreted as either asingle line feed, asingle carriage return, or a carriage-return/
line-feed pair. Thus, text files from any platform can be interpreted using this command.

Thefil enumber parameter isanumber that is used to refer to the open file the number passed to
the open statement.

Theftil enumber must reference afile openedini nput mode. It isgood practiceto usethewite
statement to write date elements to files read with the | nput statement to ensure that the variable
list is consistent between the input and output routines.

Null characters are ignored.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main

Open "test.dat" For Qutput As #1

Wite #1,2112, "David", "MCue", "123-45-6789"
Cl ose

Open "test.dat" For |nput As #1

I nput #1, x% st 1$, st 2%, st 3%

nesg = "Enployee " & x% & " Information" & crlf & crlf
nesg = nesg & "First Nane: " & stl1$ & crlf
nesg = nesg & “Last Nanme: "& st2$ & crlf
nesg = nesg & "Social Security Nunber: " & sy3$
Sessi on. Echo nesg
Cl ose
Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 4

295

Input, Input$, InputB, InputB$

Input, Input$, InputB, InputB$
Syntax I nput[$] (nuncthars, [#]fil enunber)
I nput B[$] (nunbyt es, [#] fil enunber)
Description Returns a specified number of characters or bytes read from a given sequential file. The | nput $ and

I nput B$ functionsreturnast ri ng, whereas| nput and | nput Breturnast ri ng variant. Thefollowing
parameters are required:

Parameter Description
nunchars Integer containing the number of characters to be read from the file.
numbyt es Integer containing the number of bytesto be read from thefile.

filenumber Integer referencing afile opened in either Input or Binary mode. Thisisthe same
number passed to the Open statement.

Thel nput and 1 nput $ functionsread all characters, including spacesand end-of-lines. Null characters
areignored.

The InputB and InputB$ functions are used to read byte data from afile.

Example Const crlf = Chr$(13) & Chr$(10)

Sub Main
x& = FileLen("c:\autoexec. bat")
If x& > 0 Then
Qpen "c:\autoexec.bat" For |nput As #1
El se
Session. Echo "File not found or enpty."
Exit Sub
End I f
If x& > 80 Then
ins = | nput (80, #1)

El se
ins = I nput(x, #1)
End | f
Cl ose
Session. Echo "File length: " & x& & crlf & ins
End Sub

See Also Drive, Folder, and File Access on page 4

InputBox, InputBox$

Syntax | nput Box[$] (pronmpt [, [title] [, [default] [,[xpos],[ypos] [,helpfile,context]]]])

Description Displaysadialog with atext box into which the user can type. The content of the text box is returned
asastring (inthecase of | nput Box$) or asast ri ng variant (in the case of | nput Box). A zero-length

296

InStr, InstrB

string isreturned if the user selects Cancel. The | nput Box/ I nput Box$ functions take the following
named parameters.

Parameter Description

pronpt Text to be displayed above the text box. The pr onpt parameter can contain multiple
lines, each separated with an end-of-line (a carriage return, line feed, or carriage-
return/line-feed pair). A runtime error is generated if pronpt isnull.

title Caption of thedialog. If this parameter is omitted, then no title appears asthe dialog's
caption. A runtime error isgenerated if tit1 e isnull.

def aul t Default response. This string isinitially displayed in the text box. A runtime error is
generated if def aul t isnull.

xpos, ypos Integer coordinates, given in twips (twentieths of a point), specifying the upper left
corner of the dialog relative to the upper left corner of the screen. If the position is
omitted, then the dialog is positioned on or near the application executing the macro.

hel pfile Name of thefile containing context-sensitive help for this dialog. If this parameter is
specified, then cont ext must also be specified.

cont ext Number specifying the ID of the topic within hel pfi | e for thisdialog's help. If this
parameter is specified, then hel pfi | e must also be specified.

Y ou can type a maximum of 255 charactersinto I nput Box.

If boththehel pfil e and cont ext parameters are specified, then aHelp button is added in addition to
the OK and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using
the help key F1. Invoking help does not remove the dialog.

When Cancdl is selected, an empty string is returned. An empty string is also returned when the user
selectsthe OK button with no text in theinput box. Thus, it is not possible to determine the difference
between these two situations. If you need to determine the difference, you should create auser-defined
dialog or use the AskBox function.

Example Sub Min
s$ = InputBox$("File to copy:", " Copy", "sanple.txt")
End Sub

See Also User Interaction on page 9

InStr, InstrB

Syntax InStr([start,] search, find [, conpare])
InStrB([start,] search, find [, conpare])

Description Returnsthe first character position of string f i nd within string sear ch. The nst r function takes the
following parameters:

297

InStr, InstrB

298

Parameter Description

start Integer specifying the character position (for Instr) or byte position (for InstrB) where
searching begins. Thest art parameter must be between 1 and 32767. If this parame-
ter is omitted, then the search starts at the beginning (start = 1).

search Text to search. This can be any expression convertible to a string.

find Text for which to search. This can be any expression convertible to a string.

conpare Integer controlling how string comparisons are performed. It can be any of the fol-

lowing values:

0 String comparisons are case-sensitive.

1 String comparisons are case-insensitive.

Any other value produces a runtime error. If this parameter is omitted, then string
comparisons use the current Option Compare setting. If no Option Compare state-

ment has been encountered, then Binary is used (i.e., string comparisons are case-
sensitive).

If the string isfound, then its character position within sear ch isreturned, with 1 being the character
position of the first character.

The InStr and InStrB functions observe the following additional rules:

e |f either search orfindisnull,thenNul | isreturned.

e If the conpar e parameter is specified, then st art must also be specified. In other words, if there
are three parameters, then it is assumed that these parameters correspond to st art , sear ch, and

find.

e Aruntimeerror isgenerated if start isnull.

e A runtimeerror isgenerated if conpare isnot 0 or 1.

e If search isempty, then O isreturned.

e Iffindisempty, thenstart isreturned. If start isgreater than the length of search, then Ois

returned.

e Aruntimeerror isgenerated if start islessthan or equal to zero.

Thel nstr and I nst r B functions operate on character and byte data respectively. The Instr function
interpretsthest art parameter as a character, performs atextual comparisons, and returns a character
position. The nst r B function, on the other hand, interpretsthe st art parameter as a byte position,
performs binary comparisons, and returns a byte position.

On SBCS platforms, the 1 nstr and 1 nst r B functions are identical.

Int

Example

See Also

Int

Syntax

Description

Example

See Also

Integer

Syntax

Description

Sub Main
a$ = "This string contains the nane Stuart and other characters."
X% = InStr(a$, "Stuart", 1)
If x%<> 0 Then
b$ = M d$(a$, x% 6)
Sessi on. Echo b$ & " was found."
Exit Sub
El se
Sessi on. Echo "Stuart not found."
End I f
End Sub

Character and String Manipulation on page 3

I nt (nunber)

Returnstheinteger part of nunber . Thisfunction returns the integer part of agiven value by returning
the first integer less than the nunber . The sign is preserved. The Int function returns the same type as
nunber, with the following exceptions:
e |f nunber iSEnpty, thenan i nteger variant of value O is returned.
e If nunber isastring, then adouble variant is returned.
e If nunber isnull, then anull variant is returned.
Sub Main
a# = -1234.5224
b% = | nt (a#)
Session. Echo "The integer part of -1234.5224 is: " & b%
End Sub

Numeric, Math, and Accounting Functions on page 6

(data type)

| nt eger

Used to declare whole numberswith up to four digits of precision. I nt eger variablesare used to hold
numbers within the following range:

—-32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure, integers require
2 bytes of storage. When used with binary or random files, 2 bytes of storage are required.

When passed to external routines, integer values are sign-extended to the size of an integer on that
platform (either 16 or 32 bits) before pushing onto the stack.

299

IPmt

See Also

IPmt

Syntax

Description

300

The type-declaration character for integer is %.

Keywords, Data Types, Operators, and Expressions on page 5

| Pt (rate, per, nper, pv, fv, due)

Returns the interest payment for a given period of an annuity based on periodic, fixed payments and
afixed interest rate. An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages, monthly savings
plans, and retirement plans. The following table describes the named parameters:

Parameter Description

rate Double representing the interest rate per period. If the payment periods are monthly,
be sure to divide the annual interest rate by 12 to get the monthly rate.
per Double representing the payment period for which you are calculating the interest

payment. If you want to know the interest paid or received during period 20 of an
annuity, this value would be 20.

nper Double representing the total number of paymentsin the annuity. Thisis usually
expressed in months, and you should be sure that the interest rate given aboveisfor
the same period that you enter here.

pv Double representing the present value of your annuity. In the case of aloan, the
present value would be the amount of the loan because that is the amount of cash you
have in the present. In the case of aretirement plan, this value would be the current
value of the fund because you have a set amount of principal in the plan.

fv Double representing the future value of your annuity. In the case of aloan, the future
value would be zero because you will have paid it off. In the case of asavings plan, the
future value would be the balance of the account after all payments are made.

due Integer indicating when payments are due. If this parameter is 0, then payments are
due at the end of each period (usually, the end of the month). If thisvalueis 1, then
payments are due at the start of each period (the beginning of the month).

Ther at e and nper parameters must be expressed in the same units. If r at e isexpressed in percentage
paid per month, then nper must also be expressed in months. If r at e isan annual rate, then the period
giveninnper should also bein years or the annual r at e should be divided by 12 to obtain a monthly
rate.

If the function returns a negative value, it represents interest you are paying out, whereas a positive
value represents interest paid to you.

IRR

Example

See Also

IRR

Syntax

Description

Example

This example cal culates the amount of interest paid on a$1,000.00 loan financed over 36 monthswith
an annual interest rate of 10%. Payments are due at the beginning of the month. The interest paid
during the first 10 monthsis displayed in atable.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
For x = 1 to 10

ipm# = I Pmt((.10/12), x, 36, 1000, 0, 1)
nesg = nmesg & Format(x,"00") & " : " & Format(ipm#," 0,0.00") & crlf
Next x
Sessi on. Echo nesg
End Sub

Numeric, Math, and Accounting Functions on page 6

| RR(val uearray(), guess)

Returnsthe internal rate of return for a series of periodic payments and receipts. Theinternal rate of
return is the equivalent rate of interest for an investment consisting of a series of positive and/or
negative cash flows over aperiod of regular intervals. It isusually used to project the rate of return on
abusiness investment that requires a capital investment up front and a series of investments and
returns on investment over time. The | RR function requires the following named parameters:

Parameter Description

valuearray() Array of double numbersthat represent payments and receipts. Positive values are
payments, and negative values are receipts.

There must be at least one positive and one negative value to indicate the initial
investment (negative value) and the amount earned by the investment (positive
value).

guess Double containing your guess as to the value that the | RR function will return. The
most common guessis.1 (10 percent).

The value of | RRis found by iteration. It starts with the value of guess and cycles through the
calculation adjusting guess until the result isaccurate within 0.00001 percent. After 20 tries, if aresult
cannot be found, 1 RR fails, and the user must pick a better guess.

This example illustrates the purchase of alemonade stand for $800 and a series of incomes from the
sale of lemonade over 12 months. The projected incomes for this example are generated in two
For...Next Loops, and then the internal rate of return is calculated and displayed. (Not a bad
investment!)

Const crlf = Chr$(13) + Chr$(10)

Sub Main

301

Di m val u#(12)
valu(1) = -800 "Initial investnent
nesg = val u#(l) & ",
"Cal cul ate the second through fifth nonths’ sales.
For x = 2 To 5
valu(x) = 100 + (x * 2)
nmesg = nmesg & valu(x) & ",
Next x
"Cal cul ate the sixth through twelfth nonths’ sales.
For x = 6 To 12
valu(x) = 100 + (x * 10)
nesg = nesg & valu(x) & ",
Next x
"Cal cul ate the equival ent investnent return rate.
retrn# = | RR(val u, . 1)

nmesg = "The values: " & crlf & mesg & crif & crlf
Session. Echo mesg & "Return rate: " & Format(retrn#, "Percent")
End Sub

See Also Numeric, Math, and Accounting Functions on page 6

Is

Syntax object Is [object | Nothing]

Description Returns Tr ue if the two operands refer to the same object; returns Fal se otherwise. This operator is
used to determine whether two object variables refer to the same object. Both operands must be object
variables of the same type (i.e., the same data object type or both of type oj ect).

The Not hi ng constant can be used to determine whether an object variable is uninitialized:

If MyObject Is Nothing Then Session. Echo "MyQbject is uninitialized."

Uninitialized object variables reference no object.
When comparing OLE Automation objects, the s operator will only return Tr ue if the operands

reference the same OLE Automation object. Thisis different from data objects. For example, the
following use of I s (using the object class called excel . appl i cati on) returns Tr ue:

Dima As bject

Dimb As bject

a = CreateObject("excel.application")
b=a

|

f als b Then Beep

The following use of 1 s will return Fal se, even though the actual objects may be the same;

As Obj ect
As Obj ect

Dima
Dimb
a = CreateObject("excel.application")

302

IsDate

Example

See Also

IsDate

Syntax

Description

Example

See Also

b = Get vj ect (, "excel . application")
If als b Then Beep

The s operator may return Fal se in the above case because, even though a and b reference the same
object, they may be treated as different objects by OLE 2.0 (thisis dependent on the OLE 2.0 server
application).

Sub Main
Di m Current Sessi on As Obj ect
Set Current Session = Application. ActiveSession
If CurrentSession.Circuit = Nothing Then
MsgBox "No communi cations nethod sel ected.”
End I f
End

Sub I nsertDate(ByVal WnWrd As Object)
If WnWird I's Nothing Then
Sessi on. Echo "bject variant is not set."
El se
W nWord. | nsert Date$
End I f
End Sub

Sub Main
Dim WnWrd As Obj ect
On Error Resunme Next
W nWord = CreateObject("word. basic")
I nsertDate W nWrd
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Objects on page 10

| sDat e(expr essi on)

Returns Tr ue if expr essi on can be legally converted to a date; returns Fal se otherwise.

Sub Main
Dima As Variant
Retry:
a = InputBox("Enter a date.", "Enter Date")

If IsDate(a) Then
Sessi on. Echo Format (a, "l ong date")
El se
Session. Echo "Not quite, please try again!"
Coto Retry
End | f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Time and Date Access on page 10

303

ISEmpty

ISEmpty

Syntax | sEnpty(expression)

Description ReturnsTrue if expressi on isavari ant variable that has never beeninitialized; returnsFal se
otherwise. The | senpt y function is the same as the following:

(Var Type(expression) = ebEnpty)

Example Sub Min
Dima As Variant
If IsEnpty(a) Then

a = 1.0# "G ve uninitialized data a Doubl e val ue 0.0.
Sessi on. Echo "The variable has been initialized to: " & a
El se
Sessi on. Echo "The variable was already initialized!"
End | f
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

ISError

Syntax | sError(expression)

Description Returns Tr ue if expression is a user-defined error value; returns Fal se otherwise.

Example Function Div(ByVal a,ByVal b) As Variant

If b =0 Then

Div = CVErr(2112) "Return a special error val ue.
El se

Div=alb "Return the division.
End I f

End Function

Sub Main
Dima As Variant
a = Div(10,12)
If IsError(a) Then

Session. Echo "The following error occurred: " & CStr(a)
El se
Session. Echo "The result is: " & a
End I f
End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

IsMissing

Syntax |sM ssing(argnane)

304

IsNull

Description

Example

See Also

ISNull

Returns Tr ue if ar gnane was passed to the current subroutine or function; returns Fal se if omitted.
The sM ssi ng function is used with variant variables passed as optional parameters (using the
Opti onal keyword) to the current subroutine or function. For nonvariant variables or variables that
were not declared with the opt i onal keyword, 1 sM ssi ng will always return Tr ue.

Sub Test (AppName As String, Optional isMnimze As Variant)
app = Shel | (AppNane)
If Not IsMssing(isMnimnmze) Then
AppM ni mi ze app
El se
AppMaxi m ze app
End I f
End Sub

Sub Main
Test "Not epad” "Maxim ze this application
Test "Notepad", True "M nimze this application
End Sub

Macro Control and Compilation on page 7

Syntax 1sNul | (expression)
Description ReturnsTrue if expressi onisavari ant variablethat containsno valid data; returnsral se otherwise.
Thelsnul I function is the same as the following:
(Var Type(expression) = ebNull)
Example Sub Min
Dima As Variant "Initialized as Enpty
If IsNull(a) Then Session. Echo "The variable contains no valid data."
a = Enpty * Null
If IsNull(a) Then Session.Echo "Null propagated through the expression."
End Sub
See Also Macro Control and Compilation on page 7
ISNumeric
Syntax | sNunmeric(expression)
Description Returns Tr ue if expr essi on can be converted to a number; returns Fal se otherwise. If passed a

number or avariant containing anumber, then 1 sNurrer i ¢ always returns Tr ue. If astring or string
variant is passed, then IsNumeric will return True only if the string can be converted to anumber. The
following syntax is recognized as valid numbers:

&Hhexdi gits[& %! | # @

& Ol octaldigits[& ! | # @

305

IsObject

Example

See Also

[-]+]digits[.[digits]][E[-|+]digits][!]|% & #| @

If an Obj ect variant is passed, then the default property of that object isretrieved and one of the above
rulesis applied.

IsNumeric returns False if expr essi on is adate.

Sub Main
Dims$ As String
s$ = I nputBox("Enter a nunber.","Enter Nunmber")

If IsNuneric(s$) Then
Session. Echo "You did well!"
El se
Session. Echo "You didn't do so well!"
End I f
End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6

IsObject

Syntax

Description

Example

See Also

ltem$

Syntax

Description

306

| sbj ect (expr essi on)

Returns Tr ue if expressi on isavari ant variable containing an oj ect ; returns Fal se otherwise.

Sub Mai n
Dimv As Variant
On Error Resunme Next
Set v = Get Obj ect(, "Excel . Application")
If IsObject(v) Then

Session. Echo "The default object value is: " & v = v.Val ue
El se
Sessi on. Echo "Excel not |oaded."
End I f
End Sub
Objects on page 10
ItenB(text$, first [,[last] [,delimters$]])

Returns all theitems between i rst and | ast within the specified formatted text list. The 1 t enss
function takes the following parameters:

ltem$

Parameter Description

text$ String containing the text from which arange of itemsis returned.

first Integer containing the index of the first item to be returned. If fi rst isgreater than
the number of itemsint ext $, then a zero-length string is returned.

I ast Integer containing the index of the last item to be returned. All of the items between

first andl ast arereturned. If | ast isgreater than the number of itemsintext $,
then al itemsfromfirst tothe end of text are returned. If | ast ismissing, then
only the item specified by i r st isreturned.

deliniters$ String containing different item delimiters. By default, items are separated by com-
mas and end-of-lines. This can be changed by specifying different delimitersin the
del i ni t er s$ parameter.

The 1t enss function treats embedded null characters as regular characters.

307

Example

See Also

Const crlf = Chr$(13) + Chr$(10)

Sub Main
ilist$ ="1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15"
slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/ 13/ 14/ 15"
listl$ = ItenB(ilist$, 5,612)
list2$% = ItenB(slist$,2,9,"/")

Session. Echo "The returned lists are: " &crlf & listl$ & crlf & list2$
End Sub

Character and String Manipulation on page 3

ltemCount

Syntax

Description

Example

See Also

ItenCount (text$ [,delimters$])

Returns an I nt eger containing the number of items in the specified delimited text. Items are
substrings of adelimited text string. Items, by default, are separated by commas and/or end-of-lines.
This can be changed by specifying different delimitersin thedel i i t er s$ parameter. For example,
to parse items using a backdash:

n = ltenCount (text$, "\")

The t encount function treats embedded null characters as regular characters.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
ilist$ "1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15"
slist$ "1/2/3/4/5/6/7/8/9/10/11/12/13/ 14/ 15/ 16/ 17/ 18/ 19"
| 1% = ItenCount (ilist$)
2% = ItemCount (slist$,"/")
nmesg = "The first lists contains: " & 1% & " itens." & crlf
nmesg = nmesg & "The second list contains: " & 12% & " itens."
Sessi on. Echo nesg
End Sub

Character and String Manipulation on page 3

K

Keywords (topic)

The following keywords are any word or symbol recognized as part of the macro language.

Access
Alias
And

Any
Append
Appl i cation
As

Base
Begi n

Bi nary
Bool ean
By Ref

By Val

Cal |
Cancel Button
Case
CDecl
CheckBox
Chr

ChrB
Chrw
Circuit
Cl ose
ConboBox
Conpar e
Const
CStrings
Currency
Dat e
Decl are
Def aul t
Def Bool
Def Cur
Def Dat e
Def Dol
Def | nt

Def Lng
Def Obj
Def Sng
Def Str
Def Var

Di al og

D m

Do

Doubl e
Dr opLi st Box
El se

El sel f
End

Eqv
Error
Exit
Explicit
For
Functi on
Cet

d obal
GoSub
Cot o

Gr oupBox
Hel pButt on
| f

I mp
Inline

I nput

I nput

I nput B

I nt eger
I's

Len

Let

Lib

Li ke

Li ne

Li st Box
Lock
Long
Loop
LSet

Md

M dB

Mod

Nanme
New

Next

Not
Not hi ng
oj ect

o f
OKBut t on
On

Open
Option
Opti ona
Opt i onBut t on
Opti onGroup
O

CQut put

Par amAr r ay
Pascal
Picture

Pi ctureButton
Preserve
Print
Private
Public
PushBut t on
Put

Random Xor
Read
ReDi m
Rem
Resune
Ret urn
RSet
Seek
Sel ect
Sessi on
Set

Shar ed
Single
Spc
Static
St dCal
Step

St op
String
Sub
System
Tab
Text
Text Box
Then

Ti me

To

Tr ansfer
Type
Unl ock
Unti
Vari ant
Wend
Wi l e

W dt h
Wite

309

Kill

Kill

Syntax

Description

310

Example

See Also

Restrictions

All keywords are reserved in that you cannot create a variable, function, constant, or subroutine with
the same name as a keyword. However, you are free to use all keywords as the names of structure
members.

For all other keywords, the following restrictions apply:

* You can create a subroutine or function with the same name as a keyword.

» Youcan create avariable with the same name asakeyword aslong asthe variableisfirst explicitly
declared with aDi m Pri vat e, OF Publ i ¢ Statement.

Ki Il pathnanme

Deletes all files matching pat hnanme. Theki I 1 statement accepts the following named parameter:

Parameter Description

pathnane Specifiesthefileto delete. If fi | et ype is specified, then this parameter must specify
apath. Otherwise, this parameter can include both a path and a file specification con-
taining wildcards.

Thepat hnarme argument can include wildcards, such as* and ?. The* character matches any sequence
of zero or more characters, whereas the ? character matches any single character. Multiple *'sand ?s
can appear within the expression to form complex searching patterns.

Sub Main

If Not FileExists("testl.dat") Then
Open "testl.dat" For Qutput As #1
Open "test2.dat" For Qutput As #2
Cl ose

End | f

If FileExists ("testl.dat") Then
Session. Echo "File testl.dat exists."

Kill "test?. dat"
End I f
If FileExists ("testl.dat") Then
Session. Echo "File testl.dat still exists.”
El se
Sessi on. Echo "test?.dat successfully deleted."
End | f
End Sub

Drive, Folder, and File Access on page 4

Lbound

Syntax Lbound(ArrayVariable() [,dinension])

Description Returnsan | nteger containing the lower bound of the specified dimension of the specified array
variable. Thedi nensi on parameter isan integer specifying the desired dimension. If thisparameter is
not specified, then the lower bound of the first dimension is returned.

The Lbound function can be used to find the lower bound of a dimension of an array returned by an
OLE Automation method or property:

Lbound(obj ect. property [, di nension])
Lbound(obj ect. met hod [, di mensi on])

Examples This example dimensions two arrays and displays their lower bounds.

Sub Main
Dima(5 To 12)
Dimb(2 To 100, 9 To 20)
| ba = LBound(a)
| bb = LBound(b, 2)
Session. Echo "The | ower bound of ais: " & lba & _
" The | ower bound of b is: " & Ibb
" This exanpl e uses LBound and UBound to di mension a
"dynamic array to hold a copy of an array redi med by the
"FilelList statement.
Dimfl$()
FileList fl$,"*. ="
count = UBound(fl$)
If ArrayDinms(a) Then
Redi m nl $(LBound(fI$) To UBound(fl$))
For x = 1 To count
nl $(x) = fI$(x)
Next x
Session. Echo "The | ast element of the new array is: " &
nl $(count)
End If
End Sub

311

LCase, LCase$

See Also Keywords, Data Types, Operators, and Expressions on page 5

LCase, LCase$

Syntax LCase[$] (string)

Description Returnsthe lowercase equivalent of the specified string. LCase$ returnsast ri ng, whereas LCase
returnsastri ng variant. Nul | isreturned if stringisNul |l .

Example Sub Min
| name$ = "W LLI AMS"
f1$ = Left$(l nane$, 1)
rest$ = M d$(l name$, 2, Len(l nane$))
Iname$ = f1$ & LCase$(rest$)
Sessi on. Echo "The converted nane is: " & | nane$
End Sub

See Also Character and String Manipulation on page 3

Left, Left$, LeftB, LeftB$

Syntax Left[$](string, |ength)
Left B[$] (string,|ength)

Description Returnstheleftmost | engt h characters (for Left and Lef t $) or bytes (for Lef t B and Lef t B$) from a
given string.

Left$ returns a String, whereas Left returns a String variant.

Thel engt h parameter isan | nt eger value specifying the number of charactersto return. If | ength is
0, then azero-length string is returned. If | engt h is greater than or equal to the number of characters
in the specified string, then the entire string is returned.

The Lef t B and Lef t B$ functions are used to return a sequence of bytes from a string containing byte
data. Inthiscase, | engt h specifiesthe number of bytesto return. If | engt h isgreater than the number
of bytesin st ri ng, then the entire string is returned.

Nul | isreturnedif stringisNull.

Example Sub Min
| name$ = "W LLI AMS"
f1$ = Left$(l nane$, 1)
rest$ = Md$(l nane$, 2, Len(l nanme$))
I name$ = f1$ & LCase$(rest$)
Sessi on. Echo "The converted nane is: " & | nane$
End Sub

See Also Character and String Manipulation on page 3

312

Len, LenB

Len, LenB

Syntax

Description

Len(expressi on)
LenB(expr essi on)

Returnsthe number of characters (for Len) or bytes (for LenB) in St ri ng expression or the number of
bytes required to store the specified variable. If expr essi on evaluatesto astring, then Len returnsthe
number of charactersin agiven string or 0 if the string is empty. When used with avari ant variable,
the length of the variant when converted to a st ri ng isreturned. If expressi onisanul I, then Len
returnsanul | variant.

The LenB function is used to return the number of bytesin agiven string. On SBCS systems, the LenB
and Len functions are identical .

If used with anon-st ri ng or non-vari ant variable, these functions return the number of bytes
occupied by that data element.

When used with user-defined data types, these functions return the combined size of each member
withinthe structure. Sincevariable-length strings are stored el sewhere, the size of each variable-length
string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements when appearing within a
structure:

Data Element Size

Integer 2 bytes

Long 4 bytes

Float 4 bytes

Double 8 bytes

Currency 8 bytes

String (variable-length) 2 bytes

String (fixed-length) The length of the string as it appears in the string’s declaration in char-
actersfor Len and bytesfor LenB.

Objects 0 bytes. Both data object variables and variables of type object are
always returned as 0 size.

User-defined type Combined size of each structure member. Variable-length strings

within structures require 2 bytes of storage. Arrays within structures
arefixed in their dimensions. The elements for fixed arrays are stored
within the structure and therefore require the number of bytes for each
array element multiplied by the size of each array dimension:

el enent _si ze*di nensi onl*di nensi on2. .

The Len and LenB functions always returns O with object variables or any data object variable.

313

Let

Examples

See Also

Let

Syntax

Description

314

This example uses the Len function to change uppercase names to lowercase with an uppercase first
letter.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
| name$ = "W LLI AMS"
f1$ = Left$(l nane$, 1)
I n% = Len(l name$)
rest$ = M d$(l nane$, 2,1 n%
Iname$ = f1$ & LCase$(rest$)
Sessi on. Echo "The converted nane is: " & | nane$

"This exanple returns a table of lengths for standard nuneric types.

Di m | ns(4)

a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
Ins(1l) = Len(a%

Ins(2) = Len(b&)

Ins(3) = Len(c!)

Ins(4) = Len(d#)

nmesg = "Lengths of standard types:" & crlf

nesg = nesg & “Integer: " & Ins(l) &crlf

nmesg = nmesg & "Long: " & Ins(2) &ecrlf

nesg nesg & "Single: " & Ins(3) &ecrlf
nesg nesg & "Double: " & Ins(4) &crlf
Sessi on. Echo nesg

End Sub

Character and String Manipulation on page 3

[Let] variable = expression

Assignstheresult of an expression to avariable. The use of theword Let issupported for compatibility
with other implementations of VBA. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed automatically
between any two numeric quantities. Thus, you can freely assign numeric quantitieswithout regard to
type conversions. However, it is possible for an overflow error to occur when converting from larger
to smaller types. This happens when the larger type contains a numeric quantity that cannot be
represented by the smaller type. For example, the following code will produce a runtime error:

Di m anobunt As Long

Di mquantity As |nteger

amount = 400123 "Assign a value out of range for int.
guantity = anpunt "Attenpt to assign to |nteger.

When performing an automatic data conversion, underflow is not an error.

Like

Example Sub Min

Let a$ = "This is a string."
Let b% = 100
Let c# = 1213.3443

End Sub

See Also Keywords, Data Types, Operators, and Expressions on page 5

Like
Syntax expression Like pattern
Description Compares two strings and returns Tr ue if the expr essi on matches the given pattern; returns Fal se

otherwise. Case sensitivity is controlled by the Opt i on Conpar e Setting. The pattern expression can
contain special characters that allow more flexible matching:

Character Evaluates To

? Matches a single character.
* Matches one or more characters.
Matches any digit.

[range] Matchesif the character in question is within the specified range.
['range] Matchesif the character in question is not within the specified range.

A r ange specifiesagrouping of characters. To specify amatch of any of agroup of characters, usethe
syntax [ABCDE] . To specify arange of characters, use the syntax [A- z] . Special characters must
appear within brackets, such as []*7#.

If expr essi on Of pat t er n iSnot astring, then both expr essi on and pat t er n are convertedto Stri ng
variants and compared, returning a Bool ean variant. If either variant isnul I, then Nul | is returned.

The following table shows some examples:

Expression Trueif patternis Falseif patternis

" EBW "E*W, "E*" "E*B"

" SML" "B*[r-t]icMacro" "B[r-t]ic"

"Ver si on" "V[e] ?s*n" "V[r]?s*N'

"2.0" HOH HET tH#A " #?[10-9]"

"[ABCI" "[[1*]" "[ABC","[*]"

Example Sub Min

a$ = "This is a string variable of 123456 characters"
b$ = "123. 45"

If a$ Like "[A-Z][g-i]*" Then Session. Echo _
"The first conmparison is True."
If b$ Like "##3.##" Then Session. Echo "_

315

Line Input#

See Also

The second comnparison is True."
If a$ Like "*variable*" Then Session. Echo _
"The third conparison is True."
End Sub

Character and String Manipulation on page 3

Line Input#

Syntax

Description

Example

See Also

Li ne I nput #filenunber,variable

Reads an entire line into the given variable.

Theftil enumber parameter isanumber that is used to refer to the open file the number passed to the
Open statement. Thefi | enunber must reference afile opened in 1 nput mode.

Thefileisread up to the next end-of-line, but the end-of-line character(s) is (are) not returned in the
string. The file pointer is positioned after the terminating end-of-line.

Thevari abl e parameter isany string or variant variable reference. This statement will automatically
declare the variable if the specified variable has not yet been used or dimensioned.

This statement recognizes either asinglelinefeed or acarriage-return/line-feed pair as the end-of-line
delimiter.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Qpen "c:\autoexec.bat" For |nput As #1
For x =1 To 5
Line Input #1,1in$
mesg = mesg & lin$ & crlf
Next x
Session. Echo "The first 5 lines of your autoexec.bat are:" & crlf & mesg
End Sub

Drive, Folder, and File Access on page 4

Line Numbers (topic)

316

Line numbers are not supported. As an alternative to line numbers, you can use meaningful labels as
targets for absolute jumps, as shown below:

Sub Main
Dimi As |nteger
On Error Goto MyErrorTrap
i =0
LoopTop:
=i+ 1
If i < 10 Then Goto LoopTop

Line$

MyEr ror Tr ap:
Sessi on. Echo "An error occurred.”
End Sub

Line$

Syntax Line$(text$, first[,last])

Description Returnsastri ng containing asingle line or agroup of lines betweenfirst and! ast. Linesare
delimited by carriagereturn, linefeed, or carriage-return/line-feed pairs. Embedded null charactersare
treated as regular characters. The Li ne$ function takes the following parameters:

Parameter Description
text$ String containing the text from which the lines will be extracted.

first Integer representing the index of the first line to return. If 1 ast is omitted, then this
linewill bereturned. If first isgreater than the number of linesint ext $, then a zero-
length string is returned.

I ast Integer representing the index of the last line to return.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Mai n
Qpen "c:\autoexec.bat" For |nput As #1
For x =1 To 5
Line Input #1,1in$
txt =txt &1in$ & crlf
Next x
lines$ = Line$(txt,3,4)
Sessi on. Echo |ines$
End Sub

See Also Character and String Manipulation on page 3

LineCount

Syntax LineCount (text$)

Description Returnsan| nt eger representing the number of linesint ext $. Lines are delimited by carriage return,
line feed, or both. Embedded null characters are treated as regular characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
x =1
Open "c:\autoexec.bat" For |nput As #1
While (x < 10) And Not EOF(1)
Line Input #1,1in$
txt =txt &1in$ &crlf
X =x+1
Wend

317

ListBox

See Also

ListBox

Syntax

Description

318

Example

lines! = LineCount(txt)
Sessi on. Echo "The nunber of lines in txt is: " & lines! &crlf &ecrlf & txt
End Sub

Character and String Manipulation on page 3

Li st Box x,y,w dth, hei ght, ArrayVariable,.ldentifier

Creates alistbox within adialog template. When the dialog is invoked, the listbox will be filled with
the elements contained in Ar rayVari abl e. This statement can only appear within a dialog template
(i.e., between the Begi n Di al og and End Di al og Statements). The Li st Box Statement requires the
following parameters:

Parameter Description

X, Yy Integer coordinates specifying the position of the control (in dialog units) rela-
tive to the upper left corner of the dialog.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVari abl e

.ldentifier

Specifies asingle-dimensioned array of strings used to initialize the elements of
the listbox. If this array has no dimensions, then the listbox will be initialized
with no elements. A runtime error results if the specified array contains more
than one dimension. ArrayVari abl e can specify an array of any fundamental
data type (structures are not allowed). null and empty values are treated as zero-
length strings.

Name by which this control can be referenced by statementsin adialog function
(such as Dl gFocus and DI gEnabl e). This parameter also creates an integer vari-
able whose value correspondsto theindex of the listbox’s selection (0 isthefirst
item, 1 isthe second, and so on), which is not affected by the current setting of
the Option Base command. This variable can be accessed using the following

syntax:
Di al ogVvari abl e. I dentifier

Sub Mai n

Dimfiles() As String
Dimdirs() As String
Begi n Di al og Li stBoxTenpl ate 16, 32, 184, 96, " Sanpl e"
Text 8,4,24,8,"&Files:"
Li st Box 8, 16,60,72,files$,.Files
Text 76,4,21,8,"&Dirs:"
Li st Box 76, 16,56,72,dirs$,.Dirs
OKBut t on 140, 4, 40, 14
Cancel Button 140, 24, 40, 14

End Di al og

FileList files
FileDirs dirs

Literals (topic)

Di m Li st BoxDi al og As Li st BoxTenpl at e
rc% = Di al og(Li st BoxDi al og)

End Sub

See Also User Interaction on page 9

Literals (topic)

Literals are values of a specific type. The following table shows the different types of literals:

Litera

Description

10
43265
5#

5.5

5. 4E100
&HFF
&A7
&HFF#
"hel | 0"

"""hello"""

#1/ 1/ 1994#

Integer whose valueis 10.

Long whose value is 43,265.

Double whose value is 5.0. A number’s type can be explicitly set using any of the
following type-declaration characters:

% Integer

& long

double

1 single

Double whose value is 5.5. Any humber with decimal point is considered adouble.
Double expressed in scientific notation.

Integer expressed in hexadecimal.

Integer expressed in octal.

Double expressed in hexadecimal.

String of five characters: hel | o.

String of seven characters: " hel | 0" . Quotation marks can be embedded within
strings by using two consecutive quotation marks.

Date value whose internal representation is 34335.0. Any valid date can appear
with #s. Date literals are interpreted at execution time using the local e settings of
the host environment. To ensure that date literals are correctly interpreted for all
locales, use theinternational date format: YYYY- M DD HH: MVt SS#

Constant folding

The compiler supports constant folding where constant expressions are calculated by the compiler at
compile time. For example, the expression:

i%= 10 + 12
isthe same as:
i %= 22

Similarly, with strings, the expression:

319

Loc

Loc

Syntax

Description

Example

See Also

s$ = "Hello," + " there" + Chr(46)

isthe same as:

s$ = "Hello, there."

Loc(fil enunber)

ReturnsalLong representing the position of thefile pointer inthegivenfile. Thefi | enunber parameter
isan 1 nteger used to refer to the number passed by the gpen statement. The Loc function returns
different values depending on the mode in which the file was opened:

File Mode Returns

I nput Current byte position divided by 128

Qut put Current byte position divided by 128
Append Current byte position divided by 128

Bi nary Position of the last byte read or written
Random Number of the last record read or written

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n

Qpen "c:\autoexec.bat" For |nput As #1

For x =1 To 5

If Not EOF(1) Then Line Input #1,1in$

Next x

lc% = Loc(1)

Cl ose

Session. Echo "The file location is: " &lc%
End Sub

Drive, Folder, and File Access on page 4

Lock, Unlock

Syntax

Description

320

Lock [#] filenunber [,{record | [start] To end}]
Unl ock [#] filenunmber [,{record | [start] To end}]

Locks or unlocks a section of the specified file, granting or denying other processes access to that
section of thefile. The Lock statement locks a section of the specified file, preventing other processes
from accessing that section of the file until the unl ock Sstatement isissued. The unl ock Statement
unlocks a section of the specified file, allowing other processes access to that section of thefile. The
Lock and unl ock statements require the following parameters:

Lock, Unlock

Example

Parameter Description

filenunber Integer used to refer to the open file—the number passed to the open statement.

record L ong specifying which record to lock or unlock.
start Long specifying the first record within arange to be locked or unlocked.
end Long specifying the last record within arange to be locked or unlocked.

For sequential files, therecord, start, and end parameters are ignored. The entire fileislocked or
unlocked.

The section of thefileis specified using one of the following:

Syntax Description

No parameters Locks or unlocks the entire file (no record specification is given).

record Locks or unlocks the specified record number (for Random files) or byte (for
Binary files).

To end Locks or unlocks from the beginning of the file to the specified record (for Ran-

dom files) or byte (for Binary files).
start To end Locks or unlocks the specified range of records (for Random files) or bytes (for
Binary files).

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before thefile is closed. Ranges within files are not unlocked automatically
when your macro terminates, which can cause file access problems for other processes. It is a good
ideato group the Lock and unl ock statements close together in the code, both for readability and so
subsequent readers can see that the lock and unlock are performed on the same range. This practice
also reduces errorsin file locks.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
a$ = "This is record nunber: "
b$ = "0O"

rec$
g

nesg =
Open "test.dat" For Random Access Wite Shared As #1
For x = 1 To 10

rec$ = a$ & x

Lock #1,x
Put #1,,rec$
Unl ock #1, x
mesg = mesg & rec$ & crlf
Next x
Cl ose
Sessi on. Echo "The records are:" & crlf & mesg
mesg = ""

Open "test.dat" For Random Access Read Wite Shared As #1
For x =1 To 10

321

Lof

rec$ = Md$(rec$, 1,23) & (11 - x)
Lock #1,x
Put #1, x, rec$
Unl ock #1, x
mesg = mesg & rec$ & crlf
Next x
Session. Echo "The records are: " & crlf & nmesg
Cl ose
Kill "test.dat"
End Sub

See Also Drive, Folder, and File Access on page 4

Lof

Syntax Lof (fil enunber)

Description Returnsalong representing the number of bytesin the given file. Thefi | enunber parameter isan
I nt eger used torefer to the open file the number passed to the gpen statement. Thefile must currently
be open.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
a$ = "This is record nunber:
Open "test.dat" For Random Access Wite Shared As #1
For x =1 To 10
rec$ = a$ & x
put #1,,rec$
mesg = mesg & rec$ & crlf
Next x
Cl ose
Open "test.dat" For Random Access Read Wite Shared As #1
r% = Lof (1)
Cl ose
Session. Echo "The length of test.dat is: " & r%
End Sub

See Also Drive, Folder, and File Access on page 4

Log
Syntax Log(nunber)
Description Returnsaboubl e representing the natural logarithm of a given number. The value of nunber must be
aboubl e greater than 0. The value of e is2.71828.

Example Sub Min
x# = Log(100)
Session. Echo "The natural logarithmof 100 is: " & x#
End Sub

See Also Numeric, Math, and Accounting Functions on page 6

322

Long (data type)

Long (data type)

Syntax

Description

See Also

LSet

Syntax 1
Syntax 2

Description

Example

Long

Long variablesare used to hold numbers (with up to ten digits of precision) within the following range:

-2,147, 483, 648 <= Long <= 2, 147, 483, 647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes of
storage. When used with binary or random files, 4 bytes of storage are required.

The type-declaration character for Long is &.

Keywords, Data Types, Operators, and Expressions on page 5

LSet dest = source
LSet dest_variable = source_variabl e

L eft-aligns the source string in the destination string or copies one user-defined type to another.

Syntax 1

TheLset statement copies the source string sour ce into the destination string dest . The dest
parameter must be the name of either ast ri ng or vari ant variable. The sour ce parameter is any
expression convertible to a string.

If sour ce isshorter in length than dest , then the string is left-aligned within dest , and the remaining
characters are padded with spaces. If sour ce$ islonger in length than dest , then sour ce istruncated,
copying only the leftmost number of characters that will fit in dest .

The dest vari abl e parameter specifiesast ri ng or Vari ant variable. If dest vari abl e isaVvari ant
containing Enpt y, then no characters are copied. If dest vari abl e isnot convertibletoast ri ng, then
aruntime error occurs. A runtime error resultsif dest vari abl e iSNul | .

Syntax 2

The source structure is copied byte for byte into the destination structure. Thisis useful for copying
structures of different types. Only the number of bytes of the smaller of the two structuresis copied.
Neither the source structure nor the destination structure can contain strings.

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Di m nesg, tnpstr$
tmpstr$ = String$(40, "*")
nesg = "Here are two strings that have been right-" + crlf
nmesg = nmesg & "and left-justified in a 40-character string."

323

LTrim, LTrim$

nmesg = nmesg & crlf &crlf
RSet tnpstr$ = "Ri ght->"
mesg = nmesg & tnpstr$ & crif
LSet tnpstr$ = "<-Left"
mesg = nmesg & tnpstr$ & crif
Sessi on. Echo nesg

End Sub

See Also Character and String Manipulation on page 3

LTrim, LTrim$

See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$.

324

M

Mid, Mid$, MidB, MidB$ (functions)

Syntax Md[$](string, start [,length])
M dB[$] (string, start [,length])

Description Returns asubstring of the specified string, beginning with st art, for | engt h characters (for M d and
M d$) or bytes (for M dB and M dB$).

TheM d and M ds$ functions return a substring starting at character position st art and will bel engt h
characterslong. TheM dBand M dB functionsreturn asubstring starting at byte positionst art and will
bel engt h byteslong.

The M d$ and M dB$ functions return a string, whereas the M d and M dB functions return a string
variant.

These functions take the following named parameters:

Parameter Description

string Any string expression containing the text from which datais returned.

start Integer specifying the position where the substring begins. If st art isgreater than the
length of st ri ng, then a zero-length string is returned.

I'ength Integer specifying the number of characters or bytesto return. If this parameter is

omitted, then the entire string is returned, starting at start .

The M d function will return Nul | if stringiSNull.
TheM dB and M dBs functions are used to return asubstring of bytesfrom astring containing byte data.

Example Const crlf = Chr$(13) + Chr$(10)

325

Mid, Mid$, MidB, MidB$ (statements)

Sub Main
a$ = "This is the Main string containing text."
b$ = M d$(a$, 13, Len(a$))
M d$ (b$,1) = NEW"
Session. Echo a$ & crlf & b$
End Sub

See Also Character and String Manipulation on page 3

Mid, Mid$, MidB, MidB$ (statements)

Syntax Md[$](variable,start[,length]) = newal ue
M dB[$] (vari abl e,start[,length]) = newal ue

Description Replaces one part of astring with another. The M d/M d$ statements take the following parameters:

Parameter Description
variabl e String or variant variable to be changed.
start Integer specifying the character position (for Mid and Mid$) or byte position (for

MidB and MidB$) within vari abl e where replacement begins. If start isgreater
than the length of vari abl e, then vari abl e remains unchanged.

l'ength Integer specifying the number of characters or bytes to change. If this parameter is
omitted, then the entire string is changed, starting at st art .

newal ue Expression used as the replacement. This expression must be convertibleto a
string.

The resultant string is never longer than the original length of vari abl e.

With M d and M dB, vari abl e must be avariant variable convertible to a string, and newval ue isany
expression convertible to astring. A runtime error is generated if either variant is null.

TheM dBand M dBs statementsare used to replace asubstring of bytes, whereasm d and M d$ are used
to replace a substring of characters.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main
a$ = "This is the Main string containing text."
b$ = M d$(a$, 13, Len(a$))
M d$(b$, 1) = "NEW"
Session. Echo a$ & crlf & b$
End Sub

See Also Character and String Manipulation on page 3

326

Minute

Minute

Syntax

Description

Example

See Also

MIRR

Syntax

Description

Example

M nute(tine)

Returns the minute of the day encoded in the specified t i me parameter. The value returned isas an
I nt eger between 0 and 59 inclusive. Theti me parameter is any expression that convertsto a date.

Sub Main

xt# = TimeVal ue(Ti me$())

xh# = Hour (xt #)

xm# = M nut e(xt #)

xs# = Second(xt #)

Session. Echo "The current tine is: " & xh# & ":" & xm# & ":" & Xxs#
End Sub

Time and Date Access on page 10

M RR(val uearray(), fi nancerate, rei nvestrate)

Returns a boubl e representing the modified internal rate of return for a series of periodic payments
and receipts. The modified internal rate of return is the equivalent rate of return on an investment in
which payments and receipts are financed at different rates. The interest cost of investment and the
rate of interest received on the returns on investment are both factorsin the calculations. Them RR
function requires the following named parameters:

Parameter Description

val uearray() Array of double numbers representing the payments and receipts. Positive values
are payments (invested capital), and negative values are receipts (returns on invest-
ment). There must be at |east one positive (investment) value and one negative
(return) value.

financerate Double representing the interest rate paid on invested monies (paid out).

reinvestrate Double representing the rate of interest received on incomes from the investment
(receipts).

Thefinancer at e andr ei nvest r at e parameters should be expressed as percentages. For example, 11
percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct sequence.

This exampleillustrates the purchase of alemonade stand for $800 financed with money borrowed at
10%. Thereturns are estimated to accel erate as the stand gains popularity. The proceeds are placed in
abank at 9 percent interest. Theincomes are estimated (generated) over 12 months. This program first
generates the income stream array in two For . . . Next loops, and then the modified internal rate of
return is calculated and displayed. Notice that the annual rates are normalized to monthly rates by
dividing them by 12.

327

MkDir

See Also

MkDir

Syntax

Description

Example

See Also

Mod

Syntax

Description

Example

328

Const crlf = Chr$(13) + Chr$(10)

Sub Main
Di m val u#(12)
valu(1) = -800 "Initial investnent

mesg = valu(l) & ",
For x = 2 To 5

valu(x) = 100 + (x * 2) "I ncones nmonths 2-5
nmesg = nmesg & valu(x) & ",
Next x
For x = 6 To 12
valu(x) = 100 + (x * 10) "I ncones nmonths 6-12
nesg = nesg & valu(x) &", "
Next x
retrn# = MRR(val u,.1/12,.09/12) 'Note: nornumlized annual rates
nesg = "The values: " & crlf & mesg & crif & crlf
Session. Echo mesg & "Modified rate: " & Fornmt(retrn#, "Percent")
End Sub

Numeric, Math, and Accounting Functions on page 6

MkDir path

Creates a new directory as specified by pat h.

Sub Main
On Error Resume Next
MDir "TestDir"
If Err <> 0 Then
Session. Echo "The following error occurred: " & Error(Err)
El se
Session. Echo "Directory was created and is about to be renpved."
RDir "TestDir"
End | f
End Sub

Drive, Folder, and File Access on page 4

expressi onl Mod expression2

Returns the remainder of expr essi onl / expressi on2 asawhole number. If both expressions are
integers, then the result is an integer. Otherwise, each expression is converted to aLong before
performing the operation, returning aLong. A runtime error occursif the result overflows the range of
along. If either expression is null, then null is returned. Empty istreated as 0.

This example uses the Mod operator to determine the value of arandomly selected card where card 1
isthe ace (1) of clubsand card 52 is the king (13) of spades. Since the values recur in a sequence of
13 cards within 4 suits, we can use the mod function to determine the value of any given card number.

Month

See Also

Month

Syntax

Description

Example

See Also

Const crlf = Chr$(13) + Chr$(10)

Sub Mai n
cval $ = "ACE, TWO, THREE, FOUR, FI VE, Sl X, SEVEN, EI GHT, "
cval $ = cval $+" NI NE, TEN, JACK, QUEEN, KI NG'
Randomi ze
card% = Randon(1, 52)
val ue = card% Mod 13
If value = 0 Then value = 13
CardNunt = | ten®(cval, val ue)

If card% < 53 Then suit$ = "spades"”
If card% < 40 Then suit$ = "hearts"
If card% < 27 Then suit$ = "di anonds"
If card% < 14 Then suit$ = "cl ubs"

nmesg = "Card nunber " & card% & " is the "
nmesg = nesg & CardNum & " of " & suit$
Sessi on. Echo nesg

End Sub

Keywords, Data Types, Operators, and Expressions on page 5; Numeric, Math, and Accounting
Functions on page 6

Mont h(dat e)

Returns the month of the date encoded in the specified dat e parameter. The value returned isas an
I nt eger between 1 and 12 inclusive. The dat e parameter is any expression that convertsto a date.

Sub Main

nons$ = "Jan., Feb., Mar., Apr., My, Jun., Jul.,

mons$ = nmons$ + "Aug., Sep., Cct., Nov., Dec."”

tdate$ = Date$

tmont h! = Mont h(Dat eVal ue(t dat e$))

Sessi on. Echo "The current nonth is: " & |ItenB(nons$, tnonth!)
End Sub

Time and Date Access on page 10

Msg (object)

Syntax

Description

The Msg object provides a quick modeless dialog—that is, a dialog which the user may ignore,
continuing to run other commands before closing. A good example of amodeless dialog is the
Edit>Find dialog in many word processors, which can be left open while editing the text.

Msg.Close

Msg. Cl ose

Closes the model ess message dialog. Nothing will happen if there is no open message dialog.

329

Msg (object)

Example

See Also

Syntax

Description

330

Sub Main

Msg. Open "Printing. Please wait...", 0, True, True

Sl eep 3000

Msg. Cl ose
End Sub

User Interaction on page 9

Msg.Open

Msg. Open pronpt, ti meout, cancel , t her romet er [, XPos, YPos]

Displays amessage in adialog with an optional Cancel button and thermometer. The Msg. Open
method takes the following named parameters:

Parameter Description

pronpt String containing the text to be displayed. The text can be changed using the
Msg.Text property.

ti meout Integer specifying the number of seconds before the dialog is automatically
removed. Theti meout parameter has no effect if itsvalueisO.

cancel Boolean controlling whether or not a Cancel button appears within the dialog

t her nonet er

XPos, YPos

beneath the displayed message. If this parameter is True, then a Cancel button
appears. If it is not specified or False, then no Cancel button is created. If a user
chooses the Cancel button at runtime, atrappable runtime error is generated (error
number 18). In this manner, a message dialog can be displayed and processing
can continue as normal, aborting only when the user cancels the process by
choosing the Cancel button.

Boolean controlling whether the dialog contains a thermometer. If this parameter
is True, then athermometer is created between the text and the optional Cancel
button. The thermometer initially indicates 0% complete and can be changed
using the Msg.Thermometer property.

Integer coordinates specifying the location of the upper left corner of the message
box, intwips (twentieths of apoint). If these parameters are not specified, then the
window is centered on top of the application.

Unlike other dialoges, a message dialog remains open until the user selects Cancel, the timeout has
expired, or the Msg. O ose method is executed (thisis sometimes referred to as model ess).

Only a single message window can be opened at any one time. The message window is removed
automatically when a macro terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard. However, these
events will never reach the message dialog unless you periodically call DoEvents from within your

macro.

Msg (object)

Example

See Also

Syntax

Description

Example

See Also

Syntax

Description

Example

Sub Main
Msg. Open "Printing. Please wait...",0, True, Fal se
Sl eep 3000
Msg. Cl ose
Msg. Open "Printing. Please wait...",0, True, True

For x = 1 to 100
Msg. Ther nonmeter = x
Next x
Sl eep 1000
Msg. Cl ose
End Sub

User Interaction on page 9

Msg.Text

Msg. Text [= newt ext $]

Changes the text within an open message dialog (one that was previously opened with the Msg. Open
method). The message dialog is not resized to accommodate the new text. A runtime error will result

if amessage dialog is not currently open (using Msg.Open).

Sub Main
Msg. Open "Readi ng Record", O, True, Fal se
For i =1 To 100
"Read a record here
" Updat e t he npdel ess nessage box
Sl eep 100
Msg. Text ="Reading record " &
Next
Msg. Cl ose
End Sub

User Interaction on page 9

Msg.Thermometer

Msg. Ther nonet er [= per cent age]

Changes the percentage filled indicated within the thermometer of a message dialog (one that was

previously opened with the Msg. pen method). A runtime error will result if amessage box is not

currently open (using Msg. Open) or if the value of per cent age is hot between 0 and 100 inclusive.

Sub Main
On Error Goto ErrorTrap
Msg. Open "Reading records fromfile...",0, True, True
For i =1 To 100 "Read a record here

" Updat e the npdel ess nmessage box
Msg. Ther nonet er =i
DoEvent s
Sl eep 50
Next
Msg. Cl ose
On Error Goto O "Turn error trap off.
Exit Sub

331

Error Trap:
If Err = 809 Then
MsgBox "Cancel was pressed!"
Exit Sub ' Reset error handler.
End I f
End Sub

See Also User Interaction on page 9

MsgBox (function)

Syntax MsgBox(pronpt [, [buttons] [,[title] [,helpfile, context]]])

Description Displays amessage in adialog with a set of predefined buttons, returning an | nt eger representing
which button was selected. The MsgBox function takes the following named parameters:

Parameter Description

pronpt Message to be displayed—any expression convertible to a string. End-of-lines can be
used to separate lines (either a carriage return, line feed, or both). If agiven lineistoo
long, it will be word-wrapped. If pr onpt contains character 0, then only the characters
up to the character O will be displayed.
The width and height of the dialog are sized to hold the entire contents of pronpt . A
runtime error is generated if pr onpt isnull.

but t ons Integer specifying the type of dialog (see below).

title Caption of the dialog. This parameter is any expression convertibleto astring. If itis
omitted, then "SmarTerm" isused. A runtime error isgenerated if tit1 e isnull.

hel pfile Name of thefile containing context-sensitive help for this dialog. If this parameter is
specified, then cont ext must also be specified.

cont ext Number specifying the ID of the topic within hel pfi | e for thisdialog's help. If this
parameter is specified, then hel pfi | e must also be specified.

The MsgBox function returns one of the following values:

Constant Value Description

ebOK 1 OK was pressed.
ebCancel 2 Cancel was pressed.
ebAbor t 3 Abort was pressed.
ebRetry 4 Retry was pressed.
ebl gnor e 5 Ignor